Synthesis and biological evaluation of natural Lachnophyllum methyl ester,

Lachnophyllum lactone and synthetic analogues thereof

Supporting information

Contents

Chemical synthesis	S2
RMN Spectra	S5
UHPLC analyses of extracts	S19
UHPLC analyses of synthetic samples of naturally occurring compounds	S25

Chemical synthesis

All reagents were obtained from commercial suppliers and used without any further purification. If not specified, reactions were run under nitrogen atmosphere in oven-dried glassware. Standard inert atmosphere techniques were used in handling all air and moisture sensitive reagents. Toluene, dichloromethane (DCM), tetrahydrofuran (THF), dimethylformamide (DMF) and diethyl ether (Et₂O) were obtained by filtration through a drying column on a filtration system. Thin-layer chromatography (TLC) analyses were performed on precoated, aluminum-backed silica gel (Merck 60 F254). Visualization of the developed chromatogram was performed by UV light (254 nm) and using 10% phosphomolybdic acid in EtOH, or aqueous potassium permanganate (KMnO₄) stain. Flash chromatography columns were performed using flash silica gel (SDS 35-70 µm). Nuclear magnetic resonance spectra were recorded on a Bruker Advance 300 or 400 or 500 MHz spectrometer. Chemical shifts for ¹H NMR spectra are given in parts per million (ppm) with the residual solvent resonance as the reference CHCl₃ (δ = 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, m = multiplet and br = broad), coupling constant in Hz and integration. Chemical shifts for 13 C NMR spectra are given in ppm using the central peak of CDCl₃ (δ = 77.16 ppm) as the reference. All ¹³C NMR spectra were obtained with complete proton decoupling. Infrared analyses were run on a Thermo-Nicolet Diamond ATR (4 cm⁻¹ of resolution, 16 scans) equipped with a DTGS detector and are reported in reciprocal centimeters (cm⁻¹). High-resolution mass spectrometry (HRMS) was performed on a Thermo-Finnigan MAT 95 XL instrument. Mass spectrometry m/z values are given in Dalton units.

Synthesis of 5-ethynyl-1,3-difluoro-2-(heptyloxy)benzene (D):

1,3-Difluoro-2-(heptyloxy)-5-iodobenzene (B)

At 0 °C, NaOH (307 mg, 7.68 mmol, 2 eq.) in H₂O (19 mL) was added dropwise to the reacting mixture containing 2,6-difluorophenol (500 mg, 3.84 mmol, 1 eq.), KI (957 mg, 5.76 mmol, 1.5 eq.), I₂ (1.4 g, 5.76 mmol, 1.5 eq.) in water (19 mL). The resulting solution was stirred at rt for 4 h. After completion of the reaction, sat. NH₄Cl aqueous solution and sat. Na₂S₂O₃ aqueous solution were added to quench the reaction. The resulting solution was extracted with diethyl ether. Combined organic layers were washed with sat. Aqueous NaCl solution and dried over MgSO₄, concentrated under reduced pressure and used without further purification into the next step. Cs_2CO_3 (1.26 g, 3.87 mmol, 1 eq.) was added to a solution of the iodophenol in DMF (10 mL). After stirring at rt for 30 min, TBAI (59 mg, 5 mol%) and heptylbromide (608 µL, 3.87 mmol, 1 eq.) were added. The resulting mixture was stirred at 80 °C for 4 h. After completion of the reaction, water was added to quench the reaction. The resulting solution was extracted with diethyl ether. Combined organic layers were washed with sat. NaCl aqueous solution and dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel in pentane. The iodobenzene B (816 mg, 71% yield) was isolated as a pale-yellow oil. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.31-7.21 (m, 2H), 4.13 (t, J = 6.6 Hz, 2H), 1.84-1.68 (m, 2H), 1.52-1.25 (m, 8H), 0.96-0.87 (m, 3H).¹³**C NMR** (75 MHz, CDCl₃) δ (ppm) 156.0 (dd, J = 253.2, 6.2 Hz), 136.2 (m), 122.0-121.4 (m), 82.1 (t, J = 9.7 Hz), 74.9 (t, J = 3.0 Hz), 31.7, 29.9, 28.9, 25.5, 22.6, 14.1. ¹⁹F {¹H} NMR (282 MHz, CDCl₃) δ (ppm) -126.3. HRMS (DCl-CH₄): calcd for C₁₃H₁₇OF₂I [M]⁺: 354.0292 *m/z*, found: 354.0302 *m/z*.

