Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Base-Mediated Synthesis of Aryl Enol Ethers from Allylic Alcohols and Arylsulfonium Salts

Yu-Fei Yao[†], Jia-Wei Song[†], Cheng-Pan Zhang*

School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory

of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology,

Wuhan 430070, China.

E-mail: cpzhang@whut.edu.cn, zhangchengpan1982@hotmail.com.

ORCID for Cheng-Pan Zhang: 0000-0002-2803-4611.

[†] These two authors contribute equally in this work

Table of Contents

1. General information	S2
2. Screening of the optimal reaction conditions for the base-mediated synthe	sis of aryl
enol ether	S2
3. Based-mediated synthesis of phenyl enol ethers (3) from diverse allylic al	cohols (1)
with [Ph ₃ S][OTf] (2a)	S7
4. Base-mediated synthesis of aryl enol ethers from 1-phenylprop-2-en-1-ol	(1a) with
different arylsulfonium salts	S16
5. The control experiments for mechanistic insights	S30
6. NMR spectra of the products	S34

1. General information

All reactions were carried out under a nitrogen atmosphere. Unless otherwise specified, NMR spectra were recorded in CDCl₃ on a 500 MHz (for ¹H), 471 MHz (for ¹⁹F), and 126 MHz (for ¹³C) spectrometer. All chemical shifts were reported in ppm relative to TMS (0 ppm for ¹H NMR) or PhCF₃ (-63.5 ppm for ¹⁹F NMR) as an internal or external standard. The HPLC experiments were conducted on a Wufeng LC-100 II instrument (column: Shodex, C18, 5 μ m, 4.6 \times 250 mm), and the yields of product were determined by using the corresponding pure compound as an external standard. The coupling constants were reported in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = doublettriplet, q = quartet, m = multiplet, brs = broad singlet, dd = doublet of doublets, td = doublet of doublets, td = doublet of doublets, td = doublet of doublet, td = dtriplet of doublets, dm = doublet of multiplets, and tm = triplet of multiplets. Melting points of solid products were measured and uncorrected. MS experiments were performed on a TOF-Q ESI instrument. Dibenzo[b,d]thiophene 5-oxide (DBTO),¹ thianthrene 5-oxide (TTO),² phenoxathiine 10-oxide,³ 10-methyl-10*H*-phenothiazine 5-oxide,⁴ and aryl sulfonium salts^{5,6} were prepared according to the literature. Allylic alcohols were prepared according to the literature.⁷ Solvents were dried before use according to the literature. Other reagents used in the reactions were all purchased from the commercial sources and used without further purification. Reactions that require heating employed oil bath as the heat source.

2. Screening of the optimal reaction conditions for the base-mediated synthesis of aryl enol ether

 Table S1. Transition-metal-free synthesis of aryl enol ether (3a) from 1a and 2a in the presence of different bases.^a

Entry	Base	Yield (3a , %)
1	K_2HPO_4	0
2	K ₃ PO ₄	7
3	NaOH	89

4	КОН	84
5	t-BuOK	55
6	NaH	68
7	NaHCO ₃	trace
8	Na ₂ CO ₃	0
9	K ₂ CO ₃	0
10	LiOH	10
11	CsOH	87
12	Cs_2CO_3	19
13	DBU	trace
14	Et ₃ N	trace
15 ^b	NaOH	78

^a Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), base (0.15 mmol), DMSO (1 mL), room temperature, N₂, and 24 h. The yields were determined by HPLC using pure **3a** as an external standard ($t_R = 10.5 \text{ min}$, $\lambda_{max} = 252 \text{ nm}$, water / methanol = 20 / 80 (v / v)). ^b The reaction was run under an air atmosphere.

Table S2. NaOH-mediated synthesis of 3a from 1a and 2a in different solvents.^a

OH 1a	- [Ph ₃ S][OTf] <u>NaOH (1.5 equiv)</u> 2a solvent, r.t. (1.2 equiv) 24 h, N ₂	- Contraction of the second se
Entry	Solvent	Yield (3a , %)
1	DMSO	89
2	DMF	38
3	THF	trace
4	MeCN	trace
5	1,4-dioxane	trace
6	DMAc	47
7	DG	13
8	<i>n</i> -hexane	trace
9	acetone	13

^a Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), NaOH (0.15 mmol), solvent (1

mL), room temperature, N₂, and 24 h. The yields were determined by HPLC using pure **3a** as an external standard ($t_R = 10.5 \text{ min}$, $\lambda_{max} = 252 \text{ nm}$, water / methanol = 20 / 80 (v / v)).

OH + 1a	[Ph ₃ S][OTf] <u>NaOH (1.5 equiv)</u> 2a DMSO, <i>temp.</i> (1.2 equiv) 24 h, N ₂	o J J J J J J J J J J J J J J J J J J J
Entry	Temperature (°C)	Yield (3a , %)
1	r.t.	89
2	40	92
3	60	91
4	80	94

Table S3. NaOH-mediated synthesis of 3a from 1a and 2a at different temperatures.^a

^a Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), NaOH (0.15 mmol), DMSO (1 mL), room temperature to 80 °C, N₂, and 24 h. The yields were determined by HPLC using pure **3a** as an external standard ($t_R = 10.5 \text{ min}$, $\lambda_{max} = 252 \text{ nm}$, water / methanol = 20 / 80 (v / v)).

Table S4. NaOH-mediated synthesis of 3a from 1a and 2a in different times.^a

OH + 1a	[Ph ₃ S][OTf] NaOH (1.5 equiv) 2a DMSO, r.t. (1.2 equiv)	O 3a
Entry	Time (h)	Yield (3a , %)
1	3	83
2	6	92
3	12	91
4	24	89

^a Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 mmol), NaOH (0.15 mmol), DMSO (1 mL), room temperature, N₂, and 3-24 h. The yields were determined by HPLC using pure **3a** as an external standard ($t_R = 10.5 \text{ min}$, $\lambda_{max} = 252 \text{ nm}$, water / methanol = 20 / 80 (v / v)).

 Table S5. NaOH-mediated synthesis of 3a from 1a and 2a using different reactant molar ratios.^a

OH + 1a x mmol	[Ph ₃ S][OTf] <u>NaOH (z mmol)</u> 2a DMSO, r.t. y mmol 12 h, N ₂	o J J J J J J J J J J J J J J J J J J J
Entry	x : y : z	Yield (3a , %)
1	1:1.2:1.5	91
2	1:1.2:1.2	87
3	1:1:1	64

^a Reaction conditions: **1a** (0.1 mmol), **2a** (0.12 or 0.1 mmol), NaOH (0.12 or 0.15 mmol), DMSO (1 mL), room temperature, N₂, and 12 h. The yields were determined by HPLC using pure **3a** as an external standard ($t_R = 10.5 \text{ min}$, $\lambda_{max} = 252 \text{ nm}$, water / methanol = 20 / 80 (v / v)).

Table S6. Base-mediated synthesis of 3a from 1a and 2ea with different bases.^a

OH + 1a	$\begin{array}{c} & & \\$	O O 3a
Entry	Base	Yield (3a , %)
1	NaOH	72
2	КОН	66
3	CsOH	76
4	Cs_2CO_3	9
5	t-BuOK	63
6	NaH	66

^a Reaction conditions: **1a** (0.1 mmol), **2ea** (0.12 mmol), base (0.12 mmol), DMSO (1 mL), room temperature, N₂, and 12 h. The yields were determined by HPLC using pure **3a** as an external standard ($t_R = 10.5 \text{ min}$, $\lambda_{max} = 252 \text{ nm}$, water / methanol = 20 / 80 (v / v).

Table S7. Base-mediated synthesis of 3a from 1a and 2ea at different temperatures.^a

OH + 1a	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
Entry	Temperature (°C)	Yield (3a , %)
1	40	77
2	60	79
3	80	62
4	100	62

^a Reaction conditions: **1a** (0.1 mmol), **2ea** (0.12 mmol), CsOH (0.12 mmol), DMSO (1 mL), 40-100 °C, N₂, and 12 h. The yields were determined by HPLC using pure **3a** as an external standard ($t_R = 10.5 \text{ min}$, $\lambda_{max} = 252 \text{ nm}$, water / methanol = 20 / 80 (v / v).

 Table S8. Base-mediated synthesis of 3a from 1a and 2ea using different reactant molar ratios.^a

^a Reaction conditions: 1a (0.1 mmol), 2ea (0.12, 0.15, or 0.2 mmol), CsOH (0.12,

0.15, or 0.2 mmol), DMSO (1 mL), 60 °C, N₂, and 12 h. The yields were determined by HPLC using pure **3a** as an external standard ($t_R = 10.5 \text{ min}$, $\lambda_{max} = 252 \text{ nm}$, water / methanol = 20 / 80 (v / v). ^b The reaction was run at 60 °C for 24 h.

3. Based-mediated synthesis of phenyl enol ethers (3) from diverse allylic alcohols (1) with [Ph₃S][OTf] (2a)

General procedure: In a nitrogen-filled glovebox, a sealed tube was charge with **1** (0.1 or 0.2 mmol), triphenylsulfonium triflate (**2a**, 49.5 or 99 mg, 0.12 or 0.24 mmol), NaOH (4.8 or 9.6 mg, 0.12 or 0.24 mmol) or *t*-BuOK (13.5 mg, 0.12 mmol), and DMSO (1.0 or 2.0 mL) with vigorous stirring. The mixture was reacted at room temperature or 60 °C for 12 or 24 h, cooled to room temperature, diluted with water (30 mL), and extracted with ethyl acetate (3×20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as eluents to give the desired product (**3**).

