A Facile Access to Aliphatic Trifluoromethyl Ketones via Photocatalyzed Cross-Coupling of Bromotrifluoroacetone and Alkenes

Satoshi Mizuta,^a* Tomoko Yamaguchi,^a Masaharu Iwasaki,^{b,c,d,e} and Takeshi Ishikawa^f*

^a Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan

^b Laboratory of Emerging Viral Diseases, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan

^c Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan

^d Center for Advanced Modalities and Drug Delivery System, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871, Japan

^e RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan

^f Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan

Table of Contents

1.	General Information
2.	Reaction Condition Optimization
3.	Experimental Procedures and Characterization Data
4.	Control experiments
	4-1. Deuteration of bromotrifluoroacetone (1) with THF-d8 as solvent
	4-2. Kinetic isotope effect Control experiments
	4-3.Cascade reactions of cross-coupling between diethyl 2,2-diallylmalonate (6) and
	1/cyclization
5.	Cyclic Voltammetric Studies
6.	Stern-Volmer Quenching Experiments
7.	Biological data of anti-influenza A virus activity of 2ac, 10, 11 and oseltamivir phosphate
8.	Docking studies
9.	References
10.	NMR Spectra

1. General Information

All nuclear magnetic resonance (NMR) spectra were recorded on a Varian 500PS spectrometer, or on JEOL JMN-ECZ400R. ¹H, ¹³C and ¹⁹F NMR spectra were reported as chemical shifts (δ) in parts per million (ppm) relative to the solvent peak using tetramethylsilane (¹H and ¹³C) as an internal standard. Chemical shifts (δ) are quoted in parts per million (ppm), and coupling constants (*J*) are measured in hertz (Hz). The following abbreviations were used to describe multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, quint. = quintet, sext. = sextet, sept. = septet, br = broad, m = multiplet. The NMR spectra were processed using ACD/SpecManager. High-resolution mass spectra (HRMS, *m/z*) were obtained on a JEOL JMS-700N for fast atom bombardment (FAB) using m-nitrobenzyl alcohol as a matrix or electron ionization (EI). All the reactions were performed in an apparatus with magnetic stirring under an inert atmosphere. Flash column chromatography was performed using Fuji Silysia Chemical Ltd. Silica Gel C60 (50–200 µm) using an eluent system, as described in the next section, i.e., Experimental Procedures. Thin-layer chromatography was performed using TLC Silica Gel 60 F₂₅₄ aluminum sheets (Merck) and Silica Gel F₂₅₄ glass plates (Merck). Photochemical reactions were carried with

SynLED Parallel Photoreactor (Merck), emitting 12 W of blue light at 470 nm. The LEDs were cooled by built-in fans to maintain an ambient temperature.

Materials. Unless otherwise stated, all starting materials and reagents were obtained from commercial suppliers and were used without further purification. Chemicals were purchased from Aldrich, Nacalai Tesque, Tokyo Chemical Industry, and Wako Pure Chemical Industries and used as received. All solvents were purchased from Wako Pure Chemical Industries.

2. Reaction Condition Optimization

ontry	solvent	odditivo	yield % ^a	
entry		additive	3a	4a
1	1,4-dioxane	_	33	11
2	1,4-dioxane	K ₂ CO ₃	8	12
3	1,4-dioxane	1-adamantanethiol	22	5
4	1,4-dioxane	Hantzshe ester	3	24
5	1,4-dioxane	Et ₃ N	0	0
6	tBuOMe	_	22	6
7	MeOH	_	0	0
8	THF	_	48	5
9	THF	H ₂ O	26	2
10	THF	CF ₃ CH ₂ OH	49	7
11	THF	HCO ₂ Na	4	72
12	MeCN	<u> </u>	0	63

Table S1. Screening of reaction solvents and investigation of quenchers

^a Yields determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Table S2. Screening of photocatalyst

entrv	photocatalyst	solvent	time (h)	yield % ^a	
,				3a	4a
1	4DPAIPN	THF	3	60	13
2	3DPA2FBN	THF	3	77	12
3	3DPA2FBN	THF (0.1 M)	3	33	6
4	4CzIPN	THF	3	73	12
5	lr[dFCF ₃)ppy] ₂ (drppy)PF ₆	THF	3	39	13
6	4DPAIPN	MeCN	8	0	75
7	3DPA2FBN	MeCN	8	4	49
8	4CzIPN	MeCN	8	13	57
9	lr[dFCF ₃)ppy] ₂ (drppy)PF ₆	MeCN	8	5	70

^a Yields determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

3. Experimental Procedures and Characterization Data.

Table S3. Substrate Scope

Substrates; **2f–2n**, **2r**, **2t**, **2x**, and **2aa**, were purchased and used directly without further purification. Substrates; **2a**,¹**2c**,¹**2d**,²**2e**,³**2o**,⁴**2p**,⁵**2q**,⁶**2s**,⁷**2u**,⁸**2v**,⁸**2y**,⁹ and **2z**,² were prepared according to previous reports.

Substrates; 2b, 2ab, and 2ac, were prepared as follows:

3-1. Synthesis of alkene substrates (2b, 2ab and 2ac)

Synthesis of pent-4-en-1-yl 2-methylbenzoate (2b)

To a solution of 4-penten-1-ol (861 mg, 10 mmol) in CH_2Cl_2 (24 mL) was added 2-methylbenzoyl chloride (1.55 mL, 1.2 equiv.), Et₃N (2.08 mL, 1.5 equiv.) at 0 °C. The mixture was stirred at room temperature for 12 h before quenching with sat. NaHCO₃ aqueous solution. The combined organic layers were washed with brine, dried over MgSO₄ and evaporated in vacuo. The residue was purified by column chromatography and eluted with hexane–AcOEt (95:5). This afforded the title compound as a colorless oil (1.49 g, 73% yield).

¹H NMR (500 MHz, CDCl₃): δ 7.92 (dd, J = 2.5, 8.3 Hz, 1H), 7.40 (dt, J = 1.2, 7.4 Hz, 1H), 7.26–7.25 (m, 2H), 5.90–5.82 (m, 1H), 5.11–5.06 (m, 1H), 5.04–5.01 (m, 1H), 4.32 (t, J = 6.6 Hz, 2H), 2.61 (s, 3H), 2.26–2.21 (m, 2H), 1.91–1.85 (m, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 167.7, 140.0, 137.5, 131.8, 131.6, 130.5, 129.8, 125.7, 115.4, 64.1, 30.2, 27.9, 21.8; HRMS (FAB) *m/z* Calcd for C₁₃H₁₇O₂ [M+H]⁺ 205.1229 found 205.1230.

Synthesis of (2-(4-(hex-5-en-1-yloxy)phenyl)ethene-1,1,2-triyl)tribenzene (2ab)

A 100 mL round bottom flask with a magnetic stirring bar was charged with 4-(1,2,2-triphenylvinyl)phenol (500 mg, 1.43 mmol), 6-bromo-1-hexene (650 μ L, 3.4 equiv.), K₃PO₄ (592 mg, 3.0 equiv.), and Acetone (15 mL). The resulting mixture was stirred at 50 °C for 70 h. For the precipitate removal, the mixture was filtered through a Celite pad and washed with AcOEt. The filtrate was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as a white solid (324 mg, 53% yield).

