Supporting Information

Asymmetric synthesis of penostatins A-D from L-ascorbic acid

Maolin Wang, Yuanliang Jia, Folei Wu, Zupei Li, Lijun Shao and Xiaochuan Chen*

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of

Chemistry, Sichuan University, Chengdu 610064, PR China

E-mail: chenxc@scu.edu.cn

Table of Contents

1.	Experimental Procedures	S2
2.	Comparison of NMR Spectroscopic Data	S25
3.	Comparison of Optical Rotation Data	S33
4.	NMR spectra of the compounds	S34

1. Experimental Procedures

1.1 Synthesis of compound S1

To a solution of **9** (6.08 g, 20 mmol, 1 equiv.) and *N*,*O*-dimethylhydroxylamine hydrochloride (2.93 g, 30 mmol, 1.5 equiv.) in THF (60 mL), a 2 M solution of *i*PrMgCl in THF (60 mmol, 3 equiv.) was added at 0 °C. The reaction mixture was stirred for 2 h at 0 °C. The reaction was then quenched with an aqueous saturated solution of NH₄Cl (200 mL) and extracted with EtOAc (3×200 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 80/20) to obtain **S1** (6.26 g, 94%) as a colorless oil.

 $[\alpha]_D^{25}$ +12.3 (c 0.64, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 4.61 (brs, 1H), 4.36 (q, *J* = 6.4 Hz, 1H), 3.99 (dd, *J* = 8.6, 6.5, Hz, 1H), 3.92 (dd, *J* = 8.6, 6.5 Hz, 1H), 3.71 (s, 3H), 3.21 (s, 3H), 1.39 (s, 3H), 1.33 (s, 3H), 0.89 (s, 9H), 0.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 109.8, 77.4, 70.9, 65.6, 61.3, 26.6, 25.9, 25.5, 18.5, -4.7, -4.8; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₁₅H₃₁O₅NSiNa 356.1864, found 356.1850.

1.2 Synthesis of compound 10

To a solution of **S1** (6.7 g, 20 mmol, 1 equiv.) in THF (100 mL), a solution of vinylmagnesium bromide (1.0 M in THF; 30 mL, 30 mmol, 1.5 equiv.) was added at 0 $^{\circ}$ C, and the resulting mixture was stirred at 25 $^{\circ}$ C for 2 h. The reaction mixture was

slowly added to a solution of HCl (1 N, 150 mL) and extracted with EtOAc (3×200 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 95/5) to obtain **10** (5.58 g, 93%) as a colorless oil.

 $[\alpha]_D^{25}$ +51.3 (c 0.73, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.85 (dd, J = 17.4, 10.6 Hz, 1H), 6.37 (dd, J = 17.4, 1.9 Hz, 1H), 5.74 (dd, J = 10.6, 1.9 Hz, 1H), 4.24 (td, J = 6.6, 4.8 Hz, 1H), 4.14 (d, J = 4.8 Hz, 1H), 3.99 (dd, J = 8.5, 6.6 Hz, 1H), 3.86 (dd, J = 8.5, 6.6 Hz, 1H), 1.40 (s, 3H), 1.31 (s, 3H), 0.91 (s, 9H), 0.06 (d, J = 13.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 200.0, 132.2, 129.3, 109.9, 78.8, 77.4, 65.5, 26.3, 25.9, 25.6, 18.4, -4.8, -4.9; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₅H₂₈O₄SiNa 323.1649, found 323.1624.

1.3 Synthesis of compound 11

To a stirred solution of **10** (1.28 g, 4.3 mmol, 1 equiv.) in CH₂Cl₂ (43 mL) at -78 °C was slowly added **7a b** (2.5 mL, 26 mmol, 6 equiv.). Then, to the reaction mixture was added BF₃·OEt₂ (54 µL, 0.43 mmol, 0.1 equiv.) and stirred at -78 °C for additional 0.5 h. The reaction was quenched with an aqueous saturated solution of NaHCO₃ (50 mL). The organic phase was added to MeCN (200 mL) and filtered through a pad of Celite. The filtrate was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 95/5) to obtain **11** (1.37 g, 84%) as a colorless oil.

 $[\alpha]_D^{25}$ +36.7 (c 1.31, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.22 (s, 1H), 4.26 (q, *J* = 6.5 Hz, 1H), 4.12 (d, *J* = 5.5 Hz, 1H), 3.94 (dd, *J* = 8.5, 6.5 Hz, 1H), 3.84 (dd, *J* = 8.5, 7.4 Hz, 1H), 3.53 (dt, *J* = 8.4, 4.2 Hz, 1H), 3.27 (s, 1H), 2.65 (s, 1H), 1.76 (d, *J* = 1.6)

Hz, 3H), 1.64 (ddd, J = 12.1, 8.6, 3.9 Hz, 1H), 1.49–1.42 (m, 2H), 1.40 (s, 3H), 1.34 (s, 3H), 1.30 (d, J = 8.2 Hz, 1H), 0.94 (s, 9H), 0.09 (d, J = 1.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 211.8, 148.5, 123.8, 109.4, 79.4, 77.4, 65.9, 50.2, 49.5, 47.8, 47.3, 27.4, 26.5, 26.0, 25.8, 18.5, 15.2, -4.57, -4.64; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₁H₃₆O₄SiNa 403.2275, found 403.2276.

1.4 Synthesis of compound 15

To a stirred solution of **11** (3.8 g, 10 mmol, 1 equiv.) in CH₂Cl₂ (100 mL) at -78 °C was added diisobutylaluminum hydride (DIBAL-H, 1.5 M in toluene; 16.7 mL, 25 mmol, 2.5 equiv.). The reaction mixture was stirred at -78 °C for additional 0.5 h. Excess DIBAL-H was then quenched at -40 °C rotate by dropwise addition of anhydrous MeOH until evolution of gas had ceased. The reaction solution was poured into a vigorously stirred mixture of a saturated aqueous solution of Rochelle's salt (200 mL). Vigorous stirring was maintained until the phases became clear, at which point the aqueous and organic layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 × 200 mL) and the combined organic extracts were dried over anhydrous Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 90/10) to obtain **15** (3.59 g, 94%) as a colorless oil.

[α]_D²⁵ +30.0 (c 0.65, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.60 (s, 1H), 4.14 (q, J = 7.2 Hz, 1H), 3.95 (dd, J = 8.2, 6.6 Hz, 1H), 3.59 (t, J = 7.9 Hz, 1H), 3.53 (d, J = 7.2 Hz, 1H), 2.90 (dq, J = 3.2, 1.6 Hz, 1H), 2.66 (t, J = 10.6 Hz, 1H), 2.57–2.50 (m, 1H), 2.33 (d, J = 10.6 Hz, 1H), 2.30–2.18 (m, 1H), 1.74 (d, J = 1.6 Hz, 3H), 1.72–1.64 (m, 1H), 1.52–1.44 (m, 1H), 1.38 (s, 3H), 1.32 (s, 3H), 1.20 (d, J = 8.2, Hz, 1H), 0.92 (s, 9H), 0.44 (ddd, J = 11.5, 4.7, 2.5 Hz, 1H), 0.12 (d, J = 11.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 126.0, 109.2, 77.8, 75.0, 74.9, 65.9, 48.8, 47.0, 45.5, 44.5, 28.7,

26.7, 26.2, 25.4, 18.6, 15.0, -3.7, -4.7; HRMS (ESI - TOF) *m/z* [M + Na]⁺ calcd for C₂₁H₃₈O₄SiNa 405.2432, found 405.2422.

1.5 Synthesis of compound 16

A solution of **15** (3.4 g, 9 mmol, 1.0 equiv.) in CH₂Cl₂/MeOH (1:1, 30 mL) was cooled to -78 °C. A stream of O₃ was bubbled through the solution until a pale blue color persisted (about 0.5 h). A stream of N₂ was bubbled through the solution to remove residual O₃ until the solution become colorless. Then, the mixture was allowed to warm to room temperature and added an aqueous saturated solution of Na₂S₂O₃ (50 mL). The reaction mixture was stirred overnight. The reaction was extracted with CH₂Cl₂ (3 × 100 mL) and the combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 70/30) to obtain **16** (3.42 g, 92%) as a colorless oil.