(Z)-(1-Phenoxyprop-1-en-1-yl)benzene $(3a)^8$

White solid (36.6 mg, 87%, eluents: PE), Z/E = 50/1. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 7.5 Hz, 2.04H), 7.29 (t, J = 7.5, 2.04H), 7.26-7.23 (m, 3.06H), 6.98 (d, J =8.1 Hz, 2.04H), 6.95 (t, J = 7.4 Hz, 1.02H), 5.95 (q, J = 6.9 Hz, 1H), 5.49 (q, J = 7.5Hz, 0.02H), 1.87 (d, J = 7.3 Hz, 0.06H), 1.77 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.3, 149.7, 135.6, 129.5, 128.4, 127.7, 125.1, 121.3, 115.4, 112.4, 11.4.

(*Z*)-1-Methyl-4-(1-phenoxyprop-1-en-1-yl)benzene (**3b**)

Colorless oil (18.4 mg, 82%, eluents: PE), Z/E = 25/1. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, J = 8.1 Hz, 2.08H), 7.23 (t, J = 7.9 Hz, 2.08H), 7.08 (d, J = 8.1 Hz, 2.08H), 6.96 (d, J = 8.2 Hz, 2.08H), 6.93 (t, J = 7.5 Hz, 1.04H), 5.89 (q, J = 6.9 Hz, 1H), 5.45 (q, J = 7.3 Hz, 0.04H), 2.33 (s, 0.12H), 2.30 (s, 3H), 1.86 (d, J = 7.4 Hz, 0.12H), 1.75 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 149.6, 137.6, 132.7, 129.5, 129.2, 125.1, 121.3, 115.4, 111.5, 21.2, 11.4. IR (KBr): 3029. 2919, 2858, 1661, 1596, 1512, 1490, 1455, 1314, 1267, 1220, 1186, 1164, 1074, 1028, 1014, 969, 888, 825, 793, 752, 690 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₆H₁₇O]⁺ ([M + H]⁺): 225.1274; found: 225.1270.

(*Z*)-1-(*Tert*-butyl)-4-(1-phenoxyprop-1-en-1-yl)benzene (**3c**)

White solid (17.6 mg, 66%, eluents: PE/EA = 40/1), Z/E = 25/1. M.p.: 87-89 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 8.5 Hz, 2.08H), 7.29 (d, J = 8.5 Hz, 2.08H), 7.23 (t, J = 8.0 Hz, 2.08H), 6.97 (d, J = 8.1 Hz, 2.08H), 6.93 (t, J = 7.3 Hz, 1.04H), 5.90 (q, J = 7.0 Hz, 1H), 5.42 (q, J = 7.4 Hz, 0.04H), 1.86 (d, J = 7.3 Hz, 0.12H), 1.74 (d, J = 7.0 Hz, 3H), 1.28 (s, 9.36H). ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 150.8, 149.6, 132.7, 129.5, 125.3, 124.8, 121.2, 115.3, 111.6, 34.5, 31.2, 11.4. IR (KBr): 3034, 2962, 2934, 2866, 1661, 1596, 1488, 1457, 1408, 1364, 1315, 1304, 1270, 1219, 1163, 1118, 1073, 1029, 1012, 966, 886, 847, 832, 811, 777, 750, 699 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₉H₂₃O]⁺ ([M + H]⁺): 267.1743; found: 267.1738.

A mixture of (Z)-1-methoxy-4-(1-phenoxyprop-1-en-1-yl)benzene (3d) and 1-methoxy-4-(1-phenoxyallyl)benzene (3d')⁹

White solid (25.1 mg, 52%, eluents: PE/EA = 40/1). ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, *J* = 8.8 Hz, 2H), 7.36 (d, *J* = 8.6 Hz, 0.32H), 7.26 (t, *J* = 8.0 Hz, 2.32H), 6.99-6.95 (m, 3.32H), 6.94-6.91 (m, 0.48H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.16-6.09 (m, 0.16H), 5.82 (q, *J* = 6.9 Hz, 1H), 5.63 (d, *J* = 5.7 Hz, 0.16H), 5.35 (d, *J* = 17.2 Hz, 0.16H), 5.27 (d, *J* = 10.4 Hz, 0.16H), 3.82 (s, 0.48H), 3.79 (s, 3H), 1.76 (d, *J* = 6.9 Hz, 3H).

(*Z*)-1-Methoxy-4-(1-phenoxyprop-1-en-1-yl)benzene (**3d**)

White solid (43.3 mg, 90%, eluents: PE/EA = 40/1), Z/E = 25/1. M.p.: 76-78 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 8.7 Hz, 2.08H), 7.24 (t, J = 7.9 Hz, 2.08H), 6.98 (d, J = 7.9 Hz, 2.08H), 6.94 (t, J = 7.4 Hz, 1.04H), 6.82 (d, J = 8.7 Hz, 2.08H), 5.81 (q, J = 6.9 Hz, 1H), 5.43 (q, J = 7.3 Hz, 0.04H), 3.80 (s, 0.12H), 3.77 (s, 3H), 1.86 (d, J = 7.4 Hz, 0.12H), 1.75 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 157.4, 149.4, 129.5, 128.3, 126.5, 121.3, 115.4, 113.9, 110.4, 55.2, 11.3. IR (KBr): 3060, 3038, 2962, 2932, 2911, 2859, 2836, 1658, 1610, 1594, 1573, 1513, 1489, 1479, 1453, 1315, 1290, 1265, 1247, 1213, 1178, 1162, 1115, 1075, 1030, 968, 834, 790, 753, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{16}H_{17}O]^+$ ($[M + H]^+$): 241.1223; found: 241.1217.

(Z)-4-(1-Phenoxyprop-1-en-1-yl)-1,1'-biphenyl (3e)

White solid (17.8 mg, 62%, eluents: PE/EA = 40/1), Z/E = 13/1. M.p.: 129-131 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.57-7.54 (m, 4.32H), 7.51 (d, J = 8.3 Hz, 2.16H), 7.41 (t, J = 7.6 Hz, 2.16H), 7.32 (t, J = 7.4 Hz, 1.08H), 7.27-7.24 (m, 2.16H), 7.0 (d, J = 8.5 Hz, 2.16H), 6.95 (t, J = 7.3 Hz, 1.08H), 6.02 (q, J = 7.0 Hz, 1H), 5.51 (q, J = 7.2 Hz, 0.08H), 1.91 (d, J = 7.4 Hz, 0.24H), 1.78 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.3, 149.4, 140.6, 140.5, 134.5, 129.6, 128.8, 127.3, 127.1, 126.9, 125.5, 121.4, 115.4, 112.5, 11.5. IR (KBr): 3054, 3028, 2962, 2912, 2853, 1651, 1596, 1488,

1449, 1405, 1261, 1225, 1166, 1158, 1075, 1028, 1012, 969, 879, 841, 813, 760, 748, 686 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{21}H_{19}O]^+$ ($[M + H]^+$): 287.1430; found: 287.1425.

(Z)-1-Fluoro-4-(1-phenoxyprop-1-en-1-yl)benzene (**3f**)

Light yellow oil (20.1 mg, 88%, eluents: PE/EA = 40/1), Z/E = 50/1. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (dd, J = 8.8 Hz, 5.4 Hz, 2.04H), 7.24 (t, J = 8.0 Hz, 2.04H), 6.98-6.93 (m, 5.10H), 5.85 (q, J = 7.0 Hz, 1H), 5.45 (q, J = 7.5 Hz, 0.02H), 1.83 (d, J = 7.4 Hz, 0.06H), 1.75 (d, J = 7.0 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -144.2 (m, 1F). ¹³C NMR (126 MHz, CDCl₃) δ 162.4 (d, J = 247.8 Hz), 157.1, 148.8, 131.7 (d, J = 3.2 Hz), 129.6, 126.9 (d, J = 8.1 Hz), 121.5, 115.4, 115.3 (d, J = 21.7 Hz), 112.1 (d, J = 1.5 Hz), 11.4. IR (KBr): 3043, 2980, 2939, 1689, 1596, 1507, 1489, 1407, 1353, 1262, 1221, 1157, 1073, 1027, 1014, 954, 848, 800, 754, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₅H₁₄FO]⁺ ([M + H]⁺): 229.1023; found: 229.1019.

(Z)-1-Chloro-4-(1-phenoxyprop-1-en-1-yl)benzene (**3g**)

Colorless oil (42.0 mg, 90%, eluents: PE), Z/E = 100/1. ¹H NMR (500 MHz, CDCl₃) δ 7.42(d, J = 8.6 Hz, 2.02H), 7.27-7.23 (m, 4.04H), 6.98-6.94 (m, 3.03H), 5.93 (q, J =7.0 Hz, 1H), 5.49 (q, J = 7.3 Hz, 0.01H), 1.84 (d, J = 7.4 Hz, 0.03H), 1.77 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.0, 148.7, 134.1, 133.6, 129.6, 128.6, 126.4, 121.6, 115.3, 113.1, 11.4. IR (KBr): 3040, 2963, 1596, 1489, 1402, 1261, 1217, 1093, 1027, 971, 838, 799, 750, 689 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₅H₁₄ClO]⁺ ([M + H]⁺): 245.0728; found: 245.0724.

(*Z*)-1-Bromo-4-(1-phenoxyprop-1-en-1-yl)benzene (**3h**)

White solid (43.0 mg, 74%, eluents: PE), Z/E = 100/1. M.p.: 57-59 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 8.8 Hz, 2.02H), 7.34 (d, J = 8.5 Hz, 2.02H), 7.26-7.22 (m, 2.02H), 6.96-6.92 (m, 3.03H), 5.93 (q, J = 7.0 Hz, 1H), 5.49 (q, J = 7.4 Hz, 0.01H), 1.83 (d, J = 7.4 Hz, 0.03H), 1.75 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 156.0, 147.8, 133.6, 130.6, 128.6, 125.7, 120.7, 120.6, 114.3, 112.1, 10.4. IR (KBr): 3072, 3037, 2962, 2922, 2855, 1657, 1594, 1487, 1454, 1397, 1311, 1261, 1220, 1185, 1158, 1112, 1072, 1025, 1007, 968, 885, 827, 810, 772, 748, 713 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₅H₁₄BrO]⁺ ([M + H]⁺): 289.0223; found: 289.0217.