¹H NMR (500 MHz, CDCl₃): δ 7.16–7.00 (m, 15H), 6.93 (d, *J* = 8.6 Hz, 2H), 6.63 (d, *J* = 6.9 Hz, 2H), 5.88–5.79 (m, 1H), 5.01 (d, *J* = 17.1 Hz, 1H), 4.98 (d, *J* = 10.3 Hz, 1H), 3.91–3.89 (m, 2H), 2.12 (q, *J* = 6.4 Hz, 2H), 1.77 (quint., *J* = 6.4 Hz, 2H), 1.58–1.53 (m, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 157.6, 144.0, 143.9, 140.5, 139.9, 138.5, 135.9, 132.5, 131.4, 131.3, 131.3, 127.7, 127.6, 126.3, 126.2, 114.7, 113.5, 67.5, 33.4, 28.7, 25.3; HRMS (FAB) *m*/*z* Calcd for C₃₂H₃₀O [M]⁺ 430.2296 found 430.2297.

Synthesis

of

ethyl

(3R,4R,5S)-4-acetamido-5-(pent-4-enamido)-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate (2ac)

To a solution of oseltamivir phosphate (410 mg, 1.0 mmol) in CH₂Cl₂ (10 mL) was added 4-pentenoyl chloride (178 μ L, 1.5 equiv.), Et₃N (415 μ L, 3.0 equiv.) at 0 °C. The mixture was stirred at room temperature for 12 h before quenching with sat. NaHCO₃ aqueous solution. The combined organic layers were washed with brine, dried over MgSO₄ and evaporated in vacuo. The residue was purified by column chromatography and eluted with AcOEt. This afforded the title compound as a white solid (363 mg, 92% yield).

¹H NMR (500 MHz, CDCl₃): δ 6.78–6.77 (m, 2H), 6.42 (br. s, 1H), 5.81–5.74 (m, 1H), 5.81–5.74 (m, 1H), 5.04 (dt, J = 1.5, 17.1 Hz, 1H), 4.99 (dd, J = 1.5, 10.5 Hz, 1H), 4.22–4.17 (m, 2H), 4.14–4.05 (m, 3H), 3.38 (quint., J = 5.6 Hz, 1H), 2.74 (dd, J = 4.7, 17.6 Hz, 1H), 2.36–2.24 (m, 6H), 1.99 (s, 3H), 1.54–1.47 (m, 3H), 1.29 (t, J = 7.1 Hz, 3H), 0.94–0.85 (m, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 172.9, 171.6, 165.8, 173.3, 136.6, 129.2, 115.6, 82.1, 75.4, 61.0, 54.0, 48.5, 35.7, 30.5, 29.5, 26.2, 25.7, 23.3, 14.2, 9.52, 9.20; HRMS (FAB) *m*/*z* Calcd for C₂₁H₃₅N₂O₅ [M+H]⁺ 395.2546 found 395.2546.

3-2. General procedure (GP) for the synthesis of trifluoromethyl ketones with bromotrifluoroacetone

A 4 mL vial with a magnetic stirring bar was charged with photocatalyst (1 mol%). Alkene (1.0 equiv.), and solvent (0.6 M) was added. Finally, bromotrifluoroacetone (2.0 equiv.) was introduced to the reaction mixture. The resulting mixture was stirred at room temperature under 12 W blue LED irradiation (470 nm) for indicated times. The reaction mixture was evaporated in vacuo, and the residue was purified by column chromatography on SiO₂ gel, isolating the aliphatic trifluoromethyl ketone derivatives containing occasionally <20% hydrate.

Synthesis of 8,8,8-trifluoro-7-oxooctyl benzoate (3a): The GP was followed with pent-4-en-1-yl benzoate (57.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as yellow oil (65.3 mg, 72% yield).

¹H NMR (400 MHz, CDCl₃): δ 8.06–8.03 (m, 2H), 7.57 (tt, *J* = 1.4, 5.5 Hz, 1H), 7.47–7.43 (m, 2H), 4.33 (t, *J* = 6.6 Hz, 2H), 2.74 (t, *J* = 7.1 Hz, 2H), 1.81–1.71 (m, 4H), 1.51–1.40 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.3, 129.5, 128.3, 115.5 (q, J = 34.5 Hz), 166.5, 132.9, 130.3, 129.5, 128.3, 115.5 (q, J = 34.5 Hz), 166.5, 132.9, 130.3, 129.5, 128.3, 115.5 (q, J = 34.5 Hz), 166.5, 132.9, 130.3, 129.5, 128.3, 115.5 (q, J = 34.5 Hz), 166.5, 132.9, 130.3, 129.5, 128.3, 115.5 (q, J = 34.5 Hz), 166.5, 132.9, 130.3, 129.5, 128.3, 115.5 (q, J = 34.5 Hz), 166.5, 132.9, 130.5 (q, J = 34.5 Hz), 166.5 Hz), 180.5 (q, J = 34.5 Hz), 180.5

291.1 Hz), 64.7, 36.2, 28.4, 28.4, 25.7, 22.2; ¹⁹F NMR (376 MHz, CDCl₃): -79.2 (s, 3F); HRMS (FAB) m/z Calcd for C₁₅H₁₈F₃O₃ [M+H]⁺ 303.1208 found 303.1208.

Scale up reaction: The GP was followed with pent-4-en-1-yl benzoate (456 mg, 2.4 mmol), bromotrifluoroacetone (552 μ L, 4.8 mmol), 3DPA2FBN (15.3 mg, 1 mol%) and THF (4.0 mL). The reaction was irradiated with blue LEDs for 20 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as brown oil (479 mg, 66% yield).

Synthesis of 8,8,8-trifluoro-7-oxooctyl 2-methylbenzoate (3b): The GP was followed with pent-4-en-1-yl 2-methylbenzoate (61.3 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as yellow oil (50.3 mg, 53% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.90 (dd, J = 1.6, 8.3 Hz, 1H), 7.40 (dt, J = 1.6, 7.6 Hz, 1H), 7.26–7.23 (m, 2H), 4.30 (t, J = 6.6 Hz, 2H), 2.73 (t, J = 7.1 Hz, 2H), 2.61 (s, 3H), 1.80–1.70 (m, 4H), 1.51–1.42 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.5 (q, J = 34.5 Hz), 167.7, 140.0, 131.9, 131.7, 130.4, 129.7, 125.7, 115.5 (q, J = 291.3 Hz), 64.5, 36.2, 28.4, 28.3, 25.8, 22.2, 21.7; ¹⁹F NMR (376 MHz, CDCl₃): –79.2 (s, 3F); HRMS (FAB) *m*/*z* Calcd for C₁₆H₂₀F₃O₃ [M+H]⁺ 317.1365 found 317.1365.

Synthesis of 8,8,8-trifluoro-7-oxooctyl 4-fluorobenzoate (3c): The GP was followed with pent-4-en-1-yl 4-fluorobenzoate (62.5 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as yellow oil (59.6 mg, 62% yield).