[α]_D²⁵ -21.2 (c 0.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.09 (d, J = 12.0 Hz, 1H), 4.86 (d, J = 12.0 Hz, 1H), 4.23 (ddd, J = 8.4, 7.5, 6.1 Hz, 1H), 4.10 (dd, J = 7.9, 6.1 Hz, 1H), 3.91 (t, J = 2.4 Hz, 1H), 3.69–3.62 (m, 2H), 2.86–2.68 (m, 2H), 2.63 (q, J =9.1 Hz, 1H), 2.35–2.19 (m, 2H), 2.15 (s, 3H), 1.64 (ddd, J = 12.8, 11.1, 8.1 Hz, 1H), 1.51 (td, J = 12.1, 9.7 Hz, 1H), 1.41 (s, 3H), 1.34 (s, 3H), 0.94 (s, 9H), 0.20 (d, J =13.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 209.0, 109.2, 104.5, 87.8, 78.1, 66.1, 54.3, 54.1, 44.5, 35.9, 34.5, 29.1, 26.8, 26.2, 25.6, 18.7, -3.9, -4.4; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₁H₃₈O₆SiNa 437.2330, found 437.2325

1.6 Synthesis of compound 17

A solution of **16** (2.9 g, 7 mmol, 1.0 equiv.) in CH₂Cl₂ (70 mL) was treated with *m*-CPBA (85%; 2.9 g, 14 mmol, 2.0 equiv.). The mixture was stirred at 45 °C for 48 h. The mixture was quenched by the addition of saturated aqueous Na₂S₂O₃ (30 mL), diluted with saturated aqueous NaHCO₃ solution (30 mL) and extracted with CH₂Cl₂ (3×70 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 75/25) to obtain **17** (2.74 g, 91%) as a colorless oil.

[α]_D²⁵ –16.9 (c 0.86, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.13 (d, J = 11.8 Hz, 1H), 4.97 (p, J = 6.3 Hz, 1H), 4.76 (d, J = 11.8 Hz, 1H), 4.23 (ddd, J = 8.5, 7.3, 6.3 Hz, 1H), 4.09 (dd, J = 7.9, 6.1 Hz, 1H), 3.97 (t, J = 2.5 Hz, 1H), 3.68 (t, J = 8.3 Hz, 1H), 3.64 (dd, J = 7.4, 2.1 Hz, 1H), 2.69 (tdd, J = 8.8, 5.9, 2.8 Hz, 1H), 2.56 (q, J = 8.8 Hz, 1H), 2.36–2.21 (m, 2H), 2.00 (s, 3H), 1.63–1.54 (m, 2H), 1.40 (s, 3H), 1.34 (s, 3H), 0.93 (s, 9H), 0.19 (d, J = 14.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 109.3, 105.6, 88.2, 78.1, 76.7, 75.7, 66.1, 51.6, 42.4, 38.7, 36.7, 26.8, 26.2, 25.7, 21.3, 18.7, -3.9, -4.4; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₁H₃₈O₇SiNa 453.2279, found 453.2275.

1.7 Synthesis of compound 19

To a solution of **17** (1.2 g, 2.8 mmol, 1 equiv.) in MeOH (30 mL) was added NaBH₄ (320 mg, 8.4 mmol, 3 equiv.) at 0 °C and the mixture was stirred at the same temperature for 1 h. The reaction mixture was quenched with aqueous HCl (1 N; 50 mL), and the resulting solution was extracted with CH₂Cl₂ (3 × 50 mL). The

combined organic phases were dried with Na_2SO_4 . After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 50/50) to obtain **19** (1.14 g, 94%) as a colorless oil.

[α]_D²⁵ -4.9 (c 1.78, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.11–4.98 (m, 1H), 4.18 (q, J = 7.4 Hz, 1H), 4.03 (dd, J = 8.1, 6.4 Hz, 1H), 3.78 (dd, J = 11.5, 9.1 Hz, 1H), 3.65 (t, J = 7.9 Hz, 1H), 3.61 (d, J = 7.4 Hz, 1H), 3.56–3.47 (m, 2H), 2.41–2.31 (m, 1H), 2.26 (tt, J = 10.0, 7.3 Hz, 1H), 2.17 (dt, J = 14.3, 7.9 Hz, 1H), 2.07 (dt, J = 14.3, 7.3 Hz, 1H), 1.99 (s, 3H), 1.48–1.42 (m, 1H), 1.40 (s, 3H), 1.39–1.34 (m, 1H), 1.32 (s, 3H), 0.88 (s, 9H), 0.11 (d, J = 17.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 109.4, 77.8, 74.9, 74.6, 72.2, 65.9, 63.4, 43.4, 42.1, 35.7, 34.8, 26.7, 26.1, 25.4, 21.3, 18.5, -3.8, -4.8; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₁H₄₀O₇SiNa 455.2436, found 455.2427.

1.8 Synthesis of compound 20

To a stirred solution of **19** (1.2 g, 2.7 mmol, 1 equiv.) in anhydrous CH_2Cl_2 (27 mL) at 0 °C were added imidazole (367 mg, 5.4 mmol, 2 equiv.) and *tert*-butyldimethylsilyl chloride (610 mg, 4.1 mmol, 1.5 equiv.). The reaction mixture was stirred at room temperature for 12 h. Then the reaction mixture was quenched by addition of water (25 mL). The organic layer was collected and the aqueous layer was extracted with CH_2Cl_2 (3 × 25 mL). The combined organic phases were dried with Na_2SO_4 . After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 90/10) to obtain **20** (1.4 g, 95%) as a colorless oil.

[α]_D²⁵ -8.6 (c 0.83, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.03 (qd, J = 7.2, 4.1 Hz, 1H), 4.26 (td, J = 8.1, 6.3 Hz, 1H), 4.04 (dd, J = 7.9, 6.2 Hz, 1H), 3.74 (dd, J = 10.3, 7.6 Hz, 1H), 3.62–3.54 (m, 3H), 3.50–3.42 (m, 2H), 2.38–2.27 (m, 2H), 2.21 (dt, J = 14.8, 8.1 Hz, 1H), 2.14–2.04 (m, 1H), 2.00 (s, 3H), 1.47 (dt, J = 14.8, 3.1 Hz, 1H), 1.36–1.43 (m, 4H), 1.34 (s, 3H), 0.90 (s, 9H), 0.89 (s, 9H), 0.12 (d, J = 17.0 Hz, 6H), 0.08 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 109.0, 78.3, 76.1, 75.1, 72.9, 66.2, 64.2, 43.6, 41.0, 35.4, 34.0, 26.9, 26.2, 26.0, 25.7, 21.4, 18.7, 18.3, -3.7, -4.9, -5.4, -5.5; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₇H₅₄O₇Si₂Na 569.3300, found 569.3308.

1.9 Synthesis of compound S2

A solution of **20** (5.46 g, 10 mmol, 1 equiv.) in anhydrous pyridine (16 mL) was treated at 0°C with MsCl (3.87 mL, 50 mmol, 5 equiv.) and the rection mixture was stirred 18 h at room temperature. The reaction was concentrated under vacuum and then quenched by addition of water (100 mL). The aqueous layer was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic phases were dried with Na_2SO_4 . After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 85/15) to obtain **S2** (5.43 g, 87%) as a colorless oil.

[α]_D²⁵ +23.6 (c 1.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.10 (qd, J = 7.2, 3.4 Hz, 1H), 4.68 (dd, J = 10.6, 2.2 Hz, 1H), 4.22–4.09 (m, 2H), 3.80 (dd, J = 6.9, 2.2 Hz, 1H), 3.77–3.70 (m, 2H), 3.64 (t, J = 7.7 Hz, 1H), 3.04 (s, 3H), 2.44–2.34 (m, 1H), 2.29 (dt, J = 14.0, 7.2 Hz, 1H), 2.14 (dq, J = 22.1, 8.0, 7.7 Hz, 2H), 2.00 (s, 3H), 1.92–1.83 (m, 1H), 1.74–1.61 (m, 1H), 1.39 (s, 3H), 1.34 (s, 3H), 0.90 (s, 9H), 0.89 (s, 9H), 0.12 (s, 6H), 0.07 (d, J = 5.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 109.3, 82.7, 76.5, 75.0, 66.1, 62.1, 42.0, 40.6, 39.4, 35.0, 34.7, 26.7, 26.2, 26.1, 26.0, 25.7, 21.3, 18.5, 18.5, -4.1, -4.6, -5.27, -5.33; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₈H₅₆O₉Si₂SNa 647.3076, found 647.3077.