(Z)-1-Iodo-4-(1-phenoxyprop-1-en-1-yl)benzene (3i)

White solid (23.5 mg, 70%, eluents: PE), Z/E = 33/1. M.p.: 73-75 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, J = 8.5Hz, 2.06H), 7.30-7.24 (m, 4.12H), 7.0-6.96 (m, 3.09H), 5.99 (q, J = 6.9 Hz, 1H), 5.49 (q, J = 7.4 Hz, 0.03H), 1.84 (d, J = 7.4 Hz, 0.09H), 1.79 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.0, 148.9, 137.6, 135.2, 129.6, 126.9, 121.6, 115.3, 113.2, 93.3, 11.4. IR (KBr): 3063, 3039, 2963, 2914, 2852, 1660, 1591, 1488, 1394, 1311, 1294, 1262, 1216, 1169, 1103, 1074, 1059, 1026, 1003, 967, 813, 749, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₅H₁₄IO]⁺ ([M + H]⁺): 337.0084; found: 337.0077.

(Z)-1-(1-Phenoxyprop-1-en-1-yl)-4-(trifluoromethyl)benzene (3j)

Colorless oil (11.7 mg, 21%, eluents: PE). ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, J = 8.3 Hz, 2H), 7.52 (d, J = 8.3 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 6.97-6.93 (m, 3H), 6.06 (q, J = 7.0 Hz, 1H), 1.79 (d, J = 7.0 Hz, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -

62.7 (s, 3F). ¹³C NMR (126 MHz, CDCl₃) δ 156.9, 148.6, 139.1, 129.7 (q, *J* = 32.2 Hz), 129.7, 125.5 (q, *J* = 3.8 Hz), 125.3, 124.1 (q, *J* = 272 Hz), 121.8, 115.3, 115.0, 11.5. IR (KBr): 3063, 3043, 2921, 2858, 1659, 1618, 1596, 1490, 1411, 1328, 1287, 1264, 1218, 1166, 1125, 1070, 1029, 1015, 970, 850, 819, 787, 750, 733, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₆H₁₄F₃O]⁺ ([M + H]⁺): 279.0991; found: 279.0986.

A mixture of (Z)-1-methoxy-3-(1-phenoxyprop-1-en-1-yl)benzene (**3m**) and 1-methoxy-3-(1-phenoxyallyl)benzene (**3m'**)¹⁰

Colorless oil (42.8 mg, 89%, eluents: PE/EA = 40/1). ¹H NMR (500 MHz, CDCl₃) δ 7.26-7.18 (m, 3.30H), 7.10 (d, J = 7.8 Hz, 1.10H), 7.03 (s, 1.10H), 6.98-6.93 (m, 3.30H), 6.78 (dd, J = 7.9 Hz, 2.1 Hz, 1.10H), 6.14-6.07 (m, 0.10H), 5.95 (q, J = 7.0 Hz, 1H), 5.62 (d, J = 5.8 Hz, 0.10H), 5.37 (d, J = 17.2 Hz, 0.10H), 5.27 (d, J = 10.4 Hz, 0.10H), 3.81 (s, 0.30H), 3.76 (s, 3H), 1.77 (d, J = 7.0 Hz, 3H).

(*Z*)-1-Methoxy-3-(1-phenoxyprop-1-en-1-yl)benzene (**3m**)

Colorless oil (43.7 mg, 91%, eluents: PE/EA = 40/1). Z/E = 25/1. ¹H NMR (500 MHz, CDCl₃) δ 7.26-7.19 (m, 3.09H), 7.11 (d, J = 7.8 Hz, 1.03H), 7.04 (s, 1.03H), 6.99-6.93 (m, 3.09H), 6.79 (dd, J = 8.1 Hz, 1.8 Hz, 1.03H), 5.95 (q, J = 7.0 Hz, 1H), 5.49 (q, J = 7.4 Hz, 0.03H), 3.79 (s, 0.09H), 3.76 (s, 3H), 1.88 (d, J = 7.4 Hz, 0.09H), 1.77 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.7, 157.3, 149.6, 137.1, 129.5, 129.4, 121.4, 117.8, 115.4, 113.3, 112.7, 110.9, 55.2, 11.4. IR (KBr): 3057, 3039, 3001, 2937, 2914, 2856, 2834, 1661, 1596, 1489, 1464, 1431, 1304, 1287, 1217, 1164, 1113, 1074, 1051, 1028, 985, 875, 780, 753, 690 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₆H₁₇O₂]⁺ ([M + H]⁺): 241.1223; found: 241.1219.

A mixture of (Z)-1-methoxy-2-(1-phenoxyprop-1-en-1-yl)benzene (**3n**) and 1-methoxy-2-(1-phenoxyallyl)benzene (**3n**')⁹

Colorless oil (38.9 mg, 81%, eluents: PE/EA = 40/1). ¹H NMR (500 MHz, CDCl₃) δ 7.43 (dd, J = 7.6 Hz, 1.3 Hz, 1H), 7.38 (dd, J = 7.7 Hz, 1.4 Hz, 0.5H), 7.25-7.14 (m, 4.5H), 6.96-6.82 (m, 7.5H), 6.13-6.02 (m, 2.5H), 5.34 (dm, J = 17.0 Hz, 1H), 5.18 (dm, J = 9.4 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 1.5H), 1.77 (d, J = 7.0 Hz, 1.5H). ¹³C NMR (126 MHz, CDCl₃) δ 158.0, 157.3, 157.2, 156.2, 146.3, 137.3, 129.3, 128.9, 128.8, 128.7, 128.6, 127.2, 124.6, 121.2, 121.1, 120.7, 120.5, 116.5, 115.9, 115.8, 115.4, 111.2, 110.6, 74.0, 55.6, 55.5, 11.6. IR (KBr): 3066, 3038, 3008, 2938, 2837, 1643, 1597, 1492, 1464, 1437, 1339, 1289, 1239, 1165, 1097, 1028, 990, 929, 838, 752, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₆H₁₆NaO₂]⁺ ([M + Na]⁺): 263.1043; found: 263.1053.

(Z)-5-(1-Phenoxyprop-1-en-1-yl)benzo[d][1,3]dioxole (**30**)

Colorless oil (20.0 mg, 79%, eluents: 20/1), Z/E = 20/1. ¹H NMR (500 MHz, CDCl₃) δ 7.25-7.21 (m, 2.1H), 6.98-6.91 (m, 5.25H), 6.70 (d, J = 8.3 Hz, 1.05H), 5.91 (s, 2H), 5.93 (s, 0.1H), 5.76 (q, J = 7.0 Hz, 1H), 5.41 (q, J = 7.3 Hz, 0.05H), 1.83 (d, J = 7.3Hz, 0.15H), 1.72 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.2, 149.3, 147.8, 147.4, 130.0, 129.5, 121.4, 119.2, 115.4, 111.1, 108.2, 105.7, 101.1, 11.4. IR (KBr): 2895, 1659, 1596, 1490, 1443, 1350, 1296, 1251, 1171, 1096, 1040, 988, 936, 865, 811, 753, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₆H₁₅O₃]⁺ ([M + H]⁺): 255.1016; found: 255.1012.

(*Z*)-2-(1-Phenoxyprop-1-en-1-yl)naphthalene (**3p**)

White solid (20.3 mg, 78%, eluents: PE/EA = 40/1), Z/E = 50/1. M.p.: 81-83 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.9 (s, 1.02H), 7.78-7.75 (m, 3.06H), 7.65 (dd, J = 8.7 Hz, 1.6 Hz, 1.02H), 7.43-7.41 (m, 2.04H), 7.24 (t, J = 8.0 Hz, 2.04H), 7.02 (d, J = 8.0 Hz, 2.04H), 6.94 (t, J = 7.3 Hz, 1.02H), 6.09 (q, J = 7.0 Hz, 1H), 5.59 (q, J = 7.4 Hz, 0.02H), 1.94 (d, J = 7.4 Hz, 0.06H), 1.82 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 149.8, 133.3, 133.0, 132.9, 129.6, 128.3, 128.1, 127.5, 126.2, 126.0, 124.1, 123.1, 121.4, 115.4, 113.0, 11.6. IR (KBr): 3056, 3038, 2931, 2912, 2853, 1650, 1595, 1489, 1350, 1302, 1219, 1192, 1164, 1131, 1073, 1026, 1012, 967, 896, 866, 816, 798, 760, 687 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₉H₁₇O]⁺ ([M + H]⁺): 261.1274; found: 261.1270.

(Z)-2-(1-Phenoxyprop-1-en-1-yl)benzo[b]thiophene (3q)

White solid (17.6 mg, 33%, eluents: PE/EA = 40/1), Z/E = 33/1. M.p.: 72-74 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.73-7.72 (m, 1.02H), 7.61-7.59 (m, 1.02H), 7.29-7.26 (m, 4.08H), 7.16 (s, 1.02H), 7.04 (d, J = 7.9 Hz, 2.04H), 6.98 (t, J = 7.3 Hz, 1.02H), 5.96 (q, J = 7.0 Hz, 1H), 5.62 (q, J = 7.7 Hz, 0.02H), 1.94 (d, J = 7.5 Hz, 0.06H), 1.77 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.2, 145.3, 140.0, 139.3, 138.9, 129.6, 124.6, 124.4, 123.7, 122.0, 121.8, 120.7, 115.1, 115.0, 11.4. IR (KBr): 3061, 3026, 2962, 2924, 2853, 1650, 1595, 1521, 1489, 1455, 1433, 1380, 1331, 1314, 1298, 1261, 1217, 1165, 1150, 1096, 1074, 1025, 1010, 946, 863, 798, 752, 725, 687 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₇H₁₅OS]⁺ ([M + H]⁺): 267.0838; found: 267.0833.