((3,5-Difluoro-4-(heptyloxy)phenyl)ethynyl)trimethylsilane (C)

Anhydrous THF was degassed with nitrogen over 30 min before using. To a solution of aryl iodide **B** (400 mg, 1.13 mmol, 1 eq.) in anhydrous degassed THF (0.5M) in a two-necked flask under nitrogen, PdCl₂(PPh₃)₂ (31.7 mg, 0.045 mmol, 0.04 eq.), CuI (8.6 mg, 0.045 mmol 0.04 eq.) and diisopropylamine (112 μ L, 0.80 mmol, 0.7 eq.) were added at 0 °C, followed immediately by trimethylsilyl acetylene (114 μ L, 0.80 mmol, 0.7 eq.). The mixture was stirred over 2 h and quenched with sat. NH₄Cl aqueous solution. Aqueous layer was extracted with diethyl ether and combined organic layers were dried with MgSO4 and concentrated under reduced pressure to give the silylated product **C** as yellow oil (301 mg, 82% yield). ¹**H NMR** (300 MHz, CDCl₃) δ (ppm) 7.09-6.93 (m, 2H), 4.16 (t, *J* = 6.6 Hz, 2H), 1.77 (q, *J* = 14.2, 6.8 Hz, 2H), 1.51-1.41 (m, 2H), 1.39-1.26 (m, 6H), 0.91 (t, *J* = 35.1 Hz, 3H), 0.26 (s, 9H).

5-Ethynyl-1,3-difluoro-2-(heptyloxy)benzene (D)

To a stirred solution of silylated alkyne **C** (300 mg, 0.924 mmol, 1 eq.) in methanol (0.06 M), was added K₂CO₃ (38.3 mg, 0.28 mmol, 0.3 eq) and the reaction mixture was warm at rt for 2h. The mixture was quenched with dichloromethane and water. The organic layer was extracted with dichloromethane (3x), dried with MgSO4 and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel with 100% pentane to give alkyne aryl **D** (132 mg, 56% yield) ¹**H NMR** (300 MHz, CDCl₃) δ (ppm) 7.09-6.97 (m, 2H), 4.17 (tt, *J* = 6.6, 1.0 Hz, 2H), 3.09 (s, 1H), 1.77 (q, 2H), 1.54-1.41 (m, 2H), 1.41-1.24 (m, 6H), 0.91 (t, *J* = 35.1 Hz, 3H), ¹³**C NMR** (75 MHz, CDCl₃) δ (ppm) 155.6 (dd, *J* = 248.6, 6.8 Hz), 137.2 (t, *J* = 14.1 Hz), 116.5-115.77 (m, 3C), 81.5 (t, *J* = 3.5 Hz), 78.1, 74.9 (t, *J* = 3.2 Hz), 32.0, 30.1, 29.1, 25.7, 22.7, 14.2. ¹⁹**F** {¹**H**} **NMR** (282 MHz, CDCl₃) δ (ppm) -127.7. **MS** (DCI-NH₃): C₁₅H₂₂F₂NO [M+NH₄]⁺: 270.2 *m/z*.

NMR spectra

K071-IK112.8.1.1r pcmib MONALISA	66.12	32.17	24.68		9.19 3.45 7.58	7.16 6.74 1.45 5.03	2.07	1.71
K071			1		8 8		1	
					1			
nfasilaadaaraa ay kalaadaa ay kalaadaa saad	ſġſġŎġſġĨġĨġſġŢġŢġŎġŎĬŎĬŎĬŎĬŎĬŎŎĬŎŎĬŎŎĬŎŎĬŎŎĬŎŎ	internet and the second s	and any an and a second	nga ya Kalangaya kukuna kuti kuta kalandan kutur	~~~		www.wateral.vijestaliestaliesta	man washing the second second second
) 190 180	170 160	150 140 130) 120	110 100	90 80	70 6	50 50	40 30 20 10

spcmib MONALISA IK089	16	14	2121 2121 2121 2121 2121	10	8	× = ×	21	# 	54	1	
					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	nic					
									1	1	
									h.		
			ann a sun a mar an	and a standard standa	an a	and the second	ine i trên milîs an û feldinên ve gelanîşaya	and a second			
190 180	170 16	0 150 14	0 130 120	110 100) 90	80 70	60 50	40	30 2	0 10	

f1 (ppm)

(

¹H NMR spectrum of compound **4b** (300 MHz, CDCl₃)

UHPLC analyses of extracts

S19

ASE MTBE extract

ASE Heptane extract

SampleName: ASE Heptane 1 Date Acquired: 10/18/2023 8:37:40 AM CET Retention Time 9.043

ASE Ethanol extract

SampleName: ASE EtOH 1 Date Acquired: 10/18/2023 9:57:01 AM CET Retention Time 7.087

UHPLC analyses of synthetic samples of naturally occurring compounds

(2Z)-Lachnophyllum methyl ester (Z-1a)

UV detection at 254 nm

1. K. Adande, K. Eloh, O. Simalou, M.-F. Bakaï and P. Caboni, *Am. J. Anal. Chem.*, 2023, **14**, 95-120.