1.10 Synthesis of compound S3

To a stirred solution of **S2** (3.6 g, 5.8 mmol, 1 equiv.) in THF (58 mL) in a Teflon[®] sample tube was added a solution of HF-pyridine (HF content ~70%; 1.5 mL, 58 mmol, 10 equiv.) at 0 °C under argon. The resulting mixture was stirred at room temperature for 3 h. The reaction was quenched by the addition of saturated aqueous NaHCO₃ (100 mL), and the whole mixture was extracted with EtOAc (3×100 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 50/50) to obtain **S3** (2.54 g, 86%) as a colorless oil.

[α]_D²⁵ +12.1 (*c* 0.53, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.20–5.09 (m, 1H), 4.83 (dd, J = 10.4, 2.6 Hz, 1H), 4.16 (q, J = 6.5 Hz, 1H), 4.09 (dd, J = 8.3, 6.5 Hz, 1H), 3.87 (dd, J = 11.0, 5.7 Hz, 1H), 3.83 (dd, J = 6.5, 2.5 Hz, 1H), 3.68 (t, J = 7.9 Hz, 1H), 3.62 (dd, J = 10.4, 7.0 Hz, 1H), 3.09 (s, 3H), 2.48–2.30 (m, 2H), 2.25 (p, J = 6.3 Hz, 1H), 2.12–2.03 (m, 1H), 2.01 (s, 3H), 1.92 (s, 1H), 1.76 (dt, J = 14.9, 1.8 Hz, 1H), 1.59 (td, J = 12.3, 6.0 Hz, 1H), 1.39 (s, 3H), 1.33 (s, 3H), 0.88 (s, 9H), 0.12 (d, J = 3.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 109.3, 82.4, 76.1, 74.8, 74.7, 66.0, 62.3, 42.9, 41.4, 39.3, 35.5, 34.6, 26.6, 26.0, 25.7, 21.4, 18.4, -4.3, -4.5; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₂H₄₂O₉SiSNa 533.2211, found 533.2212.

1.11 Synthesis of compound 21

A solution of DMSO (5.7 mL, 80 mmol, 4 equiv.) in CH₂Cl₂ (20 mL) was added dropwise under nitrogen at -78 °C to a solution of oxalyl chloride (3.5 mL, 40 mmol, 2 equiv.) in CH₂Cl₂ (140 mL). After the system had been kept for an additional 20 min at -78 °C, a solution of **S3** (10.2 g, 20 mmol, 1 equiv.) in CH₂Cl₂ (40 mL) was added dropwise. After the system had then been kept for an additional 45 min at -78 °C, triethylamine (11.2 mL, 80 mmol, 4 equiv.) was added dropwise. After the system had been kept for an additional 5 min at -78 °C, the temperature was raised to 25 °C and stirring was continued for 30 min. The reaction mixture was then partitioned between water (200 mL) and CH₂Cl₂. The organic extract was washed with a saturated aqueous solution of NH₄Cl, dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 65/35) to obtain **21** (9.04 g, 89%) as a colorless oil.

[α]_D²⁵ +13.9 (c 0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.79 (dd, J = 2.6, 1.2 Hz, 1H), 5.23–5.13 (m, 1H), 5.08 (dd, J = 10.0, 2.8 Hz, 1H), 4.22–4.14 (m, 1H), 4.09 (dd, J = 8.3, 6.5 Hz, 1H), 3.87 (dd, J = 5.6, 2.8 Hz, 1H), 3.71 (t, J = 7.9 Hz, 1H), 3.04 (s, 3H), 2.97 (tt, J = 5.6, 2.8 Hz, 1H), 2.68–2.54 (m, 1H), 2.48 (dt, J = 14.5, 7.4 Hz, 1H), 2.22 (dt, J = 15.0, 8.2 Hz, 1H), 2.03 (t, J = 2.5 Hz, 1H), 2.00 (s, 3H), 1.81 (td, J = 13.0, 5.8 Hz, 1H), 1.40 (s, 3H), 1.33 (s, 3H), 0.89 (s, 9H), 0.13 (d, J = 6.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 202.6, 170.8, 109.5, 80.9, 75.7, 74.4, 74.2, 66.1, 51.0, 42.9, 38.9, 35.3, 33.5, 26.5, 26.0, 25.7, 21.2, 18.4, -4.35, -4.43; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₂H₄₀O₉SiSNa 531.2055, found 531.2058.

1.12 Synthesis of compound 23

To a solution of **22** (198 mg, 0.75 mmol, 1.5 equiv.) in THF (5 mL) was added LDA (2 M in THF; 0.325 mL, 0.65 mmol, 1.3 equiv.) under nitrogen at -78 °C. After 30 min, a solution of **21** (255 mg, 0.5 mmol, 1 equiv.) in THF (2.5 mL) was dropped slowly to the mixture and the reaction was stirred for 1 h at -78 °C. The reaction was then quenched with an aqueous saturated solution of NH₄Cl (10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 80/20) to obtain **23** (256 mg, 83%) as a colorless oil.

[α]_D²⁵ +28.5 (*c* 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.30–6.13 (m, 2H), 5.72 (d, J = 1.3 Hz, 1H), 5.19 (tdd, J = 7.8, 5.6, 2.2 Hz, 1H), 4.55 (dd, J = 10.6, 3.1 Hz, 1H), 4.22–4.12 (m, 3H), 4.04 (dd, J = 8.3, 6.4 Hz, 1H), 3.92 (dd, J = 5.6, 3.1 Hz, 1H), 3.77–3.69 (m, 1H), 2.98 (s, 3H), 2.95–2.87 (m, 1H), 2.53 (dt, J = 14.4, 7.4 Hz, 1H), 2.40 (dddd, J = 12.9, 10.5, 7.4, 5.8 Hz, 1H), 2.29 (d, J = 1.2 Hz, 3H), 2.22 (ddd, J = 15.1, 8.1, 7.1 Hz, 1H), 2.03 (s, 3H), 1.78–1.66 (m, 2H), 1.40 (s, 3H), 1.36–1.33 (m, 3H), 1.28 (t, J = 7.1 Hz, 3H), 0.90 (s, 9H), 0.12 (d, J = 7.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 167.2, 151.7, 136.0, 135.5, 119.2, 109.4, 83.0, 75.7, 74.9, 74.0, 66.0, 59.9, 44.2, 43.7, 39.5, 39.0, 34.4, 26.6, 26.0, 25.8, 21.4, 18.4, 14.5, 13.8, -4.3, -4.6; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₉H₅₀O₁₀SiSNa 641.2786, found 641.2783.

1.13 Synthesis of compound S4

To a stirred solution of **23** (1.2 g, 2 mmol, 1 equiv.) in CH_2Cl_2 (20 mL) at -78 °C was added DIBAL-H (1.5 in toluene; 6.4 mL, 9.6 mmol, 4.8 equiv.). The reaction mixture was stirred at -78 °C for additional 0.5 h. Excess DIBAL-H was then quenched at -40 °C rotate by dropwise addition of anhydrous MeOH until evolution of gas had ceased. The reaction solution was poured into a vigorously stirred mixture of a saturated aqueous solution of Rochelle's salt (40 mL). Vigorous stirring was maintained until the phases became clear, at which point the aqueous and organic layers were separated. The aqueous layer was extracted with CH_2Cl_2 (3 × 40 mL) and the combined organic extracts were dried over anhydrous Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 50/50) to obtain **S4** (970 mg, 91%) as a colorless oil.

[α]_D²⁵ +50.3 (*c* 0.64, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.12 (d, *J* = 15.6 Hz, 1H), 5.88 (dd, *J* = 15.6, 9.5 Hz, 1H), 5.57 (t, *J* = 6.9 Hz, 1H), 4.58 (dd, *J* = 10.6, 3.0 Hz, 1H), 4.39 (tt, *J* = 6.9, 3.5 Hz, 1H), 4.26 (d, *J* = 6.9 Hz, 2H), 4.18 (dt, *J* = 7.7, 6.1 Hz, 1H), 4.04 (dd, *J* = 8.4, 6.3 Hz, 1H), 3.94 (dd, *J* = 6.0, 3.0 Hz, 1H), 3.73 (t, *J* = 8.1 Hz, 1H), 2.97 (s, 3H), 2.79 (q, *J* = 7.5 Hz, 1H), 2.40 (dt, *J* = 13.3, 6.9 Hz, 1H), 2.36–2.25 (m, 1H), 2.25–2.13 (m, 1H), 1.90–1.84 (m, 2H), 1.81–1.77 (m, 3H), 1.64–1.52 (m, 2H), 1.39 (s, 3H), 1.34 (s, 3H), 0.91 (s, 9H), 0.12 (d, *J* = 8.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 136.1, 136.0, 129.7, 129.3, 109.1, 83.8, 75.9, 74.3, 72.5, 66.0, 59.4, 44.0, 43.6, 42.2, 39.4, 37.7, 26.6, 26.0, 25.9, 18.4, 12.8, -4.3, -4.6; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₅H₄₆O₈SiSNa 557.2575, found 557.2580.