(*Z*)-2-(4-(1-Phenoxyprop-1-en-1-yl)phenyl)pyridine (**3r**)

White solid (26.1 mg, 91%, eluents: PE/EA = 5/1), Z/E = 33/1. M.p.: 108-110 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, J = 4.9 Hz, 1.03H), 7.91 (d, J = 8.5 Hz, 2.06H), 7.73-7.76 (m, 2.06H), 7.58 (d, J = 8.5 Hz, 2.06H), 7.24 (t, J = 8.0 Hz, 2.06H), 7.21-7.19 (m, 1.03H), 6.98 (d, J = 8.2 Hz, 2.06H), 6.94 (t, J = 7.4 Hz, 1.03H), 6.03 (q, J = 7.0 Hz, 1H), 5.55 (q, J = 7.5 Hz, 0.03H), 1.91 (d, J = 7.4 Hz, 0.09H), 1.79 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.3, 156.9, 149.7, 149.4, 138.7, 136.7, 136.1, 129.5, 127.0, 125.5, 122.1, 121.4, 120.4, 115.4, 113.1, 11.5. IR (KBr): 3053, 3009, 2977, 2913, 2853, 1652, 1585, 1490, 1465, 1434, 1405, 1317, 1292, 1256, 1218, 1195, 1167, 1151, 1115, 1096, 1060, 1027, 966, 884, 841, 772, 752, 686 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₀H₁₈NO]⁺ ([M + H]⁺): 288.1383; found: 288.1378.

(Z)-(1-Phenoxybut-1-en-1-yl)benzene $(3s)^8$

Colorless oil (23.8 mg, 53%, eluents: PE). ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, J = 7.8 Hz, 2H), 7.27 (t, J = 7.4 Hz, 2H), 7.24-7.21 (m, 3H), 6.96 (d, J = 8.3 Hz, 2H), 6.92 (t, J = 7.5 Hz, 1H), 5.86 (t, J = 7.3 Hz, 1H), 2.22 (m, 2H), 1.04 (t, J = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.5, 148.4, 135.5, 129.5, 128.4, 127.8, 125.2, 121.3, 119.7, 115.4, 19.3, 13.8.

(Z)-(1-Phenoxyprop-1-ene-1,3-diyl)dibenzene (**3**t)

Colorless oil (16.2 mg, 28%, eluents: PE/EA = 40/1). ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 7.3 Hz, 2H), 7.29-7.18 (m, 10H), 6.99 (d, *J* = 7.9 Hz, 2H), 6.94 (t, *J* = 7.3 Hz, 1H), 6.01 (t, *J* = 7.4 Hz, 1H), 3.56 (d, *J* = 7.4 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 157.4, 149.3, 140.4, 135.2, 129.6, 128.5, 128.5, 128.4, 128.1, 126.1, 125.5,

121.6, 116.6, 115.7, 32.3. IR (KBr): 3061, 3027, 2963, 2851, 1655, 1594, 1490, 1453, 1332, 1278, 1217, 1165, 1091, 1063, 1025, 1006, 992, 889, 868, 753, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{21}H_{19}O]^+$ ($[M + H]^+$): 287.1430; found: 287.1423.

(2-Phenoxybut-3-en-1-yl)benzene (**3u'**)¹¹

Colorless oil (23.3 mg, 52%, eluents: PE/EA = 40/1). ¹H NMR (500 MHz, CDCl₃) δ 7.32-7.29 (m, 4H), 7.26-7.23 (m, 3H), 6.94-6.89 (m, 3H), 5.90 (m, 1H), 5.23 (d, *J* = 17.0 Hz, 1H), 5.21 (d, *J* = 10.4 Hz, 1H), 4.83 (q, *J* = 6.2 Hz, 1H), 3.16 (dd, *J* = 13.8 Hz, 7.1 Hz, 1H), 2.97 (dd, *J* = 13.8 Hz, 5.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 158.2, 137.7, 137.4, 129.7, 129.3, 128.2, 126.4, 120.9, 116.8, 116.2, 79.9, 42.2.

4. Base-mediated synthesis of aryl enol ethers from 1-phenylprop-2-en-1-ol (1a) with different arylsulfonium salts

4.1. Procedures for the synthesis of arylsulfonium salts.

Procedure A:¹² Under a N₂ atmosphere, Tf₂O (1.0 mL, 6 mmol) was added to a mixture of benzene (0.781 g, 10 mmol), sulfoxide (5 mmol), and DCM (20 mL) at -40 °C with stirring. The mixture was reacted at room temperature for 3 h and neutralized by a saturated aqueous NaHCO₃ solution. The DCM layer was collected. The aqueous solution was extracted with DCM (3 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was crystallized from a mixture of DCM / *tert*-butyl methyl ether = 1/20 (v/v) to afford the desired product (**2b-d**).

Procedure B:⁴ Under a N₂ atmosphere, a flask was charged with Et₂O•BF₃ (0.34 mL, 2.5 mmol), 10-methyl-10*H*-phenothiazine 5-oxide (229 mg, 1 mmol), aryl boronic acid (1.2 mmol), and DCM (10 mL) with stirring. The mixture was reacted at 40 °C for 8 h. Then, 2-(bis(2-hydroxyethyl)amino)-2-(hydroxymethyl)propane-1,3-diol (Bis-Tris, 2.1 g, 10 mmol) and a saturated aqueous NaBF₄ solution (10 mL) were added to the DCM solution. After shaking for at least 5 min, the DCM layer was collected. The aqueous solution was extracted with DCM (3×15 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was crystallized from a mixture of DCM / *tert*-butyl methyl ether = 1/20 (v/v) to afford the desired arylsulfonium salts (**2ea-ec, 2ei,** and **2ek-eo**).

Procedure C:⁴ Under a N₂ atmosphere, a flask was charged with 10-methyl-10*H*-phenothiazine 5-oxide (229 mg, 1 mmol), aryl boronic acid (1.2 mmol), Et₂O•BF₃ (0.34 mL, 2.5 mmol), and DCE (10 mL) with stirring. The mixture was reacted at 80 °C for 15 h, quenched by moisture, concentrated under reduced pressure, and diluted with DCM (10 mL). Then, Bis-Tris (2.1 g, 10 mmol) and a saturated aqueous NaBF₄ solution (10 mL) were added to the DCM solution. After shaking for at least 5 min, the DCM layer was collected. The aqueous layer was extracted with DCM (3 × 15 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was crystallized from a mixture of DCM / *tert*-butyl methyl ether = 1/20 (v/v) to afford the desired arylsulfonium salts (**2ed-eh** and **2ej**).

5-(4-(Tert-butyl)phenyl)-10-methyl-5,10-dihydrophenothiazin-5-ium tetrafluoroborate

Light yellow solid (370.7 mg, 86%). M.p.: 280-282 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 7.9 Hz, 2H), 7.79 (t, *J* = 7.9 Hz, 2H), 7.53 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.7 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 2H), 7.20 (d, *J* = 8.7 Hz, 2H), 3.71 (s, 3H), 1.19 (s, 9H). ¹⁹F NMR (471 MHz, CDCl₃) δ -151.7 (brs), -151.7 (brs). ¹³C NMR (126 MHz, CDCl₃) δ 157.5, 143.2, 136.0, 132.2, 128.3, 127.2, 125.7, 124.7, 117.6, 105.2, 36.0, 35.2, 30.8. IR (KBr): 3065, 2965, 2907, 2871, 1583, 1465, 1400, 1353, 1301, 1259, 1177, 1054, 877, 836, 768 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₃H₂₄NS]⁺ ([M]⁺): 346.1624; found: 346.1619.

5-(4-(Methoxycarbonyl)phenyl)-10-methyl-5,10-dihydrophenothiazin-5-ium tetrafluoroborate (**2eg**)

Grey solid (233.8 mg, 54%). M.p.: 229-231 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.35 (d, J = 8.0 Hz, 2H), 8.05 (d, J = 8.4 Hz, 2H), 7.87 (t, J = 7.9 Hz, 2H), 7.52 (t, J = 7.6 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 7.1 Hz, 2H), 3.90 (s, 3H), 3.66 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN) δ -151.5 (brs), -151.6 (brs). ¹³C NMR (126 MHz, CD₃CN) δ 165.1, 143.4, 136.1, 134.2, 134.0, 132.3, 131.1, 127.3, 124.5, 118.1, 104.4, 52.4, 35.7. IR (KBr): 3102, 3077, 2959, 2929, 2851, 1722, 1580, 1463, 1439, 1397, 1351, 1292, 1262, 1154, 1088, 1052, 1009, 956, 878, 756, 684 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₁H₁₈NO₂S]⁺ ([M]⁺): 348.1053; found: 348.1046.

5-(4-Acetylphenyl)-10-methyl-5,10-dihydrophenothiazin-5-ium tetrafluoroborate (**2eh**)

Yellow solid (272.4 mg, 65%). M.p.: 177-179 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, *J* = 7.8 Hz, 2H), 7.91 (d, *J* = 8.5 Hz, 2H), 7.82 (t, *J* = 8.1 Hz, 2H), 7.47-7.43 (m, 4H), 7.30 (d, *J* = 8.5 Hz, 2H), 3.63 (s, 3H), 2.51 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -151.0 (brs), -151.1 (brs). ¹³C NMR (126 MHz, CDCl₃) δ 196.4, 143.2, 140.1, 136.2, 133.6, 132.9, 130.2, 127.5, 125.0, 117.3, 104.9, 35.9, 26.7. IR (KBr): 3114, 3068, 2926, 2855, 1686, 1582, 1463, 1395, 1348, 1260, 1141, 1057, 1005, 959, 831, 762 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₁H₁₈NOS]⁺ ([M]⁺): 332.1104; found: 332.1098.