¹H NMR (400 MHz, CDCl₃): δ 8.05 (dd, J = 6.9, 8.9 Hz, 2H), 7.11 (t, J = 8.9 Hz, 2H), 4.31 (t, J = 6.6 Hz, 2H), 2.73 (t, J = 6.8 Hz, 2H), 1.80–1.79 (m, 4H), 1.48–1.42 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.4 (q, J = 35.5 Hz), 165.7 (d, J = 252 Hz), 165.7, 132.0 (d, J = 9.6 Hz), 126.5 (d, J = 2.9 Hz), 115.5 (q, J = 290.4 Hz), 115.4 (d, J = 22.0 Hz), 64.9, 36.2, 28.4, 28.3, 25.7, 22.2; ¹⁹F

NMR (376 MHz, CDCl₃): -79.3 (s, 3F), -105.8 (m, 1F); HRMS (FAB) *m*/*z* Calcd for C₁₅H₁₇F₄O₃ [M+H]⁺ 321.1114 found 321.1113.

Synthesis of 8,8,8-trifluoro-7-oxooctyl 4-bromobenzoate (3d): The GP was followed with pent-4-en-1-yl 4-bromobenzoate (80.7 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as a yellow solid (57.8 mg, 51% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, *J* = 8.7 Hz, 2H), 7.58 (d, *J* = 8.7 Hz, 2H), 4.31 (t, *J* = 6.6 Hz, 2H), 2.74 (t, *J* = 7.3 Hz, 2H), 1.80–1.70 (m, 4H), 1.48–1.40 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.4 (q, *J* = 34.5 Hz), 165.9, 131.7, 131.0, 129.2, 128.0, 115.5 (q, *J* = 291.3 Hz), 65.0, 36.2, 28.3, 28.3, 25.7, 22.2; ¹⁹F NMR (376 MHz, CDCl₃): –79.2 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₅H₁₇BrF₃O₃ [M+H]⁺ 381.1013 found 381.1012.

Synthesis of 8,8,8-trifluoro-7-oxooctyl 4-methoxybenzoate (3e): The GP was followed with pent-4-en-1-yl 4-methoxybenzoate (66.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (2:1). This afforded the title compound as a yellow solid (48.3 mg, 48% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, *J* = 8.5 Hz, 2H), 6.92 (d, *J* = 8.3 Hz, 2H), 4.29 (t, *J* = 6.2 Hz, 2H), 3.86 (s, 3H), 2.73 (t, *J* = 7.1 Hz, 2H), 1.81–1.78 (m, 4H), 1.52–1.38 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.6 (d. *J* = 34.5 Hz), 166.6, 163.4, 131.6, 122.8, 115.6 (q, *J* = 290.4 Hz), 113.7, 64.6, 55.5, 36.3, 35.3, 28.6, 28.5, 25.8, 22.3; ¹⁹F NMR (376 MHz, CDCl₃): –79.2 (s, 3F), –83.8 (hydrate); HRMS (FAB) *m*/*z* Calcd for C₁₅H₁₇F₃O₄ [M]⁺ 318.1079 found 318.1081.

Synthesis of methyl 9,9,9-trifluoro-8-oxononanoate (3f): The GP was followed with methyl hex-5-enoate (38.5 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was

purified by column chromatography and eluted with hexane–AcOEt (2:1). This afforded the title compound as colorless oil (58.1 mg, 81% yield).

¹H NMR (400 MHz, CDCl₃): δ 3.67 (s, 3H), 2.72 (t, *J* = 7.3 Hz, 2H), 2.32 (t, *J* = 7.5 Hz, 2H), 1.70–1.64 (m, 4H), 1.37–1.34 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.5 (q, *J* = 34.5 Hz), 174.1, 115.5 (q, *J* = 290.4 Hz), 51.5, 36.2, 33.9, 28.6, 28.3, 24.6, 22.1; ¹⁹F NMR (376 MHz, CDCl₃): –79.2 (s, 3F), –85.7 (hydrate); HRMS (FAB) *m/z* Calcd for C₁₀H₁₆F₃O₃ [M+H]⁺ 241.1052 found 241.1050.

Synthesis of 1,1,1-trifluoro-8-hydroxyoctan-2-one (3g): The GP was followed with pent-4-en-1-ol (43.1 mg, 0.50 mmol), bromotrifluoroacetone (103 μ L, 1.00 mmol), 3DPA2FBN (3.2 mg, 1 mol%) and THF (850 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (2:1). This afforded the title compound as brown oil (43.6 mg, 44% yield).

¹H NMR (400 MHz, CDCl₃): δ 3.66 (t, *J* = 6.6 Hz, 2H), 2.73 (t, *J* = 7.1 Hz, 2H), 1.72–1.55 (m, 4H), 1.42–1.36 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.6 (q, *J* = 34.5 Hz), 115.5 (q, *J* = 290.4 Hz), 62.7, 36.2, 32.4, 28.5, 25.4, 22.3; ¹⁹F NMR (376 MHz, CDCl₃): –79.2 (s, 3F); HRMS (FAB) *m/z* Calcd for C₈H₁₄F₃O₂ [M+H]⁺ 199.0946 found 199.0946.

Synthesis of 1,1,1-trifluoro-6-phenylhexan-2-one (3h): The GP was followed with allylbenzene (35.5 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (3:1). This afforded the title compound yellow oil (31.1 mg, 45% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.30 (t, *J* = 7.1 Hz, 2H), 7.23–7.17 (m, 3H), 2.74 (t, *J* = 6.9 Hz, 2H), 2.66 (t, *J* = 7.1 Hz, 2H), 1.76–1.60 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.4 (q, *J* = 34.5 Hz), 141.6, 128.4, 128.3, 125.9, 115.5 (q, *J* = 290.4 Hz), 36.2, 35.3, 30.4, 21.9; ¹⁹F NMR (376 MHz, CDCl₃): –79.2 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₂H₁₃F₃O [M]⁺ 230.0918 found 230.0918.

Synthesis of 8,8,8-trifluoro-7-oxooctanoic acid (3i): The GP was followed with pent-4-enoic acid (50.1 mg, 0.50 mmol), bromotrifluoroacetone (103 μ L, 1.00 mmol), 3DPA2FBN (3.2 mg, 1 mol%)

and THF (850 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:2). This afforded the title compound as a yellow solid (42.0 mg, 40% yield).

¹H NMR (400 MHz, CDCl₃): δ 2.74 (t, *J* = 7.1 Hz, 2H), 2.38 (t, *J* = 7.3 Hz, 2H), 1.75–1.64 (m, 4H), 1.45–1.39 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.3 (q, *J* = 34.5 Hz), 179.4, 115.5 (q, *J* = 290.4 Hz), 36.0, 33.6, 28.0, 24.1, 21.9; ¹⁹F NMR (376 MHz, CDCl₃): –79.2 (s, 3F); HRMS (FAB) *m/z* Calcd for C₈H₁₂F₃O₂ [M+H]⁺ 213.0739 found 213.073.