1.14 Synthesis of compound S5

To a solution of **S4** (634 mg, 1.2 mmol, 1 equiv.) in CH₂Cl₂ (12 ml) was added triethylamine (1 mL, 7.2 mmol, 6 equiv.), Ac₂O (450 μ L, 4.8 mmol, 4 equiv.) and DMAP (12 mg, 0.1 mmol, 0.1 equiv.) at 0 °C. The reaction mixture was stirred at room temperature for 1 h. The reaction mixture was quenched with a saturated aqueous NaHCO₃ (10 mL), and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 80/20) to obtain **S5** (704 mg, 95%) as a colorless oil.

[α]_D²⁵ +45.0 (*c* 0.92, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.12 (d, *J* = 15.6 Hz, 1H), 5.84 (dd, *J* = 15.6, 9.5 Hz, 1H), 5.51 (t, *J* = 7.1 Hz, 1H), 5.15 (tdd, *J* = 8.0, 5.8, 2.2 Hz, 1H), 4.69 (qd, *J* = 13.0, 7.1 Hz, 2H), 4.55 (dd, *J* = 10.6, 3.1 Hz, 1H), 4.18 (dt, *J* = 7.6, 6.0 Hz, 1H), 4.03 (dd, *J* = 8.3, 6.4 Hz, 1H), 3.92 (dd, *J* = 5.7, 3.1 Hz, 1H), 3.72 (t, *J* = 8.0 Hz, 1H), 2.97 (s, 3H), 2.83 (dt, *J* = 9.5, 6.4 Hz, 1H), 2.49 (dt, *J* = 14.4, 7.4 Hz, 1H), 2.34 (ddt, *J* = 13.0, 10.7, 7.1 Hz, 1H), 2.25–2.14 (m, 1H), 2.04 (s, 3H), 2.01 (s, 3H), 1.81 (d, *J* = 1.2 Hz, 3H), 1.73–1.61 (m, 2H), 1.38 (s, 3H), 1.33 (s, 3H), 0.89 (s, 9H), 0.11 (d, *J* = 8.3 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.7, 138.2, 135.9, 129.5, 124.1, 109.2, 83.4, 75.7, 75.0, 74.1, 66.0, 61.2, 43.9, 43.5, 39.4, 39.1, 34.4, 26.5, 26.0, 25.8, 21.3, 21.1, 18.3, 12.8, -4.4, -4.6; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₉H₅₀O₁₀SiSNa 641.2786, found 641.2785.

1.15 Synthesis of compound 24

To a stirred solution of **S5** (618 mg, 1 mmol, 1 equiv.) in EtOAc (10 mL) was added orthoperiodic acid (274 mg, 1.2 mmol, 1.2 equiv.) at room temperature. After being stirred at the same temperature for 1.5 h, the reaction mixture was quenched with an aqueous saturated solution of NaHCO₃ (10 mL) and extracted with EtOAc (3 \times 10 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 80/20) to obtain **24** (464 mg, 85%) as a colorless oil.

[α]_D²⁵ +24.1 (*c* 1.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.67 (s, 1H), 6.20 (d, J = 15.6 Hz, 1H), 5.84 (dd, J = 15.6, 9.7 Hz, 1H), 5.55 (t, J = 7.1 Hz, 1H), 5.16 (tdd, J = 7.9, 6.0, 2.4 Hz, 1H), 4.81 (dd, J = 9.7, 3.0 Hz, 1H), 4.70 (qd, J = 13.0, 7.1 Hz, 2H), 4.29 (d, J = 3.0 Hz, 1H), 2.97 (s, 3H), 2.90 (q, J = 7.1 Hz, 1H), 2.41–2.31 (m, 1H), 2.24 (tt, J = 15.0, 7.3 Hz, 2H), 2.05 (s, 3H), 2.04 (s, 3H), 1.84 (d, J = 1.1 Hz, 3H), 1.77–1.67 (m, 2H), 0.93 (s, 9H), 0.09 (d, J = 16.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 200.3, 171.2, 170.7, 138.1, 136.4, 128.6, 124.4, 81.1, 78.4, 74.6, 61.3, 43.9, 43.0, 39.4, 39.2, 34.1, 25.8, 21.4, 21.1, 18.3, 12.9, -4.4, -4.9; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₅H₄₂O₉SiSNa 569.2211, found 569.2213.

1.16 Synthesis of compound 25

A solution of **24** (765 mg, 1.4 mmol) in toluene (14 mL) was heated to 80 °C under nitrogen. The reaction mixture was stirred at 80 °C for 24 h. The solvent was

concentrated under vacuum. The mixture was purified by flash column chromatography (eluent hexane/ethyl acetate 75/25) to obtain **25** (496 mg, 65%) as a white solid.

m.p. = 153–154 °C; $[\alpha]_D^{25}$ +41.6 (*c* 0.27, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.50 (s, 1H), 5.11 (dtd, *J* = 9.9, 7.9, 3.4 Hz, 1H), 4.68 (dd, *J* = 11.8, 8.8 Hz, 1H), 4.64 (t, *J* = 4.3 Hz, 1H), 4.16 (d, *J* = 8.2 Hz, 1H), 4.08 (s, 1H), 3.88 (dd, *J* = 11.8, 2.8 Hz, 1H), 3.83 (dd, *J* = 10.6, 2.0 Hz, 1H), 3.16 (s, 3H), 2.88–2.75 (m, 1H), 2.57–2.45 (m, 1H), 2.36 (dt, *J* = 15.2, 9.6 Hz, 1H), 2.20 (dq, *J* = 13.2, 6.5 Hz, 1H), 2.07 (s, 3H), 2.03 (s, 3H), 1.80 (ddd, *J* = 15.3, 3.4, 1.4 Hz, 1H), 1.66 (s, 3H), 1.60 (s, 1H), 1.50 (ddd, *J* = 14.6, 12.5, 8.0 Hz, 1H), 0.87 (s, 9H), 0.08 (d, *J* = 6.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 170.7, 130.9, 126.6, 82.1, 75.6, 75.1, 70.6, 65.3, 62.8, 41.1, 38.6, 36.5, 33.3, 32.8, 30.8, 25.8, 21.2, 21.0, 19.6, 18.1, -4.6, -5.2; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₅H₄₂O₉SiSNa 569.2211, found 569.2210.

1.17 Synthesis of compound 27

DBU (20 μ L, 0.14 mmol, 0.1 equiv.) was added to a stirred solution of **21** (720 mg, 1.42 mmol, 1 equiv.) in CH₂Cl₂ (15 mL). Stirring at room temperature was continued for 1 h, and the solution was then washed with diluted hydrochloric acid (1 N, 8 mL), water (10 mL) and brine (10 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 75/25) to obtain **27** (662 mg, 92%) as a white solid.

m.p. = 159–160 °C; $[\alpha]_D^{25}$ +11.8 (*c* 0.72, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.58 (d, *J* = 3.1 Hz, 1H), 5.24–5.11 (m, 1H), 4.56 (dd, *J* = 10.3, 2.6 Hz, 1H), 4.22 (td, *J* = 7.0, 5.5 Hz, 1H), 4.10 (dd, *J* = 8.3, 6.5 Hz, 1H), 3.91 (dd, *J* = 5.5, 2.5 Hz, 1H), 3.68

(dd, J = 8.3, 7.0 Hz, 1H), 3.04 (s, 3H), 3.03–2.89 (m, 2H), 2.31 (ddd, J = 15.0, 9.0, 5.8 Hz, 1H), 2.04 (s, 3H), 2.01 (dd, J = 9.0, 4.6 Hz, 2H), 1.91 (ddt, J = 13.2, 6.7, 3.4 Hz, 1H), 1.41 (s, 3H), 1.35 (s, 3H), 0.91 (s, 9H), 0.14 (d, J = 7.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 201.9, 170.5, 109.5, 84.0, 75.8, 75.4, 74.2, 66.0, 54.3, 39.8, 38.6, 35.4, 33.5, 26.6, 26.0, 25.7, 21.3, 18.4, -4.38, -4.42; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₂H₄₀O₉SiSNa 531.2055, found 531.2056.