5-(4-(Diphenylamino)phenyl)-10-methyl-5,10-dihydrophenothiazin-5-ium tetrafluoroborate (**2ej**)

Yellowish solid (283.2 mg, 52%). M.p.: 180-182 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 7.9 Hz, 2H), 7.74 (t, *J* = 7.9 Hz, 2H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.26 (t, *J* = 7.7 Hz, 4H), 7.13-7.09 (m, 4H), 7.03 (d, *J* = 7.5 Hz, 4H), 6.82 (d, *J* = 9.1 Hz, 2H), 3.71 (s, 3H). ¹⁹F NMR (471 MHz, CDCl₃) δ -151.8 (brs), -151.9 (brs). ¹³C NMR (126 MHz, CDCl₃) δ 152.7, 145.2, 143.0, 135.7, 131.9, 130.0, 129.3, 126.5, 125.9, 124.6, 120.1, 117.5, 116.9, 106.4, 36.0. IR (KBr): 3063, 3034, 2927, 1577, 1491, 1466, 1334, 1299, 1261, 1196, 1141, 1061, 878, 820, 755, 700 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₃₁H₂₅N₂S]⁺ ([M]⁺): 457.1733; found: 457.1726.

5-(3,5-Dimethylphenyl)-10-methyl-5,10-dihydrophenothiazin-5-ium tetrafluoroborate (**2en**)

Light yellow solid (364.7 mg, 90%). M.p.: 272-274 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.12 (dd, J = 7.9 Hz, 1.1 Hz, 2H), 7.81 (t, J = 7.9 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.41 (t, J = 7.4 Hz, 2H), 7.09 (s, 1H), 6.78 (s, 2H), 3.70 (s, 3H), 2.23 (s, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -151.8 (brs), -151.8 (brs). ¹³C NMR (126 MHz, CDCl₃) δ 143.2, 141.4, 136.0, 135.1, 132.4, 128.8, 124.8, 124.4, 117.4, 105.2, 35.9, 21.3. IR (KBr): 3070, 3049, 2922, 1606, 1584, 1467, 1356, 1303, 1259, 1182, 1067, 942, 877, 766, 677 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₁H₂₀NS]⁺ ([M]⁺): 318.1311; found: 318.1305.

4.2. General procedure for the base-mediated synthesis of aryl enol ethers from 1a with different types of aryl transfer reagents (2).

In a nitrogen-filled glovebox, a sealed tube was charge with **1a** (13.4 mg, 0.1 mmol), aryl transfer regent (**2**, 0.12 mmol), NaOH (4.8 mg, 0.12 mmol), and DMSO (1 mL) with vigorous stirring. The mixture was reacted at room temperature for 12 h. The yields of **3a** were determined by HPLC using the pure **3a** as an external standard ($t_R = 10.5 \text{ min}, \lambda_{max} = 252 \text{ nm}, \text{ water / methanol} = 20 / 80 (v / v)$. Product **4** was isolated by the flash column chromatography on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as eluents.

Light yellow oil (17.9 mg, 42%, eluents: PE/EA = 40/1), Z/E = 25/1. ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, J = 6.6 Hz, 2.08H), 7.39 (d, J = 7.4 Hz, 2.08H), 7.29-7.26 (m, 3.12H), 7.23-7.21 (m, 6.24H), 7.15 (td, J = 6.9 Hz, 1.9 Hz, 2.08H), 7.11 (tm, J = 7.9

Hz, 1.04H), 6.91 (t, J = 7.4 Hz, 1.04H), 6.80 (d, J = 8.1 Hz Hz, 1.04H), 5.91 (q, J = 6.9 Hz, 1H), 5.40 (q, J = 7.4 Hz, 0.04H), 1.84 (d, J = 7.4 Hz, 0.12H), 1.67 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 156.0, 149.8, 137.7, 137.0, 135.1, 135.1, 133.6, 132.2, 131.3, 131.3, 129.2, 129.2, 128.4, 127.8, 127.6, 127.3, 127.1, 125.2, 122.2, 122.0, 114.1, 112.6, 11.3. IR (KBr): 3056, 2963, 2921, 2854, 1660, 1573, 1468, 1442, 1261, 1226, 1157, 1099, 1035, 1015, 802, 749, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₇H₂₃OS₂]⁺ ([M + H]⁺): 427.1185; found: 427.1180.

(Z)-Phenyl(2-((1-phenylprop-1-en-1-yl)oxy)phenoxy)phenyl)sulfane (**4b**)

Light yellow oil (14.0 mg, 34%, eluents: PE/EA = 40/1), Z/E = 33/1. ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.40 (m, 4.12H), 7.27-7.24 (m, 4.12H), 7.22-7.19 (m, 4.12H), 7.00 (t, J = 7.5 Hz, 1.03H), 6.96 (dd, J = 7.8 Hz, 1.5 Hz, 1.03H), 6.93 (td, J = 7.1 Hz, 1.5 Hz, 1.03H), 6.89-6.86 (m, 2.06H), 6.83 (dd, J = 8.0 Hz, 1.3 Hz, 1.03H), 5.85 (q, J = 6.9 Hz, 1H), 5.29 (q, J = 7.4 Hz, 0.03H), 1.77 (d, J = 7.4 Hz, 0.09H), 1.67 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 156.3, 149.7, 148.4, 144.7, 135.3, 135.0, 132.8, 131.4, 129.0, 128.3, 127.8, 126.9, 125.9, 125.3, 124.7, 123.3, 121.8, 121.2, 117.0, 115.6, 112.5, 11.3. IR (KBr): 3060, 2923, 2855, 1663, 1574, 1492, 1468, 1440, 1304, 1260, 1214, 1188, 1157, 1108, 1063, 1014, 931, 796, 748, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₇H₂₃O₂S]⁺ ([M + H]⁺): 411.1413; found: 411.1405.

(Z)-Phenyl(2'-((1-phenylprop-1-en-1-yl)oxy)-[1,1'-biphenyl]-2-yl)sulfane (4c)

Light yellow oil (31.6 mg, 80%, eluents: PE/EA = 40/1), Z/E = 25/1. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, J = 6.7 Hz, 2.08H), 7.43 (d, J = 7.4 Hz, 1.04H), 7.36 (d, J = 7.1 Hz, 2.08H), 7.34-7.31 (m, 2.08H), 7.29-7.27 (m, 3.12H), 7.23-7.17 (m, 6.24H), 6.98 (t, J = 7.4 Hz, 1.04H), 6.85 (d, J = 8.3 Hz, 1.04H), 5.91 (q, J = 6.9 Hz, 1H), 5.25 (q, J = 7.4 Hz, 0.04H), 1.74 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.1, 149.7, 139.8, 136.7, 136.2, 135.5, 131.8, 131.4, 130.9, 130.7, 129.4, 129.1, 128.3,

128.2, 127.7, 127.0, 126.4, 125.1, 120.9, 113.4, 112.4, 11.5. IR (KBr): 3057, 3024, 2916, 2854, 1659, 1581, 1493, 1462, 1442, 1316, 1262, 1214, 1158, 1117, 1072, 1016, 967, 909, 817, 742, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{27}H_{23}OS]^+$ ($[M + H]^+$): 395.1464; found: 395.1457.

4.3. General procedure for the base-mediated synthesis of aryl enol ethers from 1a with different aryl phenothiazinium salts (2e).

In a nitrogen-filled glovebox, a sealed tube was charge with **1a** (13.4 or 26.8 mg, 0.1 or 0.2 mmol), aryl phenothiazinium salt (**2e**, 0.12 or 0.24 mmol), NaOH (4.8 or 9.6 mg, 0.12 or 0.24 mmol) or CsOH (22.5 or 45 mg, 0.15 or 0.3 mmol) and DMSO (1 or 2 mL) with vigorous stirring. The mixture was reacted at room temperature or 60 °C for 12 or 24 h, cooled to room temperature, diluted with water (30 mL), and extracted with ethyl acetate (3 \times 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether (PE) and ethyl acetate (EA) as eluents to give the desired product (**5**).

Light yellow oil (20.7 mg, 46%, eluents: PE/EA = 40/1), Z/E = 100/1. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 7.4 Hz, 2.02H), 7.27 (t, J = 7.7 Hz, 2.02H), 7.21 (t, J = 7.3 Hz, 1.01H), 7.02 (d, J = 8.2 Hz, 2.02H), 6.85 (d, J = 8.5 Hz, 2.02H), 5.91 (q, J = 7.0 Hz, 1H), 5.40 (q, J = 7.4 Hz, 0.01H), 2.25 (s, 3H), 2.13 (s, 0.03H), 1.83 (d, J = 7.4 Hz, 0.03H), 1.76 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.2, 149.8, 135.7, 130.5, 130.0, 128.4, 127.7, 125.2, 115.1, 112.2, 20.5, 11.4. IR (KBr): 3057, 3031, 2920, 2858, 1660, 1610, 1506, 1446, 1317, 1285, 1263, 1220, 1167, 1105, 1018, 968, 815, 774, 732, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₆H₁₇O]⁺ ([M + H]⁺): 225.1274; found: 225.1269.