Synthesis of 9,9,9-trifluoro-8-oxononanoic acid (3j): The GP was followed with hex-5-enoic acid (34.2 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:2). This afforded the title compound as yellow oil (26.0 mg, 41% yield).

¹H NMR (400 MHz, CDCl₃): δ 2.70 (t, *J* = 7.1 Hz, 2H), 2.35 (t, *J* = 7.3 Hz, 2H), 1.71–1.59 (m, 4H), 1.40–1.31 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.5 (q, *J* = 34.5 Hz), 179.6, 115.5 (q, *J* = 290.4 Hz), 36.2, 33.8, 28.5, 28.3, 24.3, 22.1; ¹⁹F NMR (376 MHz, CDCl₃): –79.2 (s, 3F); HRMS (FAB) *m*/*z* Calcd for C₉H₁₄F₃O [M+H]⁺ 227.0895 found 227.0895.

Synthesis of 10,10,10-trifluoro-9-oxodecanoic acid (3k): The GP was followed with hept-6-enoic acid (64.1 mg, 0.50 mmol), bromotrifluoroacetone (103 μ L, 1.00 mmol), 3DPA2FBN (3.2 mg, 1 mol%) and THF (850 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:2). This afforded the title compound as yellow oil (58.8 mg, 49% yield).

¹H NMR (400 MHz, CDCl₃): δ 2.72 (t, J = 7.3 Hz, 2H), 2.36 (d, J = 7.5 Hz, 2H), 1.70–1.62 (m, 2H), 1.41–1.30 (m, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.6 (q, J = 34.5 Hz), 179.7, 115.5 (q, J = 290.4 Hz), 36.3, 33.9, 28.8, 28.7, 28.5, 24.5, 22.2; ¹⁹F NMR (376 MHz, CDCl₃): –79.2 (s, 3F); HRMS (FAB) m/z Calcd for C₁₀H₁₆F₃O₂ [M+H]⁺ 241.1052 found 241.1052.

Synthesis of 1,1,1-trifluoro-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-2-one (3l): The GP was followed with 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (50.4 mg, 0.30 mmol),

bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:3). This afforded the title compound as yellow oil (38.0 mg, 45% yield).

¹H NMR (400 MHz, CDCl₃): δ 2.72 (t, *J* = 7.1 Hz, 2H), 1.72–1.65 (m, 2H), 1.51–1.43 (m, 2H), 1.25 (s, 12 H), 0.81 (t, *J* = 8.0 Hz, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.6 (q, *J* = 34.5 Hz), 115.6 (q, *J* = 290.4 Hz), 83.1 ,36.2, 24.8, 24.2, 23.2, 22.1; ¹⁹F NMR (376 MHz, CDCl₃): -79.2 (s, 3F); ¹¹B NMR (101 MHz, CDCl₃): 32.7 (s, 1B); HRMS (EI) *m*/*z* Calcd for C₁₂H₂₀F₃O₃B [M]⁺ 280.1458 found 280.1457.

Synthesis of 1,1,1-trifluoroundecan-2-one (3m) and 5-bromo-1,1,1-trifluoroundecan-2-one (4m): The GP was followed with oct-1-ene (33.7 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:4). This afforded the title compounds (36.2 mg, 50% yield; **3m**/4m = 3.5/1). The ratio of **3m** to **4m** was determined by ¹⁹F NMR analysis.

¹H NMR (400 MHz, CDCl₃, **3m**): δ 2.72 (t, *J* = 7.1 Hz, 2H), 1.72–1.64 (m, 2H), 1.35–1.22 (m, 12H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃, **3m**): δ 191.7 (q, *J* = 34.5 Hz), 115.5 (q, *J* = 290.4 Hz), 36.4, 31.8, 29.3, 29.2, 28.7, 22.6, 22.3, 14.1; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 2/3F, **4m**), –79.2 (s, 7/3F, **3m**), –85.8 (hydrated **3m**); HRMS (EI) *m*/*z* Calcd for C₁₁H₁₈F₃O [M–H]⁺ 223.1310 found 223.1309.

Synthesis of 9-bromo-1,1,1-trifluorononan-2-one (3n) and 5,9-dibromo-1,1,1-trifluorononan-2-one (4n): The GP was followed with 6-bromohex-1-ene (48.9 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:4). This afforded the title compounds (43.5 mg, 50% yield; **3n/4n** = 4.2/1). The ratio of **3n** to **4n** was determined by ¹⁹F NMR analysis. ¹H NMR (400 MHz, CDCl₃, **3n**): δ 3.41 (t, *J* = 6.9 Hz, 2H), 2.72 (t, *J* = 7.3 Hz, 2H), 1.90–1.83 (m, 2H), 1.73–1.65 (m, 2H), 1.49–1.42 (m, 2H), 1.37–1.33 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃, **3n**): 191.5 (q, *J* = 34.5 Hz), 115.5 (q, *J* = 290.4 Hz), 36.2, 33.8, 32.6, 28.5, 28.3, 27.8, 22.2; ¹⁹F

NMR (376 MHz, CDCl₃): -79.1 (s, 3/5F, **4n**), -79.2 (s, 12/5F, **3n**); HRMS (EI) *m/z* Calcd for C₉H₁₃BrF₃O [M–H]⁺ 273.0102 found 273.0101.

Synthesis of 1,1,1-trifluoro-9-(4-methoxyphenoxy)nonan-2-one (3o) and 5-bromo-1,1,1-trifluoro-9-(4-methoxyphenoxy)nonan-2-one (4o): The GP was followed with 1-(hex-5-en-1-yloxy)-4-methoxybenzene (61.9 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:4). This afforded the title compounds (77.3 mg, 76% yield; **3o/4o** = 2.8/1). The ratio of **3o** to **4o** was determined by ¹⁹F NMR analysis.

¹H NMR (400 MHz, CDCl₃, **3o**): δ 6.84–6.83 (m, 4H), 3.91 (t, *J* = 6.4 Hz, 2H), 3.78 (s, 3H), 2.73 (t, *J* = 3.1 Hz, 2H), 1.81–1.68 (m, 6H), 1.41–1.35 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃, **3o**): 191.5 (q, *J* = 34.5 Hz), 153.6, 153.2, 115.5 (q, *J* = 290.4 Hz), 115.4, 114.1, 68.4, 55.7, 36.3, 29.2, 28.9, 28.6, 25.8, 22.3; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 4/5F, **4o**), –79.2 (s, 11/5F, **3o**); HRMS (EI) *m/z* Calcd for C₁₆H₂₁F₃O₃ [M+H]⁺ 318.1443 found 318.1443.

Synthesis of 9,9,9-trifluoro-8-oxo-*N*-phenylnonanamide (3p) and 5-bromo-9,9,9-trifluoro-8-oxo-*N*-phenylnonanamide (4p): The GP was followed with *N*-phenylhex-5-enamide (56.8 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4CzIPN (2.4 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:4). This afforded the title compounds (60.2 mg, 59% yield; **3p/4p** = 1/1). The ratio of **3p** to **4p** was determined by ¹⁹F NMR analysis.