1.18 Synthesis of compound 28

To a stirred solution of 29 (196 mg, 1.0 mmol, 1 equiv.) in CH₂Cl₂ (10 mL) was added triphenylphosphine hydrobromide (410 mg, 1.2 mmol, 1.2 equiv.). The reaction mixture was stirred for 8 h and the solvent was concentrated under vacuum. The mixture purified by flash column chromatography (eluent was dichloromethane/methanol 95/5) to obtain 28 (473 mg, 91%) as a white solid. m.p. = 147–148 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.72 (m, 9H), 7.71–7.60 (m, 6H), 6.09–5.93 (m, 1H), 5.75 (dd, J = 10.8, 5.5 Hz, 1H), 5.44 (dtd, J = 16.8, 9.4, 8.1, 4.2 Hz, 1H), 4.65 (t, J = 13.8 Hz, 2H), 2.06–1.95 (m, 2H), 1.56 (d, J = 4.3 Hz, 3H), 1.34–1.15 (m, 10H), 0.89–0.80 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.9 (d, J = 5.0 Hz), 135.7 (d, J = 12.2 Hz), 135.1, 134.3 (d, J = 9.9 Hz), 130.3 (d, J = 12.4 Hz), 125.1 (d, J = 5.5 Hz), 120.4 (d, J = 12.2 Hz), 118.5 (d, J = 85.1 Hz), 34.8 (d, J = 45.9Hz), 33.0, 31.9, 29.2, 22.7, 19.0, 19.0, 14.2; HRMS (ESI-TOF) *m/z* [M – Br]⁺ calcd for C₃₁H₃₈P 441.2706, found 441.2726.

1.19 Synthesis of compound 30

To a suspension of **28** (1.04 g, 2.0 mmol, 2.0 equiv.) in toluene (15 mL) was added dropwise KHMDS (1.0 M in THF; 2.0 mL, 2.0 mmol, 2.0 equiv.) via syringe at 0 °C. After the solution was stirred for 10 min at this temperature, a solution of **27** (508 mg, 1.0 mmol, 1.0 equiv.) in toluene (3 mL) was added slowly. The mixture was stirred for 4 h at 0 °C and then quenched with an aqueous saturated solution of NH₄Cl (20 mL) and extracted with EtOAc (3×20 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 90/10) to obtain **30** (543 mg, 81%) as a colorless oil.

[α]_D²⁵ +28.9 (*c* 0.96, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.32 (ddt, *J* = 15.0, 11.1, 1.5 Hz, 1H), 6.12 (d, *J* = 15.6 Hz, 1H), 5.95 (d, *J* = 11.1 Hz, 1H), 5.71 (dt, *J* = 14.6, 7.1 Hz, 1H), 5.52 (dd, *J* = 15.6, 8.1 Hz, 1H), 5.14 (dp, *J* = 5.5, 2.7 Hz, 1H), 4.56 (dd, *J* = 9.8, 2.5 Hz, 1H), 4.19 (dt, *J* = 7.5, 6.4 Hz, 1H), 4.08 (dd, *J* = 8.3, 6.3 Hz, 1H), 3.90 (dd, *J* = 6.5, 2.4 Hz, 1H), 3.66 (t, *J* = 7.9 Hz, 1H), 2.90 (s, 3H), 2.84 (dq, *J* = 10.7, 7.4 Hz, 1H), 2.40–2.25 (m, 2H), 2.11 (q, *J* = 7.5 Hz, 2H), 2.03 (s, 3H), 1.96 (ddt, *J* = 14.0, 7.5, 2.1 Hz, 1H), 1.89–1.83 (m, 1H), 1.80 (d, *J* = 1.1 Hz, 3H), 1.71–1.64 (m, 1H), 1.40 (s, 3H), 1.39–1.36 (m, 2H), 1.34 (s, 3H), 1.27 (d, *J* = 4.6 Hz, 8H), 0.91 (s, 9H), 0.89–0.83 (m, 3H), 0.13 (d, *J* = 8.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 136.1, 134.6, 132.2, 132.0, 130.5, 126.6, 109.3, 84.5, 76.3, 75.4, 74.8, 66.0, 44.6, 40.7, 38.3, 36.0, 33.3, 32.0, 29.6, 29.3, 29.3, 26.6, 26.1, 25.7, 22.8, 21.5, 18.4, 14.2, 12.8, -4.3, -4.5; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₃₅H₆₂O₈SiSNa 693.3827, found 693.3828.

1.20 Synthesis of compound S6

To a stirred solution of **30** (74 mg, 0.11 mmol) in CH₂Cl₂ (3.6 mL) were added TFA (0.20 mL) and H₂O (0.20 mL) at room temperature. The solution was stirred at room temperature for 1 h. The reaction was then quenched with an aqueous saturated solution of NaHCO₃ (10 mL) and extracted with CH₂Cl₂ (3×10 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 50/50) to obtain **S6** (62 mg, 90%) as a colorless oil.

[α]_D²⁵ +24.4 (*c* 0.52, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.32 (ddd, *J* = 15.0, 11.1, 1.5 Hz, 1H), 6.13 (d, *J* = 15.5 Hz, 1H), 5.95 (d, *J* = 11.0 Hz, 1H), 5.71 (dt, *J* = 14.6, 7.1 Hz, 1H), 5.52 (dd, *J* = 15.5, 8.3 Hz, 1H), 5.14 (td, *J* = 5.4, 2.6 Hz, 1H), 4.67 (dd, *J* = 10.1, 3.4 Hz, 1H), 4.10 (q, *J* = 2.7 Hz, 1H), 3.84 (ddd, *J* = 7.4, 5.2, 2.6 Hz, 1H), 3.54 (qd, *J* = 11.1, 6.2 Hz, 2H), 2.91 (s, 3H), 2.81 (dq, *J* = 11.1, 8.1 Hz, 1H), 2.43–2.34 (m, 1H), 2.29 (ddd, *J* = 15.6, 10.0, 5.8 Hz, 1H), 2.11 (q, *J* = 7.0 Hz, 2H), 2.03 (s, 3H), 1.98–1.88 (m, 2H), 1.80 (s, 3H), 1.61 (ddd, *J* = 14.0, 11.3, 5.4 Hz, 1H), 1.43–1.35 (m, 2H), 1.31–1.23 (m, 8H), 0.92 (s, 9H), 0.90–0.84 (m, 3H), 0.18 (d, *J* = 33.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 136.1, 134.6, 132.3, 132.0, 130.4, 126.7, 84.3, 75.8, 72.0, 69.9, 64.7, 46.8, 44.2, 40.5, 38.5, 36.1, 33.3, 32.0, 29.6, 29.34, 29.30, 26.0, 22.8, 21.5, 18.1, 14.2, 12.8, -3.8, -5.1; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₃₂H₅₈O₈SiSNa 653.3514, found 653.3515.

1.21 Synthesis of compound 31

To a stirred solution of **S6** (233 mg, 0.37 mmol) in THF/H₂O (1:1, 6 mL) was added NaIO₄ (792 mg, 3.7 mmol). The reaction mixture was stirred for 0.5 h. The reaction was then quenched with an aqueous saturated solution of NaHCO₃ (10 mL) and extracted with EtOAc (3×10 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 80/20) to obtain **31** (195 mg, 88%) as a colorless oil.

[α]_D²⁵ +19.8 (*c* 0.34, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.65 (d, *J* = 1.0 Hz, 1H), 6.39–6.27 (m, 1H), 6.15 (d, *J* = 15.5 Hz, 1H), 5.97 (d, *J* = 11.0 Hz, 1H), 5.72 (dt, *J* = 14.6, 7.1 Hz, 1H), 5.50 (dd, *J* = 15.5, 8.3 Hz, 1H), 5.14 (dq, *J* = 5.8, 2.8 Hz, 1H), 4.83 (dd, *J* = 8.1, 3.8 Hz, 1H), 4.34 (dd, *J* = 3.8, 1.0 Hz, 1H), 2.96 (s, 3H), 2.90 (dd, *J* = 10.4, 7.6 Hz, 1H), 2.29–2.22 (m, 2H), 2.12 (q, *J* = 7.2 Hz, 2H), 2.05 (s, 3H), 2.03– 1.94 (m, 2H), 1.81 (s, 3H), 1.70 (ddd, *J* = 14.0, 10.6, 5.8 Hz, 1H), 1.41–1.35 (m, 2H), 1.31–1.25 (m, 8H), 0.93 (s, 9H), 0.88 (t, *J* = 6.8 Hz, 3H), 0.10 (d, *J* = 0.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 200.9, 170.8, 136.2, 135.3, 132.2, 131.1, 130.8, 126.7, 82.3, 78.0, 75.0, 44.8, 44.4, 40.8, 38.6, 35.8, 33.3, 32.0, 29.6, 29.34, 29.31, 25.9, 22.8, 21.5, 18.3, 14.2, 12.8, -4.4, -4.8; HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₃₁H₅₄O₇SiSNa 621.3252, found 621.3255.