(Z)-N-Methyl-2-((1-phenylprop-1-en-1-yl)oxy)-N-(2-(p-tolylthio)phenyl)aniline (**4d**)

Colorless oil (18.4 mg, 21%, eluents: PE/EA = 40/1), Z/E = 10/1. ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.40 (m, 2.2H), 7.31 (d, J = 8.0 Hz, 2.2H), 7.16-7.15 (m, 3.3H), 7.12-7.09 (m, 4.4H), 6.98 (dd, J = 7.8 Hz, 1.4 Hz, 1.1H), 6.93 (tm, J = 7.9 Hz, 1.1H), 6.89-6.84 (m, 2.2H), 6.79 (tm, J = 7.9 Hz, 1.1H), 6.67 (dd, J = 8.0 Hz, 1.2 Hz, 1.1H), 5.82 (q, J = 6.9 Hz, 1H), 5.20 (q, J = 7.3 Hz, 0.1H), 3.38 (s, 3H), 3.29 (s, 0.3H), 2.34 (s, 0.3H), 2.33 (s, 3H), 1.74 (d, J = 7.4 Hz, 0.3H), 1.56 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.6, 148.9, 139.3, 137.7, 135.6, 135.3, 133.9, 131.1, 130.0, 129.4, 128.2, 127.6, 126.0, 125.3, 124.4, 123.5, 122.6, 121.2, 120.9, 113.9, 112.2, 41.0, 21.1, 11.2. IR (KBr): 3057, 3026, 2920, 2854, 2802, 1659, 1580, 1494, 1471, 1445, 1317, 1260, 1216, 1122, 1104, 1051, 1016, 968, 874, 811, 747, 693 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₉H₂₈NOS]⁺ ([M + H]⁺): 438.1886; found: 438.1894.

(*Z*)-1-(*Tert*-butyl)-4-((1-phenylprop-1-en-1-yl)oxy)benzene (**5b**)

Colorless oil (18.1 mg, 34%, eluents: PE/EA = 40/1), Z/E = 50/1. ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, J = 7.4 Hz, 2.04H), 7.24 (d, J = 8.5 Hz, 2.04H), 7.21-7.17 (m, 3.06H), 6.85 (d, J = 8.5 Hz, 2.04H), 5.89 (q, J = 6.9 Hz, 1H), 1.81 (d, J = 7.3 Hz, 0.06H), 1.73 (d, J = 7.0 Hz, 3H), 1.36 (s, 0.18H), 1.24 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 155.0, 149.8, 143.9, 135.8, 128.4, 127.7, 126.3, 125.2, 114.7, 112.3, 34.1, 31.5, 11.4. IR (KBr): 3057, 3034, 2914, 2855, 1661, 1582, 1479, 1446, 1398, 1315, 1276, 1264, 1226, 1167, 1109, 1057, 1014, 1003, 968, 913, 820, 748, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₉H₂₃O]⁺ ([M + H]⁺): 267.1743; found: 267.1739.

(*Z*)-2-((4-(*Tert*-butyl)phenyl)thio)-*N*-methyl-*N*-(2-((1-phenylprop-1-en-1-yl)oxy)phenyl)aniline (**4e**)

Colorless oil (30.7 mg, 32%, eluents: PE/EA = 40/1), Z/E = 50/1. ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.39 (m, 2.04), 7.33 (d, J = 8.6 Hz, 2.04H), 7.30 (d, J = 8.6 Hz, 2.04H), 7.17-7.16 (m, 3.06H), 7.13 (m, 2.04H), 6.99 (dd, J = 7.8 Hz, 1.2 Hz, 1.02H), 6.95 (m, 2.04H), 6.86 (td, J = 7.7 Hz, 1.1 Hz, 1.02H), 6.79 (tm, J = 7.9 Hz, 1.02H), 6.67 (dd, J = 8.0 Hz, 1.1 Hz, 1.02H), 5.82 (q, J = 6.9 Hz, 1H), 5.22 (q, J = 7.4 Hz, 0.02H), 3.39 (s, 3H), 3.31 (s, 0.06H), 1.76 (d, J = 7.4 Hz, 0.06H), 1.56 (d, J = 7.0 Hz, 3H), 1.31 (s, 9H), 1.28 (s, 0.18H). ¹³C NMR (126 MHz, CDCl₃) δ 150.7, 149.6, 149.6, 149.1, 139.3, 135.6, 134.9, 133.2, 131.2, 129.8, 128.2, 127.6, 126.2, 125.2, 124.4, 123.6, 122.6, 121.2, 120.8, 113.9, 112.2, 41.2, 34.6, 31.3, 11.2. IR (KBr): 3059, 2963, 2870, 2805, 1688, 1582, 1493, 1471, 1362, 1351, 1268, 1221, 1181, 1118, 1046, 1027, 1014, 951, 831, 814, 746, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₃₂H₃₄NOS]⁺ ([M + H]⁺): 480.2356; found: 480.2362.

(*Z*)-1-Chloro-4-((1-phenylprop-1-en-1-yl)oxy)benzene (**5c**)

Light yellow oil (18.4 mg, 75%, eluents: PE/EA = 40/1), Z/E = 100/1. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 7.2 Hz, 2.02H), 7.28 (t, J = 7.4 Hz, 2.02H), 7.23 (t, J = 7.2 Hz, 1.01H), 7.18 (d, J = 8.9 Hz, 2.02H), 6.89 (d, J = 8.9 Hz, 2.02H), 5.93 (q, J = 7.0 Hz, 1H), 5.49 (q, J = 7.4 Hz, 0.01H), 1.85 (d, J = 7.5 Hz, 0.03H), 1.74 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 149.6, 135.1, 129.5, 128.5, 128.0, 126.3, 125.1, 116.7, 112.6, 11.3. IR (KBr): 3058, 3036, 2962, 2916, 2857, 1661, 1593, 1486, 1446, 1316, 1280, 1263, 1229, 1162, 1091, 1016, 969, 825, 753, 699 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₅H₁₄ClO]⁺ ([M + H]⁺): 245.0728; found: 245.0723.

(Z)-1-Bromo-4-((1-phenylprop-1-en-1-yl)oxy)benzene (5d)

Colorless oil (22.8 mg, 79%, eluents: PE/EA = 40/1), Z/E = 50/1. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 7.7 Hz, 2.04H), 7.32 (d, J = 8.5 Hz, 2.04H), 7.28 (t, J = 7.4 Hz, 2.04H), 7.23 (t, J = 7.1 Hz, 1.02H), 6.84 (d, J = 8.5 Hz, 2.04H), 5.94 (q, J = 7.0 Hz, 1H), 5.50 (q, J = 7.4 Hz, 0.02H), 1.86 (d, J = 7.3 Hz, 0.06H), 1.74 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 156.4, 149.5, 135.0, 132.4, 128.5, 128.0, 125.1, 117.2, 113.6, 112.7, 11.4. IR (KBr): 3059, 3035, 2919, 2855, 1662, 1588, 1483, 1446, 1316, 1263, 1228, 1164, 1099, 1070, 1015, 969, 824, 751, 695 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₅H₁₄BrO]⁺ ([M + H]⁺): 289.0223; found: 289.0216.

(*Z*)-1-Iodo-4-((1-phenylprop-1-en-1-yl)oxy)benzene (**5e**)

Colorless oil (55.8 mg, 83%, eluents: PE/EA = 40/1), Z/E = 25/1. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 8.9 Hz, 2.08H), 7.47 (d, J = 7.2 Hz, 2.08H), 7.32-7.24 (m, 3.12H). 6.77 (d, J = 8.8 Hz, 2.08H), 5.96 (q, J = 7.0 Hz, 1H), 5.54 (q, J = 7.4 Hz, 0.04H), 1.89 (d, J = 7.4 Hz, 0.12H), 1.77 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.3, 149.5, 138.4, 138.3, 135.1, 128.5, 128.0, 125.1, 117.8, 112.7, 11.4. IR (KBr): 3056, 3035, 2961, 2913, 2857, 1661, 1582, 1508, 1479, 1446, 1398, 1315, 1264, 1227, 1167, 1111, 1057, 1015, 968, 913, 821, 785, 750, 694 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₅H₁₄IO]⁺ ([M + H]⁺): 337.0084; found: 337.0075.

Methyl (*Z*)-4-((1-phenylprop-1-en-1-yl)oxy)benzoate (**5f**)

Yellow oil (11.5 mg, 43%, eluents: PE/EA = 40/1), Z/E = 33/1. ¹H NMR (500 MHz,

CDCl₃) δ 7.94 (d, J = 8.9 Hz, 2.06H), 7.45 (d, J = 7.5 Hz, 2.06H), 7.30-7.22 (m, 3.09H), 6.98 (d, J = 8.9 Hz, 2.06H), 5.98 (q, J = 7.0 Hz, 1H), 5.61 (q, J = 7.4 Hz, 0.03H), 3.86 (s, 3H), 3.85 (s, 0.09H), 1.90 (d, J = 7.4 Hz, 0.09H), 1.74 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 161.2, 149.4, 134.9, 131.7, 128.5, 128.1, 124.9, 123.5, 115.1, 112.7, 51.8, 11.4. IR (KBr): 3058, 3035, 2951, 2923, 2856, 1720, 1664, 1605, 1505, 1435, 1315, 1278, 1237, 1190, 1162, 1111, 1014, 969, 850, 804, 769, 749, 695 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₇H₁₇O₃]⁺ ([M + H]⁺): 269.1172; found: 269.1168.