¹H NMR (400 MHz, CDCl₃, **3p**): δ 7.51 (d, *J* = 8.0 Hz, 2H), 7.43 (br.,s 1H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.10 (t, *J* = 6.9 Hz, 1H), 2.71 (t, *J* = 7.1 Hz, 2H), 2.40 (t, *J* = 6.8 Hz, 2H), 1.76–1.64 (m, 4H), 1.43–1.32 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃, **3p**): 191.6 (q, *J* = 34.5 Hz), 170.6, 137.8, 129.0, 124.3, 119.8, 115.5 (q, *J* = 290.4 Hz), 36.2, 28.7, 28.4, 23.4, 22.1; ¹⁹F NMR (376 MHz, CDCl₃): –79.0 (s, 3/2F, **4p**), –79.2 (s, 3/2F, **3p**), –85.7 (hydrated **3p**) ; HRMS (FAB) *m*/*z* Calcd for C₁₅H₁₉F₃NO₂ [M+H]⁺ 302.1368 found 302.1368.

Synthesis of 2-(6,6,6-trifluoro-5-oxohexyl)isoindoline-1,3-dione (3q): The GP was followed with 2-allylisoindoline-1,3-dione (56.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4CzIPN (2.4 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:1). This afforded the title compound as a yellow solid (57.6 mg, 64% yield). NMR spectra showed the hemiacetal form of **3q** with CD₃OD.

¹H NMR (400 MHz, CD₃OD): δ 7.84–7.82 (m, 2H), 7.79–7.77 (m, 2H), 3.66 (t, J = 7.1 Hz, 2H), 1.82–1.78 (m, 2H), 1.71–1.63, 1.50–1.42 (m, 2H); ¹³C{¹H} NMR (100 MHz, CD₃OD): δ 170.0, 13.3, 133.4, 125.3 (q, J = 290.5 Hz), 124.2, 97.3 (q, J = 29.7), 38.7, 34.5, 29.8, 20.9; ¹⁹F NMR (376 MHz, CD₃OD): –82.4 (s, 3F); HRMS (EI) m/z Calcd for C₁₄H₁₂F₃NO₃ [M]⁺ 299.0769 found 299.0769.

Synthesis of 1 1,1,1-trifluoro-5,7-dimethyldecan-2-one (3r): The GP was followed with 2,4-dimethylhept-1-ene (63.1 mg, 0.50 mmol), bromotrifluoroacetone (103 μ L, 1.00 mmol), 3DPA2FBN (3.2 mg, 1 mol%) and THF (850 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:4). This afforded the title compound as yellow oil (59.6 mg, 50% yield, dr = 1:1).

¹H NMR (400 MHz, CDCl₃): δ 2.75–2.69 (m, 2H), 1.74–0.92 (m, 12H), 0.94–0.81 (m, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.9 (m), 115.6 (q, J = 291.3 Hz), 44.6, 44.3, 40.1, 39.0, 34.1, 34.0, 30.0, 29.7, 29.5, 29.3, 29.0, 20.1, 19.9, 19.7, 19.3, 19.0, 14.4, 14.3; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F); HRMS (EI) m/z Calcd for C₁₂H₂₁F₃O [M]⁺ 238.1545 found 38.1544.

Synthesis of 7,7,7-trifluoro-3-methyl-6-oxoheptyl benzoate (3s): The GP was followed with 3-methylbut-3-en-1-yl benzoate (57.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3

h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as yellow oil (65.0 mg, 72% yield).

¹H NMR (400 MHz, CDCl₃): δ 8.03 (dd, *J* = 1.4, 8.4 Hz, 2H), 7.57 (tt, *J* = 1.4, 7.4 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 4.42–4.40 (m, 2H), 2.80–2.75 (m, 2H), 1.86–1.55 (m, 5H), 1.01 (d, *J* = 6.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.5 (q, *J* = 34.5 Hz), 166.6, 132.9, 130.2, 129.5, 128.4, 115.5 (q, *J* = 290.4 Hz), 62.9, 35.2, 34.0, 29.3, 29.1, 19.0; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F); HRMS (FAB) *m*/*z* Calcd for C₁₅H₁₈F₃O₃ [M+H]⁺ 303.1208 found 303.1208.

Synthesis of 3-cyclooctyl-1,1,1-trifluoropropan-2-one (3t): The GP was followed with *cis*-cyclooctene (33.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as yellow oil (28.6 mg, 43% yield).

¹H NMR (500 MHz, CDCl₃): δ 2.61 (d, J = 2.5 Hz, 2H), 2.28–2.18 (m, 1H), 1.74–1.34 (m, 14H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 191.3 (q, J = 34.5 Hz), 115.5 (q, J = 290.4, Hz), 44.7, 32.3, 32.2, 26.9, 26.1, 25.0; ¹⁹F NMR (376 MHz, CDCl₃): –79.4 (s, 3F); HRMS (EI) *m/z* Calcd for C₁₁H₁₇F₃O [M]⁺ 222.1231 found 222.1228.

Synthesis of 7,7,7-trifluoro-3-methyl-6-oxoheptyl 2-(4-isobutylphenyl)propanoate (3u): The GP was followed with 3-methylbut-3-en-1-yl 2-(4-isobutylphenyl)propanoate (82.3 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as brown oil (105.2 mg, 91% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.17 (d, *J* = 8.0 Hz, 2H), 7.09 (d, *J* = 7.6 Hz, 2H), 4.33–4.29 (m, 2H), 3.67 (q, *J* = 7.1 Hz, 1H), 2.99–2.95 (m, 2H), 2.44 (d, *J* = 7.3 Hz, 2H), 2.20–2.03 (m, 5H), 1.84 (sept., *J* = 6.6 Hz, 1H), 1.63 (d, *J* = 3.9 Hz, 3H), 1.45 (d, *J* = 7.1 Hz, 3H), 0.99 (d, *J* = 6.6 Hz, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.4 (q, *J* = 35.5 Hz), 174.5, 170.7, 137.4, 129.4, 127.1, 115.5 (q, *J* = 290.4 Hz), 67.0, 62.1, 45.1, 45.0, 43.5, 37.5, 33.6, 31.2, 31.1, 30.2, 22.3, 18.4; ¹⁹F NMR (376 MHz, CDCl₃): –78.9 (s, 3F); HRMS (FAB) *m*/*z* Calcd for C₂₁H₂₈F₃O₃ [M–H]⁺ 385.1991 found 385.1988.