1.22 Synthesis of compound 32

To a stirred solution of **31** (246 mg, 0.41 mmol) in toluene (10 mL) was added BHT (9 mg, 0.04 mmol) at room temperature. The solution was stirred at 120 °C for 6 h. Concentration of the solution followed by flash column chromatography (eluent hexane/ethyl acetate 85/15) to obtain **32** (162 mg, 66%) as a colorless oil.

[α]_D²⁵ +18.1 (*c* 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.61 (dt, J = 15.4, 6.5 Hz, 1H), 5.56–5.44 (m, 2H), 5.23 (td, J = 7.5, 3.2 Hz, 1H), 4.62 (t, J = 3.0 Hz, 1H), 4.36 (d, J = 6.5 Hz, 1H), 4.13 (t, J = 3.0 Hz, 1H), 3.45 (dd, J = 9.8, 2.4 Hz, 1H), 3.00 (s, 3H), 2.23 (dt, J = 13.2, 7.3 Hz, 1H), 2.19–2.12 (m, 1H), 2.09–2.02 (m, 2H), 2.01 (s, 3H), 2.00–1.91 (m, 2H), 1.59 (s, 3H), 1.57–1.46 (m, 2H), 1.39 (h, J = 6.9, 6.0 Hz, 3H), 1.31–1.25 (m, 8H), 0.87 (d, J = 2.9 Hz, 12H), 0.10 (d, J = 2.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 135.0, 134.3, 127.5, 123.0, 80.3, 77.7, 74.7, 71.1, 70.7, 42.4, 39.8, 38.3, 37.7, 35.9, 33.2, 32.5, 32.0, 29.4, 29.32, 29.25, 26.0, 22.8, 21.4, 20.1, 18.3, 14.2, -4.3, -5.0; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₁H₅₄O₇SiSNa 621.3252, found 621.3255.

1.23 Synthesis of compound 33

A stirred solution of **32** (191 mg, 0.32 mmol) in 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, 0.5 mL) was heated to 120 °C for 3 h. The resulting mixture was purified by flash column chromatography (eluent hexane/ethyl acetate 95/5) to give product **33** (90 mg, 56%) as a colorless oil and recovered **32** (72 mg, 38%).

 $[\alpha]_D^{25}$ +119.2 (*c* 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.62 (dt, *J* = 15.4, 6.1 Hz, 1H), 5.57–5.50 (m, 2H), 5.26 (td, *J* = 5.7, 4.9, 1.6 Hz, 1H), 4.39 (d, *J* = 6.1 Hz, 1H), 4.19 (t, *J* = 4.2 Hz, 1H), 3.38 (dd, *J* = 9.3, 3.9 Hz, 1H), 2.82–2.70 (m, 1H), 2.38 (d, *J* = 18.1 Hz, 1H), 2.20–2.09 (m, 3H), 2.05 (q, *J* = 6.8 Hz, 2H), 2.01 (s, 3H), 1.63 (s,

3H), 1.56–1.47 (m, 1H), 1.41–1.34 (m, 2H), 1.31–1.21 (m, 9H), 0.88 (s, 12H), 0.08 (d, J = 5.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 144.1, 135.1, 134.3, 127.9, 123.2, 121.5, 76.7, 75.0, 71.8, 66.8, 44.5, 38.0, 37.0, 36.1, 32.5, 32.0, 29.3, 29.3, 29.2, 26.3, 22.8, 21.5, 20.3, 18.8, 14.3, –3.9, –4.3; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₃₀H₅₀O₄SiNa 525.3371, found 525.3372.

1.24 Synthesis of compound S7

To a stirred solution of **33** (200 mg, 0.4 mmol, 1 equiv.) in dry THF (4 mL) in a Teflon[®] sample tube was added a solution of HF-pyridine (HF content ~70%; 0.63 mL, 24 mmol, 60 equiv.) at 0 °C under argon. The resulting mixture was stirred at room temperature for 3 h. The reaction was quenched by the addition of saturated aqueous NaHCO₃ (10 mL), and the whole mixture was extracted with EtOAc (3×10 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 65/35) to obtain **S7** (141 mg, 91%) as a colorless oil.

[α]_D²⁵ +81.7 (*c* 0.24, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.72–5.63 (m, 2H), 5.62–5.54 (m, 2H), 5.26 (t, J = 5.4 Hz, 1H), 4.48 (dd, J = 21.1, 7.1 Hz, 1H), 4.24 (s, 1H), 3.51 (dd, J = 9.7, 4.0 Hz, 1H), 2.79 (dd, J = 18.5, 6.2 Hz, 1H), 2.52–2.38 (m, 2H), 2.25–2.14 (m, 3H), 2.07 (qd, J = 7.0, 3.4 Hz, 2H), 2.02 (s, 3H), 1.64 (s, 3H), 1.57– 1.46 (m, 1H), 1.40 (q, J = 6.1 Hz, 2H), 1.30–1.25 (m, 8H), 0.87 (t, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 147.0, 135.5, 135.1, 127.2, 122.7, 119.4, 77.8, 74.8, 71.5, 65.7, 44.1, 38.0, 37.1, 36.2, 32.5, 32.0, 29.3, 29.2, 22.8, 21.5, 20.2, 14.2; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₄H₃₆O₄Na 411.2506, found 411.2510.

1.25 Synthesis of compound S8

To a stirred solution of **S7** (88.0 mg, 0.23 mmol, 1 equiv.) in CH_2Cl_2 (5 mL) was added pyridinium chlorochromate (PCC, 992 mg, 4.6 mmol, 20 equiv.). The reaction mixture was added PCC (992 mg, 4.6 mmol, 20 equiv.) again after 3 h. The resulting dark mixture was stirred for additional 3 h and filtered through a pad of Celite. The filtrate was concentrated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 75/25) to obtain **S8** (76 mg, 87%) as a colorless oil.

[α]_D²⁵ +55.3 (*c* 0.16, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.97 (q, J = 2.3 Hz, 1H), 5.75–5.64 (m, 1H), 5.62–5.50 (m, 2H), 5.42–5.33 (m, 1H), 4.60 (d, J = 6.4 Hz, 1H), 4.07 (d, J = 11.5 Hz, 1H), 2.93 (ddt, J = 20.3, 5.9, 2.2 Hz, 1H), 2.79–2.67 (m, 2H), 2.48–2.33 (m, 2H), 2.13–1.99 (m, 5H), 1.67 (s, 3H), 1.63 (dd, J = 5.1, 1.2 Hz, 1H), 1.40–1.34 (m, 2H), 1.30–1.23 (m, 8H), 0.87 (t, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 170.6, 168.4, 136.7, 136.5, 126.1, 122.8, 121.6, 77.6, 74.1, 73.9, 45.3, 44.8, 39.0, 36.6, 32.5, 31.9, 29.29, 29.25, 29.15, 22.8, 21.4, 20.2, 14.2; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₄H₃₄O₄Na 409.2349, found 409.2350.

1.26 Synthesis of (+)-Penostatin C

To a solution of **S8** (39 mg, 0.1 mmol, 1 equiv.) in THF/H₂O (1:1, 2 mL) was added LiOH·H₂O (4.2 mg, 0.1 mmol, 1 equiv.) and stirred for 15 min. The reaction mixture was quenched with saturated aqueous NH₄Cl, and the aqueous layer was extracted with EtOAc (3×5 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the

crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 65/35) to obtain (+)-penostatin C (30 mg, 94%) as a colorless oil.