(Z)-1-(4-((1-Phenylprop-1-en-1-yl)oxy)phenyl)ethan-1-one (5g)

Yellow oil (20.9 mg, 83%, eluents: PE/EA = 40/1), Z/E = 25/1. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 8.9 Hz, 2.08H), 7.45 (d, J = 7.3 Hz, 2.08H), 7.30-7.23 (m, 3.12H), 7.00 (d, J = 8.8 Hz, 2H), 5.99 (q, J = 7.0 Hz, 1H), 5.63 (q, J = 7.4 Hz, 0.04H), 2.52 (s, 3H), 2.50 (s, 0.12H), 1.91 (d, J = 7.4 Hz, 0.12H), 1.75 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 196.6, 161.3, 149.3, 134.8, 131.1, 130.7, 128.6, 128.1, 124.9, 115.2, 112.8, 26.3, 11.4. IR (KBr): 3060, 3007, 2920, 2855, 1674, 1597, 1580, 1500, 1447, 1416, 1355, 1318, 1269, 1225, 1165, 1108, 1008, 954, 843, 788, 759, 710 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₇H₁₇O₂]⁺ ([M + H]⁺): 253.1223; found: 253.1218.

(*Z*)-1-Phenoxy-4-((1-phenylprop-1-en-1-yl)oxy)benzene (**5h**)

Colorless oil (33.3 mg, 55%, PE/EA = 40/1), Z/E = 25/1. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 7.4 Hz, 2.08H), 7.31-7.27 (m, 4.16H), 7.24 (t, J = 7.3 Hz, 1.04H), 7.04 (t, J = 7.4 Hz, 1.04H), 6.95-6.89 (m, 6.24H), 5.92 (q, J = 7.0 Hz, 1H), 5.43 (q, J = 7.3Hz, 0.04H), 1.85 (d, J = 7.4 Hz, 0.12H), 1.79 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 158.2, 153.4, 150.9, 150.0, 135.5, 129.6, 128.4, 127.8, 125.2, 122.6, 120.5, 117.9, 116.3, 112.4, 11.4. IR (KBr): 3058, 2925, 2855, 1662, 1589, 1488, 1446, 1316, 1246, 1211, 1194, 1098, 1084, 1017, 847, 834, 754, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{21}H_{19}O_2]^+([M + H]^+)$: 303.1380; found: 303.1374.

(Z)-N,N-Diphenyl-4-((1-phenylprop-1-en-1-yl)oxy)aniline (5i)

Colorless oil (34.7 mg, 46%, eluents: PE/EA = 10/1), Z/E = 33/1. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 7.6 Hz, 2.06H), 7.31 (t, J = 7.4 Hz, 2.06H), 7.26 (m, 1.03H), 7.20 (t, J = 7.8 Hz, 4.12H), 7.02 (d, J = 7.9 Hz, 4.12H), 6.99 (d, J = 8.9 Hz, 2.06H), 6.94 (t, J = 7.3 Hz, 2.06H), 6.87 (d, J = 8.8 Hz, 2.06H), 5.92 (q, J = 6.9 Hz, 1H), 5.45 (q, J = 7.4 Hz, 0.03H), 1.85 (d, J = 7.4 Hz, 0.09H), 1.79 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 153.6, 149.9, 148.1, 141.4, 135.7, 129.1, 128.4, 127.8, 126.8, 125.2, 123.2, 122.0, 116.2, 112.4, 11.5. IR (KBr): 3058, 3036, 2917, 2855, 1660, 1588, 1500, 1446, 1314, 1276, 1217, 1161, 1104, 1075, 1016, 967, 914, 830, 751, 695 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₂₇H₂₃NNaO]⁺ ([M + Na]⁺): 400.1672; found: 400.1679.

(*Z*)-2-((4-Methoxyphenyl)thio)-*N*-methyl-*N*-(2-((1-phenylprop-1-en-1-yl)oxy)phenyl) aniline (**4g**)

White solid (42.6 mg, 47%, eluents: PE/EA = 40/1), Z/E = 33/1. M.p.: 73-75 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.43 (m, 2.06H), 7.38 (d, J = 8.6 Hz, 2.06H), 7.20-7.16 (m, 3.09H), 7.12-7.07 (m, 2.06H), 6.99 (dd, J = 7.8 Hz, 1.2 Hz, 1.03H), 6.92 (t, J = 7.4 Hz, 1.03H), 6.89-6.85 (m, 3.09H), 6.81-6.77 (m, 2.06H), 6.68 (dd, J = 8.0 Hz, 1.1 Hz, 1.03H), 5.83 (q, J = 7.0 Hz, 1H), 5.21 (q, J = 7.4 Hz, 0.03H), 3.81 (s, 3H), 3.79 (s, 0.09H), 3.38 (s, 3H), 3.30 (s, 0.09H), 1.75 (d, J = 7.4 Hz, 0.09H), 1.57 (d, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.9, 149.6, 149.6, 148.2, 139.3, 136.5, 136.5,

135.6, 128.2, 128.1, 127.6, 125.6, 125.3, 124.5, 124.5, 123.5, 122.6, 121.2, 120.7, 114.9, 113.9, 112.2, 55.3, 41.0, 11.2. IR (KBr): 3059, 2938, 2908, 2837, 2805, 1687, 1593, 1494, 1470, 1446, 1350, 1287, 1248, 1220, 1174, 1103, 1030, 952, 873, 830, 747, 691 cm⁻¹. HRMS-ESI (m/z) calcd. for $[C_{29}H_{28}NO_2S]^+$ ($[M + H]^+$): 454.1835; found: 454.1828.

(*Z*)-1-Methyl-3-((1-phenylprop-1-en-1-yl)oxy)benzene (**5**k)

Colorless oil (30.1 mg, 67%, eluents: PE/EA = 40/1), Z/E = 50/1. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 7.4 Hz, 2.04H), 7.29 (t, J = 7.4 Hz, 2.04H), 7.24 (t, J = 7.3 Hz, 1.02H), 7.12 (t, J = 7.8 Hz, 1.02H), 6.83 (s, 1.02H), 6.77 (d, J = 7.8 Hz, 2.04H), 5.95 (q, J = 7.0 Hz, 1H), 5.47 (q, J = 7.3 Hz, 0.02H), 2.43 (s, 0.06H), 2.31 (s, 3H), 1.87 (d, J = 7.4 Hz, 0.06H), 1.78 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.3, 149.7, 139.6, 135.7, 129.2, 128.4, 127.7, 125.1, 122.2, 116.1, 112.3, 21.5, 11.4. IR (KBr): 3055, 3034, 2917, 2858, 1661, 1610, 1588, 1488, 1445, 1317, 1253, 1150, 1025, 968, 916, 856, 817, 772, 735, 690 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₆H₁₇O]⁺ ([M + H]⁺): 225.1274; found: 225.1272.

(Z)-1-Methyl-2-((1-phenylprop-1-en-1-yl)oxy)benzene (5l)

Colorless oil (21.0 mg, 47%, eluents: PE/EA = 40/1), Z/E = 50/1. ¹H NMR (500 MHz, CDCl₃) δ 7.47 (d, J = 7.3 Hz, 2.04H), 7.29 (t, J = 7.4 Hz, 2.04H), 7.25-7.19 (m, 2.04H), 6.99 (t, J = 7.7 Hz, 1.02H), 6.89 (t, J = 7.3 Hz, 1.02H), 6.70 (d, J = 8.1 Hz, 1.02H), 5.95 (q, J = 6.9 Hz, 1H), 5.18 (q, J = 7.3 Hz, 0.02H), 2.46 (s, 3H), 2.34 (s, 0.06H), 1.82 (d, J = 7.3 Hz, 0.06H), 1.75 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.3, 150.0, 135.7, 130.9, 128.4, 127.8, 126.7, 126.1, 125.0, 121.1, 112.9, 112.1, 16.3, 11.3. IR (KBr): 3057, 3029, 2921, 2856, 1660, 1589, 1490, 1445, 1317, 1262, 1229, 1186, 1151, 1118, 1018, 968, 876, 815, 745, 693 cm⁻¹. HRMS-ESI (m/z)

calcd. for $[C_{16}H_{17}O]^+([M+H]^+)$: 225.1274; found: 225.1272.

(Z)-1,3-Dimethyl-5-((1-phenylprop-1-en-1-yl)oxy)benzene (5m)

Colorless oil (37.2 mg, 78%, eluents: PE/EA = 40/1), Z/E = 50/1. ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, J = 7.4 Hz, 2.04H), 7.29 (t, J = 7.5 Hz, 2.04H), 7.23 (t, J = 7.3 Hz, 1.02H), 6.60 (m, 3.06H), 5.94 (q, J = 6.9 Hz, 1H), 5.44 (q, J = 7.3 Hz, 0.02H), 2.38 (s, 0.12H), 2.25 (s, 6H), 1.87 (d, J = 7.4 Hz, 0.06H), 1.75 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.3, 149.6, 139.3, 135.8, 128.4, 127.7, 125.1, 123.2, 113.0, 112.2, 21.4, 11.5. IR (KBr): 3055, 3035, 2917, 2857, 1660, 1614, 1593, 1492, 1470, 1446, 1377, 1313, 1292, 1263, 1144, 1054, 1032, 995, 969, 835, 762, 702 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₇H₁₉O]⁺ ([M + H]⁺): 239.1430; found: 239.1426.