Synthesis of 7,7,7-trifluoro-3-methyl-6-oxoheptyl 2-(6-methoxynaphthalen-2-yl)propanoate (3v): The GP was followed with 3-methylbut-3-en-1-yl 2-(6-methoxynaphthalen-2-yl)propanoate (89.4 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (2:1). This afforded the title compound as brown oil (81.1 mg, 66% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.10 (d, *J* = 8.7 Hz, 2H), 7.66 (s, 1H), 7.38 (dd, *J* = 1.8, 8.5 Hz, 1H), 7.15 (dd, *J* = 2.5, 8.9 Hz, 1H), 7.11 (d, *J* = 2.5 Hz), 4.31 (t, *J* = 6.6 Hz, 2H), 3.92 (s, 3H), 3.84 (q, *J* = 7.1 Hz, 1H), 2.94–2.88 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.4 (m), 174.4, 135.3, 133.7, 129.2, 128.8, 127.2, 126.9, 126.0, 119.1, 115.5 (q, *J* = 290.4 Hz), 105.5, 67.0, 62.2, 55.2, 45.4, 43.5, 37.4, 37.3, 33.5, 33.5, 31.1, 31.0, 18.3; ¹⁹F NMR (376 MHz, CDCl₃): –78.9 (s, 3F); HRMS (FAB) *m/z* Calcd for C₂₂H₂₃F₃O₄ [M–2H]⁺ 408.1548 found 408.1546.

Synthesis

(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phen anthren-3-yl 8,8,8-trifluoro-7-oxooctanoate (3w): The GP was followed with (8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenant hren-3-yl pent-4-enoate (110 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4CzIPN (2.4 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 22 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (2:1). This afforded the title compound as a brown solid (50.2 mg, 36% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, *J* = 8.5 Hz, 1H), 6.85 (dd, *J* = 2.7, 8.4 Hz, 1H), 6.80 (d, *J* = 2.5 Hz, 1H), 2.93–2.90 (m, 2H), 2.77 (t, *J* = 7.1 Hz, 2H), 2.57 (t, *J* = 7.3 Hz, 2H), 2.55–2.49 (m, 1H), 2.43–2.39 (m, 1H), 2.33–2.25 (m, 1H), 2.20–1.96 (m, 4H), 1.83–1.74 (m, 4H), 1.67–1.43 (m, 8H), 0.91 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 220.8, 191.4 (q, *J* = 34.5 Hz), 172.2, 148.5, 138.0, 137.4, 126.4, 121.5, 118.7, 115.5 (q, *J* = 290.4 Hz), 50.4, 47.9, 44.1, 38.0, 36.1, 35.8, 34.0, 31.5, 29.4, 28.1, 26.3, 25.7, 24.4, 22.0, 21.6, 13.8; ¹⁹F NMR (376 MHz, CDCl₃): –79.2 (s, 3F); HRMS (FAB) *m/z* Calcd for C₂₇H₃₂F₃O₄ [M+H]⁺ 465.2253 found 465.2241.

S15

of

Synthesis of 4-bromo-8,8,8-trifluoro-7-oxooctyl benzoate (4a): The GP was followed with pent-4-en-1-yl benzoate (57.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as yellow oil (82.6 mg, 72% yield).

¹H NMR (400 MHz, CDCl₃): δ 8.06–8.03 (m, 2H), 7.60–7.56 (m, 1H), 7.48–7.44 (m, 2H), 4.41–4.34 (m, 2H), 4.12–4.07 (m, 1H), 3.11–2.95 (m, 2H), 2.31–2.27 (m, 1H), 2.15–1.93 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.7 (q, *J* = 35.5 Hz), 166.5, 133.0, 130.0, 129.5, 128.4, 115.4 (q, *J* = 290.4 Hz), 63.9, 55.0, 35.9, 34.7, 31.5, 27.0; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F); HRMS (FAB) *m*/*z* Calcd for C₁₅H₁₇BrF₃O₃ [M+H]⁺ 381.0313 found 381.0313.

Scale up reaction: The GP was followed with pent-4-en-1-yl benzoate (456 mg, 2.4 mmol), bromotrifluoroacetone (552 μ L, 4.8 mmol), 4DPAIPN (19.1 mg, 1 mol%) and MeCN (4.0 mL). The reaction was irradiated with blue LEDs for 12 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as brown oil (781 mg, 85% yield).

Synthesis of 4-bromo-8,8,8-trifluoro-7-oxooctyl 2-methylbenzoate (4b): The GP was followed with pent-4-en-1-yl 2-methylbenzoate (61.3 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as yellow oil (85.7 mg, 72% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.90 (dd, J = 6.6 Hz, 1H), 7.42 (dt, J = 1.4, 7.6 Hz, 1H), 7.28–7.24 (m, 2H), 4.38–4.30 (m, 2H), 4.11–4.06 (m, 1H), 3.11–2.94 (m, 2H), 2.61 (s, 3H), 2.31–2.25 (m, 1H), 2.14–1.92 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.7 (q, J = 35.5 Hz), 167.5, 140.2, 132.1, 131.7, 130.5, 129.4, 125.7, 115.4 (q, J = 290.4 Hz), 64.0, 55.0, 36.0, 34.7, 31.5, 26.9, 21.8; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F); HRMS (FAB) m/z Calcd for C₁₆H₁₉BrF₃O₃ [M+H]⁺ 395.0470 found 395.0470.

Synthesis of 4-bromo-8,8,8-trifluoro-7-oxooctyl 4-fluorobenzoate (4c): The GP was followed with pent-4-en-1-yl 4-fluorobenzoate (62.5 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as a yellow solid (85.0 mg, 71% yield).

¹H NMR (400 MHz, CDCl₃): δ 8.06 (dd, J = 5.5, 8.9 Hz, 2H), 7.14 (t, J = 8.5 Hz, 2H), 4.41–4.32 (m, 2H), 4.11–4.07 (m, 1H), 3.11–2.95 (m, 2H), 2.31–2.28 (m, 1H), 2.14–1.93 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.7 (q, J = 35.5 Hz), 167.1, 165.0 (d, J = 103.5 Hz), 132.1 (d, J = 9.6 Hz), 126.3, 115.6 (d, J = 22.0 Hz), 115.4 (q, J = 290.4 Hz), 64.1, 54.9, 35.9, 34.7, 31.5, 26.9; ¹⁹F NMR (376 MHz, CDCl₃): –79.0 (s, 3F), –105.3 (m, 1F); HRMS (FAB) *m*/*z* Calcd for C₁₅H₁₆BrF₄O₃ [M+H]⁺ 399.0219 found 399.0219

Synthesis of 4-bromo-8,8,8-trifluoro-7-oxooctyl 4-bromobenzoate (4d): The GP was followed with pent-4-en-1-yl 4-bromobenzoate (80.7 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as a yellow solid (114.5 mg, 83% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.7 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 4.41–4.33 (m, 2H), 4.11–4.06 (m, 1H), 3.11–2.95(m, 2H), 2.32–2.24 (m, 1H), 2.17–1.90 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.6 (q, J = 35.5 Hz), 165.8, 131.7, 131.1, 128.9, 128.2, 115.4 (d, J = 290.4 Hz), 64.2, 54.9, 35.8, 34.7, 31.5, 26.9; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F); HRMS (FAB) m/z Calcd for C₁₅H₁₅Br₂F₃O₃ [M]⁺ 457.9340 found 357.9340

Synthesis of 4-bromo-8,8,8-trifluoro-7-oxooctyl 4-methoxybenzoate (4e): The GP was followed with pent-4-en-1-yl 4-methoxybenzoate (66.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as a yellow solid (100.3 mg, 81% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 8.9 Hz, 2H), 6.93 (d, J = 8.9 Hz, 2H), 4.38–4.29 (m, 2H), 4.13–4.05 (m, 1H), 3.87 (s, 3H), 3.11–2.94 (m, 2H), 2.32–2.27 (m, 1H), 2.15–1.89 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.7 (q, J = 35.5 Hz), 166.3, 163.4, 131.6, 122.5, 115.4 (q, J = 290.4 Hz), 113.6, 63.6, 55.4, 55.1, 35.9, 34.7, 31.5, 27.0; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F); HRMS (FAB) m/z Calcd for C₁₆H₁₉BrF₃O₄ [M+H]⁺ 411.0419 found 411.0419.