[α]_D²⁵ +172.0 (*c* 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.68 (dt, J = 5.4, 2.6 Hz, 1H), 6.44 (dt, J = 5.6, 2.0 Hz, 1H), 5.91 (d, J = 2.6 Hz, 1H), 5.77–5.65 (m, 1H), 5.64–5.55 (m, 2H), 4.62 (d, J = 6.2 Hz, 1H), 4.04 (d, J = 10.9 Hz, 1H), 2.86 (dddd, J = 17.8, 7.0, 2.8, 1.7 Hz, 1H), 2.70 (dddd, J = 11.4, 6.9, 4.2, 2.6 Hz, 1H), 2.56–2.39 (m, 2H), 2.14–2.00 (m, 2H), 1.68 (s, 3H), 1.41–1.33 (m, 2H), 1.31–1.21 (m, 8H), 0.91–0.83 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 170.8, 147.7, 136.7, 136.2, 132.3, 126.1, 121.7, 117.2, 77.6, 75.1, 45.8, 44.6, 36.5, 32.4, 31.8, 29.16, 29.12, 29.06, 22.7, 20.1, 14.1; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₂H₃₀O₂Na 349.2138, found 349.2139.

1.27 Synthesis of compound S9

To a stirred solution of **33** (50 mg, 0.1 mmol, 1 equiv.) in THF (2 mL) was added TBAF (1 M in THF; 2 mL, 2 mmol, 20 equiv.). The resulting mixture was stirred for 25 h at 80 °C. The reaction was then quenched with an aqueous saturated solution of NH₄Cl (5 mL) and extracted with EtOAc (3×5 mL). The combined organic phases were dried with Na₂SO₄. After filtration the solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 50/50) to obtain **S9** (31 mg, 91%) as a colorless oil.

 $[\alpha]_D^{25}$ +84.4 (*c* 0.44, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.74–5.52 (m, 4H), 4.48 (tt, *J* = 5.4, 1.7 Hz, 2H), 4.23 (d, *J* = 4.3 Hz, 1H), 3.51 (dd, *J* = 10.2, 4.0 Hz, 1H), 2.78–2.65 (m, 1H), 2.46 (s, 1H), 2.39–2.27 (m, 2H), 2.20–2.02 (m, 4H), 1.63 (d, *J* = 1.9 Hz, 3H), 1.40 (d, *J* = 9.2 Hz, 2H), 1.28–1.23 (m, 8H), 0.92–0.84 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 135.6, 134.8, 127.3, 123.0, 119.1, 77.8, 71.7, 71.6,

65.8, 43.6, 40.9, 39.8, 36.2, 32.5, 32.0, 29.28, 29.25, 29.23, 22.8, 20.2, 14.3; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₂H₃₄O₃Na 369.2400, found 369.2401.

1.28 Synthesis of (+)-Penostatin A

To a stirred solution of **S9** (45.0 mg, 0.13 mmol, 1 equiv.) in CH_2Cl_2 (2 mL) was added pyridinium chlorochromate (PCC, 140 mg, 0.65 mmol, 5 equiv.). The resulting dark mixture was stirred for 3 h and filtered through a pad of Celite. The solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (eluent hexane/ethyl acetate 50/50) to obtain (+)-penostatin A (41 mg, 92%) as a colorless oil.

[α]_D²⁵ +87.3 (*c* 0.14, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.95 (d, J = 2.4 Hz, 1H), 5.68 (dt, J = 15.5, 6.5 Hz, 1H), 5.61–5.52 (m, 2H), 4.64–4.56 (m, 2H), 4.08 (d, J =11.5 Hz, 1H), 2.92–2.78 (m, 2H), 2.63 (d, J = 19.8 Hz, 1H), 2.46–2.37 (m, 1H), 2.27 (ddd, J = 13.4, 7.2, 2.4 Hz, 1H), 2.06 (q, J = 7.1 Hz, 2H), 1.66 (s, 3H), 1.56–1.51 (m, 1H), 1.37 (t, J = 6.7 Hz, 2H), 1.26 (s, 8H), 0.87 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.1, 169.7, 136.4, 136.3, 126.0, 122.5, 121.8, 77.2, 73.8, 71.1, 44.80, 44.76, 41.7, 39.2, 32.4, 31.8, 29.0, 22.6, 20.1, 14.1; HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₂₂H₃₂O₃Na 367.2244, found 367.2245.

2. Comparison of NMR Spectroscopic Data

2.1 Comparison of NMR Spectroscopic Data of (+)-penostatins A (CDCl₃)

(+)-Penostatin A

Position	$\delta_{\rm H} \left({f Natural} ight)$	$\delta_{\rm H}$ (Tong's synthetic)	$\delta_{\rm H}$ (Our synthetic)
2	5.95	5.95	5.95
4 A	2.64	2.64	2.63
В	2.84	2.83	2.84
5	4.61	4.61	4.61
6 A	2.28	2.28	2.27
В	1.55	1.55	1.55
7	2.86	2.85	2.86
8	2.41	2.41	2.41
9	4.08	4.08	4.08
10	5.55	5.55	5.55
12	4.60	4.60	4.60
13	5.57	5.57	5.57
14	5.68	5.68	5.68
15	2.06	2.06	2.06
16	1.37	1.37	1.37
17	1.26	1.26	1.26
18	1.26	1.26	1.26
19	1.26	1.26	1.26
20	1.31	1.31	1.31
21	0.87	0.87	0.87
22	1.66	1.66	1.66

Table S1. Comparison of ¹H NMR Data for Natural and Synthetic (+)-penostatins A

Position	δ_{C} (Natural)	$\delta_{\rm H} \left(\text{Tong's synthetic} \right)$	$\delta_{\rm H}\left(\text{Our synthetic}\right)$
1	196.36	196.15	196.12
2	122.37	122.54	122.53
3	170.39	169.79	169.73
4	41.67	41.66	41.66
5	70.92	71.07	71.08
6	39.15	39.22	39.23
7	44.84	44.80	44.80
8	44.75	44.76	44.76
9	73.78	73.80	73.80
10	121.83	121.78	121.77
11	136.11	136.26	136.26
12	77.49	77.22	77.22
13	125.91	125.96	125.96
14	136.49	136.45	136.44
15	32.37	32.38	32.38
16	29.08	29.16	29.04
17	29.08	29.10	29.04
18	29.08	29.03	29.04
19	31.78	31.80	31.80
20	22.62	22.63	22.64
21	14.10	14.10	14.10
22	20.06	20.06	20.06

Table S2. Comparison of ¹³C NMR Data for Natural and Synthetic (+)-penostatins A

2.2 Comparison of NMR Spectroscopic Data of (+)-penostatins C (CDCl₃)

(+)-Penostatin C

Table S3. Comparison of 'H NMR Data for Natural and Synthetic (+)-pen

Position	$\delta_{\rm H} \left({f Natural} ight)$	δ_H (Tong's synthetic)	$\delta_{H}\left(\textbf{Our synthetic}\right)$
2	5.91	5.92	5.91
4	6.45	6.46	6.44
5	6.69	6.68	6.68
6 A	2.86	2.86	2.86
В	2.45	2.45	2.45
7	2.70	2.70	2.70
8	2.53	2.52	2.53
9	4.45	4.05	4.04
10	5.58	5.58	5.58
12	4.62	4.62	4.62
13	5.59	5.59	5.59
14	5.70	5.70	5.70
15	2.06	2.06	2.07
16	1.38	1.38	1.38
17	1.26	1.26	1.26
18	1.26	1.26	1.26
19	1.26	1.26	1.26
20	1.31	1.31	1.31
21	0.87	0.87	0.87
22	1.68	1.68	1.68

Position	δ_{C} (Natural)	$\delta_{\rm H} \left(\text{Tong's synthetic} \right)$	$\delta_{H}\left(\textbf{Our synthetic}\right)$
1	196.59	196.58	196.54
2	117.14	117.23	117.24
3	170.96	170.87	170.82
4	132.23	132.29	132.29
5	147.82	147.69	147.67
6	36.44	36.45	36.46
7	45.71	45.75	45.76
8	44.56	44.59	44.60
9	75.05	75.09	75.10
10	121.66	121.66	121.66
11	136.64	136.71	136.71
12	77.58	77.62	77.62
13	126.02	126.06	126.07
14	136.22	136.24	136.22
15	32.37	32.39	32.40
16	29.01	29.04	29.06
17	29.12	29.10	29.12
18	29.12	29.17	29.16
19	31.78	31.80	31.81
20	22.62	22.63	22.65
21	14.10	14.09	14.11
22	20.09	20.08	20.09

Table S4. Comparison of ¹³C NMR Data for Natural and Synthetic (+)-penostatins C

2.3 Comparison of NMR Spectroscopic Data of (-)-penostatins D (CDCl₃)

Position	$\delta_{\rm H}$ (Natural)	$\delta_{\rm H}\left({\mbox{Our synthetic}} ight)$
1	4.34	4.33
2	5.47	5.46
4 A	2.71	2.70
В	2.19	2.18
5	4.37	4.37
6 A	2.40	2.40
В	1.33	1.33
7	2.07	2.07
8	2.03	2.03
9	3.45	3.45
10	5.50	5.50
12	4.41	4.41
13	5.57	5.57
14	5.69	5.68
15	2.06	2.06
16	1.37	1.37
17	1.27	1.27
18	1.27	1.27
19	1.27	1.27
20	1.30	1.30
21	0.88	0.87
22	1.63	1.63