(*Z*)-2-((3,5-Dimethylphenyl)thio)-*N*-methyl-*N*-(2-((1-phenylprop-1-en-1-yl)oxy)phenyl)aniline (**4j**)

Colorless oil (5.4 mg, 6%, eluents: PE/EA = 40/1), Z/E = 11/1. ¹H NMR (500 MHz, CDCl₃) δ 7.40-7.38 (m, 2.18H), 7.18-7.12 (m, 5.45H), 7.02 (s, 2.18H), 6.99-6.94 (m, 3.27H), 6.87-6.84 (m, 2.18H), 6.78 (t, J = 7.9 Hz, 1.09H), 6.66 (dd, J = 8.0 Hz, 1.1 Hz, 1.09H), 5.82 (q, J = 6.9 Hz, 1H), 5.20 (q, J = 7.4 Hz, 0.09H), 3.37 (s, 3H), 3.29 (s, 0.27H), 2.24 (s, 0.54H), 2.22 (s, 6H), 1.75 (d, J = 7.4 Hz, 0.27H), 1.55 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 149.6, 149.3, 139.3, 138.7, 135.6, 134.8, 134.4, 131.0, 130.2, 129.3, 128.2, 127.5, 126.3, 125.2, 124.4, 123.6, 122.6, 121.2, 120.8, 113.9, 112.2, 41.2, 21.0, 11.2. IR (KBr): 3057, 3032, 2917, 2855, 2802, 1660, 1598, 1579, 1495, 1471, 1445, 1317, 1261, 1215, 1123, 1104, 1051, 1016, 968, 874, 811, 747, 692 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₃₀H₃₀NOS]⁺ ([M + H]⁺): 452.2043; found: 452.2046.

((E)-2-(((Z)-1-Phenylprop-1-en-1-yl)oxy)vinyl)benzene (5n)

Colorless oil (11.3 mg, 24%, eluents: PE). ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.4 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 1H), 7.23 (t, *J* = 7.3 Hz, 2H), 7.18 (d, *J* = 7.2 Hz, 2H), 7.12 (t, *J* = 7.1 Hz, 1H), 6.99 (d, *J* = 12.7 Hz, 1H), 6.06 (d, *J* = 12.7 Hz, 1H), 5.76 (q, *J* = 6.9 Hz, 1H), 1.83 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 151.4, 146.1, 135.8, 135.4, 128.5, 128.4, 127.9, 125.9, 125.3, 125.2, 110.9, 109.0, 11.3. IR (KBr): 3061, 3034, 2927, 2855, 1728, 1698, 1648, 1599, 1494, 1449, 1316, 1265, 1212, 1132, 1072, 1028, 971, 927, 752, 698 cm⁻¹. HRMS-ESI (m/z) calcd. for [C₁₇H₁₇O]⁺ ([M + H]⁺): 237.1274; found: 237.1269.

5. The control experiments for mechanistic insights.

5.1. Reaction of 1a with 2a and NaOH under the standard conditions in the presence of different radical traps.

In a nitrogen-filled glovebox, a sealed tube was charge with **1a** (13.4 mg, 0.1 mmol), **2a** (49.5 mg, 0.12 mmol), NaOH (4.8 mg, 0.12 mmol), DMSO (1 mL), and a radical trap (0.2 mmol) with vigorous stirring. The mixture was reacted at room temperature for 12 h. The yields of **3a** were determined by HPLC using pure **3a** as an external standard ($t_R = 10.5 \text{ min}$, $\lambda_{max} = 252 \text{ nm}$, water / methanol = 20 / 80 (v / v).

5.2. The standard reaction of 1a, 2a and NaOH in the darkness.

In a nitrogen-filled glovebox, a sealed tube was charge with **1a** (13.4 mg, 0.1 mmol), **2a** (49.5 mg, 0.12 mmol), NaOH (4.8 mg, 0.12 mmol), and DMSO (1 mL) with vigorous stirring. The sealed tube was fully wrapped with tin foil. The mixture was reacted at room temperature for 12 h. The yields of **3a** were determined by HPLC using pure **3a** as an external standard ($t_R = 10.5 \text{ min}$, $\lambda_{max} = 252 \text{ nm}$, water / methanol = 20 / 80 (v / v).

5.3. Reaction of 1b with NaOH in DMSO without using arylsulfonium salt under the standard conditions.

In a nitrogen-filled glovebox, a sealed tube was charge with **1b** (29.6 mg, 0.2 mmol), NaOH (9.6 mg, 0.24 mmol), and DMSO (2 mL) with vigorous stirring. The mixture was reacted at room temperature for 12 h, diluted with water (30 mL), and extracted with ethyl acetate (3 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using a mixture of petroleum ether and ethyl acetate (40/1, v/v) as eluents to give 1-(*p*-tolyl)propan-1-one (**6**)¹³ as a yellow oil (20.7 mg, 50%). ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 2.97 (q, *J* = 7.3 Hz, 2H), 2.41 (s, 3H), 1.22 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 200.5, 143.5, 134.6, 129.2, 128.1, 31.6, 21.6, 8.3.

5.4. Reaction of 6 with 2a and NaOH in DMSO under the standard conditions.

In a nitrogen-filled glovebox, a sealed tube was charge with 6 (14.8 mg, 0.1 mmol),

2a (49.5 mg, 0.12 mmol), NaOH (4.8 mg, 0.12 mmol), and DMSO (1 mL) with vigorous stirring. The mixture was reacted at room temperature for 12 h or at 60 °C for 24 h. Finally, no desired product (**3b**) was detected.

5.5. The standard reaction of 1a, 2a and NaOH in DMSO-d6.

In a nitrogen-filled glovebox, a sealed tube was charge with **1a** (26.8 mg, 0.2 mmol), **2a** (99 mg, 0.24 mmol), NaOH (9.6 mg, 0.24 mmol), and DMSO- d_6 (2 mL) with vigorous stirring. The mixture was reacted at room temperature for 12 h, diluted with water (30 mL), and extracted with ethyl acetate (3 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using petroleum ether as eluents to give the partially deuterated **3a** (26.1 mg, 62%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.5 Hz, 2H), 7.28 (t, *J* = 7.4 Hz, 2H), 7.25-7.21 (m, 3H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.94 (t, *J* = 7.4 Hz, 1H), 5.94 (q, *J* = 6.9 Hz, 1H), 1.77-1.74 (m, 2.6H).

5.6. The standard reaction of 1a, 2a and NaOH in DMSO/D₂O (1/1, v/v).

In a nitrogen-filled glovebox, a sealed tube was charge with **1a** (26.8 mg, 0.2 mmol), **2a** (99 mg, 0.24 mmol), NaOH (9.6 mg, 0.24 mmol), DMSO (1 mL), and D₂O (1 mL) with vigorous stirring. The mixture was reacted at room temperature for 12 h, diluted with water (30 mL), and extracted with ethyl acetate (3 × 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to dryness under reduced pressure. The residue was purified by flash column chromatography on silica gel using petroleum ether as an eluent to give the partially deuterated **3a** (8.4 mg, 20%) as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 7.3 Hz, 2H), 7.27 (t, *J* = 7.0 Hz, 2H), 7.24-7.21 (m, 3H), 6.96 (d, *J* = 8.0 Hz, 2H), 6.92 (t, *J* = 7.4 Hz, 1H), 5.93 (q, *J* = 7.0 Hz, 1H), 1.76 (d, *J* = 7.0 Hz, 2.8H).

References

1. P. Xu, D. Zhao, F. Berger, A. Hamad, J. Rickmeier, R. Petzold, M. Kondratiuk, K. Bohdan and T. Ritter, *Angew. Chem. Int. Ed.* 2020, **59**, 1956-1960.

2. F. Berger, M. B. Plutschack, J. Riegger, W. Yu, S. Speicher, M. Ho, N. Frank and T. Ritter, *Nature* 2019, **567**, 223-228.

3. J. Wu, Z. Wang, X.-Y. Chen, Y. Wu, D. Wang, Q. Peng and P. Wang, *Sci. China Chem.* 2020, **63**, 336-340.

4. T. Yoshida, Y. Honda, T. Morofuji and N. Kano, J. Org. Chem. 2022, 87, 7565-7573.

5. Z.-Y. Tian and C.-P. Zhang, Chem. Commun. 2019, 55, 11936-11939.

6. Z.-Y. Tian, S.-M. Wang, S.-J. Jia, H.-X. Song and C.-P. Zhang, *Org. Lett.* 2017, **19**, 5454-5457.

7. S. Jautze and R. Peter, Angew. Chem. Int. Ed. 2008, 47, 9284-9288.

8. F. Lazreg, S. Guidone, A. Herrera, F. Nahra and C. Cazin, *Dalton. Trans.* 2017, 46, 2439-2444.

9. L. M. Stanley, B. Chen, M. Ueda and J. F. Hartwig. J. Am. Chem. Soc. 2010, 132, 8918-8920.

10. C. Fischer, C. Defieber, T. Suzuki and E. M. Carreira. J. Am. Chem. Soc. 2004, **126**, 1628-1629.

11. S. Yasar, I. Ozdemir, B. Cetinkaya, J. Renaud and C. Bruneau, *Eur. J. Org. Chem.* 2008, **2008**, 2142-2149.

12. Z.-Y. Tian, Z.-H. Lin and C.-P. Zhang, Org. Lett. 2021, 23, 4400-4405.

13. L.-Y. Wang, S.-S. Shang, G.-S. Li, L.-H. Ren, Y. Lv and S. Gao, *J. Org. Chem.* 2016, **81**, 2189-2193.

6. NMR spectra of the products

S43

11:56 11:56 157:30 157:30 157:30 157:30 157:30 157:30 122:33 122:33 122:42 115:78 115:78 115:78 115:78 115:78 115:78 115:78 115:78 115:78 115:78 115:78 115:78 115:78 115:78 115:78 122:30 115:78 122:30 115:78 122:30 123:30 122:30 122:30 122:30 123:30 123:30 122:30 123:30

S55

S56

$\begin{array}{c} 7.41\\ 7.71\\ 7.72\\$

-157.29 -149.45 -149.45 -138.26 -138.26 -138.54 -117.81 -117.81 -117.81 -117.65 -117.65 -11.38

 $\begin{array}{c} 7.7.7.4\\ 7.7.7.7.4\\ 7.7.7.7.2\\ 7.7.7.7.2\\ 7.7.7.7.2\\ 7.7.7.7.2\\ 7.7.7.7.2\\ 7.7.7.7\\ 7.$