Synthesis of 4 methyl 5-bromo-9,9,9-trifluoro-8-oxononanoate (4f): The GP was followed with methyl hex-5-enoate (38.5 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as yellow oil (62.7 mg, 66% yield).

¹H NMR (400 MHz, CDCl₃): δ 4.11–3.99 (m, 1H), 3.69 (s, 3H), 3.09–2.93 (m, 2H), 2.37 (t, *J* = 6.9 Hz, 2H), 2.99–2.22 (m, 1H), 2.14–1.77 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.7 (q, *J* = 35.5 Hz), 173.5, 115.4 (q, *J* = 290.4 Hz), 54.9, 51.6, 38.4, 34.7, 33.0, 31.3, 22.8; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F), –85.6 (hydrate); HRMS (FAB) *m*/*z* Calcd for C₁₀H₁₅BrF₃O₃ [M+H]⁺ 319.0157 found 319.0157.

Synthesis of 1,1,1-trifluoro-8-hydroxyoctan-2-one (3g) and 5-bromo-1,1,1-trifluoro-8-hydroxyoctan-2-one (4g): The GP was followed with pent-4-en-1-ol (43.1 mg, 0.50 mmol), bromotrifluoroacetone (103 µL, 1.00 mmol), 4DPAIPN (4.0 mg, 1 mol%) and MeCN (850 µL). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compounds (86.9 mg, 65% yield; 3g/4g = 1/4). The ratio of 4g to 3g was determined by ¹⁹F NMR analysis. ¹H NMR (400 MHz, CDCl₃, 4g): δ 5.13 (br.s, 1H), 4.10–4.04 (m, 1H), 3.74 (t, *J* = 6.2 Hz, 2H), 3.10–2.94 (m, 2H), 2.29–2.25 (m, 1H), 2.14–1.67 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 4g): δ 190.7 (q, *J* = 35.5 Hz), 115.4 (q, *J* = 290.4 Hz), 62.1, 55.5, 35.5, 34.7, 31.5, 30.1; ¹⁹F NMR (376)

MHz, CDCl₃): -79.1 (s, 12/5F, 4g), -79.2 (s, 3/5F, 3g); HRMS (EI) *m/z* Calcd for C₈H₁₃BrF₃O₂

[M+H]⁺ 277.0051 found 277.0043.

Synthesis of 5-bromo-1,1,1-trifluoro-6-phenylhexan-2-one (4h): The GP was followed with allylbenzene (35.5 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as yellow oil (63.0 mg, 68% yield).

¹H NMR (500 MHz, CDCl₃): δ 7.37–7.33 (m, 2H), 7.33–7.29 (m, 1H), 7.24–7.22 m, 2H), 4.27–4.21 (m, 1H), 3.29 (dd, J = 7.4, 14.2 Hz, 1H), 3.18 (dd, J = 7.1, 14.2 Hz, 1H), 3.08 (ddd, J = 4.9, 8.3, 19.6 Hz, 1H), 2.95 (ddd, J = 4.9, 8.4, 19.6 Hz, 1H), 2.32–2.26 (m, 1H), 2.10–2.02 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.6 (q, J = 35.5 Hz), 137.6, 129.1, 128.6, 127.1, 115.4 (q, J = 290.4 Hz), 54.9, 45.8, 34.8, 30.4; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₂H₁₂BrF₃O [M]⁺ 308.0024 found 308.0022.

Synthesis of 6-bromo-10,10,10-trifluoro-9-oxodecanoic acid (4k): The GP was followed with hept-6-enoic acid (38.5 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:2). This afforded the title compound as yellow oil (56.4 mg, 59% yield).

¹H NMR (400 MHz, CDCl₃): δ 4.06–3.99 (m, 1H), 3.09–2.93 (m, 2H), 2.40 (t, *J* = 7.1 Hz, 2H), 2.30–2.21 (m, 1H), 2.13–2.03 (m, 1H), 1.92–1.85 (m, 2H), 1.71–1.62 (m, 3H), 1.56–1.50 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.7 (q, *J* = 35.5 Hz), 179.4, 115.5 (q, *J* = 290.4 Hz), 55.3, 38.9, 34.7, 33.7, 31.4, 27.0, 23.9; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₀H₁₅BrF₃O₃ [M+H]⁺ 319.0157 found 319.0157.

Synthesis of 5-bromo-1,1,1-trifluoroundecan-2-one (4m): The GP was followed with oct-1-ene (33.7 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:2). This afforded the title compound as yellow oil (57.8 mg, 64% yield).

¹H NMR (400 MHz, CDCl₃): δ 4.05–4.01 (m, 1H), 3.09–2.93 (m, 2H), 2.29–2.21 (m, 1H), 2.13–2.03 (m, 1H), 1.92–1.78 (m, 2H), 1.58–1.51 (m, 1H), 1.46–1.39 (m, 1H), 1.35–1.26 (m, 6H), 0.90 (t, *J* = 6.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.8 (q, *J* = 35.5 Hz), 115.5 (q, *J* = 290.4 Hz), 56.1, 39.3, 34.8, 31.6, 31.4, 28.6, 27.5, 22.5, 14.0; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₁H₁₈BrF₃O [M]⁺ 302.0493 found 302.0486.

Synthesis of 5-bromo-1,1,1-trifluoro-9-(4-methoxyphenoxy)nonan-2-one (4o): The GP was followed with 1-(hex-5-en-1-yloxy)-4-methoxybenzene (61.9 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:2). This afforded the title compound as yellow oil (74.7 mg, 63% yield).

¹H NMR (500 MHz, CDCl₃): δ 6.85–6.83 (m, 4H), 4.11–4.02 (m, 1H), 3.94 (t, *J* = 6.1 Hz, 2H), 3.78 (s, 3H), 3.09–2.95 (m, 2H), 2.32–2.23 (m, 1H), 2.20–2.03 (m, 1H), 1.98–1.91 (m, 2H), 1.82–1.74 (m, 3H), 1.66–1.60 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.8 (d, *J* =35.5 Hz), 153.7, 153.0, 115.4 (q, *J* = 290.4 Hz), 115.4, 114.6, 68.1, 55.7, 55.6, 39.0, 34.8, 31.4, 28.6, 24.3; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F); HRMS (EI) *m*/*z* Calcd for C₁₆H₂₀BrF₃O₃ [M]⁺ 396.0548 found 396.0548.