Table S5. Comparison of ¹H NMR Data for Natural and Synthetic (-)-penostatins D

Position	δ_{C} (Natural)	$\delta_{\rm H}\left(\text{Our synthetic}\right)$
1	71.73	71.75
2	120.13	120.16
3	145.18	145.15
4	40.30	40.33
5	71.87	71.89
6	39.53	39.56
7	43.43	43.45
8	41.50	41.53
9	75.50	75.53
10	122.00	122.00
11	135.05	135.06
12	77.27	77.26
13	126.84	126.85
14	135.56	135.54
15	32.39	32.39
16	29.13	29.15
17	29.13	29.13
18	29.13	29.13
19	31.81	31.82
20	22.65	22.65
21	14.10	14.10
22	20.06	20.05

 Table S6. Comparison of ¹³C NMR Data for Natural and Synthetic (-)-penostatins D

2.4 Comparison of NMR Spectroscopic Data of (-)-penostatins B (CDCl₃)

	• eltt > 1			> · · · •
Table S7. Com	narison of ⁻ H NN	IR Data for Natu	ral and Synthetic (-)-nenostatins B
I wole off Com	parison or minut	III Dava IVI I tava	i un unu Synthetie () penostatins D

Position	$\delta_{\rm H} \left({f Natural} ight)$	$\delta_{\rm H} \left(\text{Shishido's synthetic} \right)$	$\delta_{\rm H}\left(\textbf{Our synthetic} \right)$
2	5.96	5.96	5.96
4 A	2.97	2.97	2.96
В	2.46	2.44	2.45
5	4.52	4.51	4.51
6 A	2.54	2.52	2.54
В	1.54	1.54	1.54
7	2.51	2.51	2.51
8	2.49	2.50	2.49
9	4.00	4.00	3.99
10	5.54	5.53	5.53
12	4.59	4.58	4.59
13	5.55	5.55	5.55
14	5.67	5.65	5.67
15	2.05	2.04	2.04
16	1.39	1.37	1.39
17	1.25	1.25	1.25
18	1.25	1.25	1.25
19	1.25	1.25	1.25
20	1.31	1.31	1.32
21	0.87	0.87	0.87
22	1.66	1.66	1.66

Position	δ_{C} (Natural)	$\delta_{\rm H}(\text{Shishido's synthetic})$	$\delta_{\rm H}\left(\text{Our synthetic}\right)$
1	196.07	195.92	195.93
2	122.68	122.72	122.73
3	168.82	168.60	168.57
4	41.47	41.51	41.49
5	71.23	71.25	71.28
6	38.61	38.67	38.67
7	45.12	45.18	45.16
8	45.27	45.27	45.28
9	73.93	73.96	73.96
10	121.60	121.59	121.58
11	136.42	136.45	136.46
12	77.24	77.21	77.22
13	125.95	126.02	125.99
14	136.33	136.25	136.28
15	32.37	32.35	32.37
16	29.02	29.03	29.03
17	29.12	29.13	29.14
18	29.12	29.08	29.10
19	31.80	31.79	31.81
20	22.64	22.61	22.63
21	14.12	14.07	14.10
22	20.06	20.02	20.05

Table S8. Comparison of ¹³C NMR Data for Natural and Synthetic (-)-penostatins B

3. Comparison of Optical Rotation Data

Compound	Natural	Tong's synthetic	Our synthetic
(1) nonostating A	$[\alpha]_{\rm D}$ +133.3	$[\alpha]_{D}^{25}+54.4$	$[\alpha]_{D}^{25} + 87.3$
(+)-penostatins A	(<i>c</i> 0.18, CHCl ₃)	(c 0.16, CHCl ₃)	(<i>c</i> 0.14, CHCl ₃)
() and the D	[α] _D -103.1		$[\alpha]_{D}^{25}$ -98.7
(-)-penostatins B	(<i>c</i> 0.49, CHCl ₃)	-	(<i>c</i> 0.07, CHCl ₃)
(+)-penostatins C	$[\alpha]_{\rm D}$ +120.0	$[\alpha]_{D}^{25}$ +79.3	$[\alpha]_{D}^{25}$ +172.0
() perfostatins e	(<i>c</i> 1.0, CHCl ₃)	(c 0.16, CHCl ₃)	(c 0.33, CHCl ₃)
() popostating D	[α] _D -26.7		$[\alpha]_{D}^{25}$ -23.3
(-)-penostatins D	(<i>c</i> 0.14, CHCl ₃)	-	(<i>c</i> 0.13, CHCl ₃)

Table S9. Comparison of Optical Rotation Data for Natural and Synthetic penostatins A-D

4. NMR spectra of the compounds

¹H NMR (400 MHz, Chloroform-*d*) spectrum of compound **11**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

190 180 140 130 120 110 100 90 f1 (ppm)

-1

¹H NMR (400 MHz, Chloroform-*d*) spectrum of compound **30** AcO отвз C₇H₁₅ 30 ¹H NMR (400 MHz, CDCl₃) 1.12/ $\begin{array}{c} 1.23\\ 0.08\\ 0.90\\ 0.84\\ 1.84\\ 1.84\\ 1.84\\ 1.84\\ 3.53\\$ 3.05 2.09 2.10 3.11 07 5.89 2.5 0.0 .5 4.0 3.5 f1 (ppm) 1.0 2.0 0.5 5.0 4.5 3.0 1.5 13 C NMR (100 MHz, Chloroform-*d*) spectrum of compound **30** _170.75 __109.25 $\begin{array}{c} 44.60\\ 44.72\\ 33.35.97\\ 33.35.97\\ 33.33\\ 33.30\\ 31.95\\ 33.30\\ 31.95\\ 33.30\\ 31.95\\ 33.30\\ 31.95\\ 33.30\\ 31.95\\ 33.30\\ 31.95\\ 33.30\\ 31.95\\ 33.30\\ 33.30\\ 31.95\\ 33.30\\ 33.$ 130.5 65.99 AcO OTBS

5.57142
5.66793
5.66793
5.66793
5.66793
5.66793
5.66793
5.66793
5.66472
5.66472
5.66472
5.66472
5.66472
5.56427
5.55612
5.55612
5.55614
4.44840
4.44840
4.44840
4.4223
5.55612
5.52642
5.52642
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.55612
5.56

¹H NMR (400 MHz, Chloroform-*d*) spectrum of (+)-Penostatin C

5, 7007 5, 57007 5, 65859 5, 65859 5, 65859 5, 65879 5, 65879 5, 65879 5, 65879 5, 65879 5, 65879 5, 65879 5, 65879 5, 65879 5, 65879 4, 44857 4, 44857 5, 55821 4, 44857 5, 55821 4, 44857 4, 44857 5, 55821 4, 44857 4, 44857 5, 55821 4, 44857 4, 44857 5, 55821 4, 44857 4, 44857 5, 55821 4, 44857 5, 55821 4, 44857 5, 558215 5, 558215 5, 558215 5, 558215 5, 558215 5, 55

¹H NMR (400 MHz, Chloroform-*d*) spectrum of (+)-Penostatin A

5.9541 5.9541 5.65471 5.65477 5.65477 5.65477 5.55407 5.55407 5.55407 5.55407 5.55407 5.55407 5.55407 5.55407 5.55407 5.55578 5.55407 5.55578 5.55407 5.55578 5.55407 5.55787 5.55887 5.55787 5.55887 5.55787 5.558

¹H-¹H COSY spectrum of compound **43** (400 MHz, CDCl₃)

NOESY spectrum of compound **43** (400 MHz, CDCl₃)
¹H NMR (400 MHz, Chloroform-*d*) spectrum of compound 44

¹H-¹H COSY spectrum of compound **44** (400 MHz, CDCl₃)

NOESY spectrum of compound 44 (400 MHz, CDCl₃)

¹H NMR (400 MHz, Chloroform-*d*) spectrum of compound 45

¹H NMR (400 MHz, Chloroform-*d*) spectrum of (-)-Penostatin D

¹H NMR (400 MHz, Chloroform-*d*) spectrum of (-)-Penostatin B