Synthesis of 5-bromo-9,9,9-trifluoro-8-oxo-*N*-phenylnonanamide (4o): The GP was followed with *N*-phenylhex-5-enamide (56.8 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:2). This afforded the title compound as a brown solid (97.5 mg, 85% yield).

¹H NMR (500 MHz, CDCl₃): δ 7.68 (br.s, 1H), 7.51 (d, J = 7.9 Hz, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.12 (t, J = 7.3 Hz, 1H), 4.11–3.96 (m, 1H) 3.09–2.90 (m, 2H), 2.47–2.39 (m, 2H), 2.31–2.15 (m, 1H), 2.15–1.78 (m, 5H); ¹³C{¹H} NMR (100 MHz, CDCl₃): 190.7 (q, J = 35.5 Hz), 171.0, 137.6, 129.0, 124.5, 120.6, 115.4 (q, J = 290.4 Hz), 55.2, 38.4, 36.3, 34.7, 31.3, 23.5; ¹⁹F NMR (376 MHz, CDCl₃): –79.0 (s, 3F,); HRMS (FAB) *m/z* Calcd for C₁₅H₁₇BrF₃NO₂ [M]⁺ 379.0395 found 379.0395.

Synthesis of 2-(2-bromo-6,6,6-trifluoro-5-oxohexyl)isoindoline-1,3-dione (4q): The GP was followed with 2-allylisoindoline-1,3-dione (56.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:1). This afforded the title compound as a yellow solid (22.7 mg, 20% yield).

¹H NMR (500 MHz, CDCl₃): δ 7.91–7.87 (m, 2H), 7.79–7.75 (m, 2H), 4.44–4.37 (m, 1H), 4.15 (dd, J = 7.8, 14.2 Hz, 1H), 3.99 (dd, J = 7.1, 14.4 Hz, 1H), 3.14 (ddd, J = 5.0, 8.9, 19.7 Hz, 1H), 2.99 (ddd, J = 6.4, 8.7, 19.7 Hz, 1H), 2.37–2.29 (m, 1H), 2.15–2.05 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): 190.3 (q, J = 35.5 Hz), 167.8, 134.4, 131.6, 123.7, 115.4 (q, J = 290.4 Hz), 49.4, 44.0, 34.3, 28.3; ¹⁹F NMR (376 MHz, CDCl₃): -79.0 (s, 3F,); HRMS (FAB) m/z Calcd for C₁₄H₁₂BrF₃NO₃ [M]⁺ 377.9953 found 377.9945.

Synthesis of 5-bromo-5-cyclohexyl-1,1,1-trifluoropentan-2-one (4y): The GP was followed with vinylcyclohexane (32.4 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as yellow oil (47.5 mg, 55% yield).

¹H NMR (400 MHz, CDCl₃): δ 3.96–3.92 (m, 1H), 3.07 (ddd, J = 5.3, 8.5, 19.7 Hz, 1H), 2.95 (ddd, J = 6.6,

7.8, 19.4 Hz, 1H), 2.27–2.07 (m, 2H), 1.88–1.55 (m, 6H), 1.32–1.14 (m, 5H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): 190.9 (q, *J* = 35.5 Hz), 115.5 (q, *J* = 290.4 Hz), 63.1, 44.8, 35.3, 30.6, 29.5, 28.6, 26.1, 26.0, 25.9; ${}^{19}F$ NMR (376 MHz, CDCl₃): -79.1 (s, 3F,); HRMS (EI) *m*/*z* Calcd for C₁₁H₁₆F₃O [M–Br]⁺ 221.1153 found 211.1155.

Synthesis of 5-bromo-9,9,9-trifluoro-*N*-methyl-8-oxo-*N*-phenylnonanamide (4z): The GP was followed with *N*-methyl-*N*-phenylhex-5-enamide (56.8 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with

blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:2). This afforded the title compound as yellow oil (78.6 mg, 68% yield).

¹H NMR (500 MHz, CDCl₃): δ 7.44 (t, *J* = 7.8 Hz, 2H), 7.36 (t, *J* = 7.3 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 2H), 3.99–3.91 (m, 1H), 3.28 (s, 3H), 3.06–2.89 (m, 2H), 2.25–2.17 (m, 1H), 2.15–1.99 (s, 3H), 1.84–1.71 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃): 190.7 (q, *J* = 35.5 Hz), 172.4, 143.9, 129.9, 127.9, 127.3, 115.4 (q, *J* = 290.4 Hz), 55.3, 38.5, 37.4, 34.7, 33.1, 31.2, 23.4; ¹⁹F NMR (376 MHz, CDCl₃): -79.1 (s, 3F,); HRMS (FAB) *m*/*z* Calcd for C₁₆H₂₀BrF₃NO₂ [M+H]⁺ 394.0630 found 394.0628.

Synthesis of 3-bromo-7,7,7-trifluoro-3-methyl-6-oxoheptyl benzoate (4s): The GP was followed with 3-methylbut-3-en-1-yl benzoate (57.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as yellow oil (95.0 mg, 83% yield).

¹H NMR (400 MHz, CDCl₃): δ 8.03 (dd, *J* = 1.4, 8.2 Hz, 2H), 7.58 (tt, *J* = 1.2, 6.6 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 4.59 (d, *J* = 6.6 Hz, 2H), 3.10–3.06 (m, 1H), 2.44–2.28 (m, 3H), 2.25–2.17 (m, 1H), 1.83 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.5 (q, *J* = 34.5 Hz), 166.4, 133.2, 129.8, 129.5, 128.4, 115.5 (q, *J* = 290.4 Hz), 66.7, 62.3, 43.8, 37.7, 33.6, 31.4; ¹⁹F NMR (376 MHz, CDCl₃): –78.9 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₅H₁₈BrF₃O₃ [M+H]⁺ 381.0313 found 381.0313.

Synthesis of 3-bromo-7,7,7-trifluoro-3-methyl-6-oxoheptyl 4-methoxybenzoate (4z): The GP was followed with 3-methylbut-3-en-1-yl 4-methoxybenzoate (66.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (4:1). This afforded the title compound as a brown solid (80.0 mg, 65% yield).

¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, *J* = 8.9 Hz, 2H), 6.92 (d, *J* = 8.9 Hz, 2H), 4.54 (dt, *J* = 1.2, 6.6 Hz, 2H), 3.87 (s, 3H), 3.09–3.05 (m, 2H), 2.43–2.16 (m, 4H), 1.82 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.5 (q, *J* = 35.5 Hz), 166.1, 163.5, 131.6, 122.2, 115.5 (q, *J* = 290.4 Hz), 113.7, 66.9, 62.0, 55.4, 43.8, 37.7, 33.6, 31.4; ¹⁹F NMR (376 MHz, CDCl₃): –78.9 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₆H₁₉BrF₃O₄ [M+H]⁺ 411.0419 found 411.0418.

Synthesis of 3-(2-bromocyclooctyl)-1,1,1-trifluoropropan-2-one (4t): The GP was followed with *cis*-cyclooctene (33.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN (500 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (8:1). This afforded the title compound as colorless oil (39.8 mg, 44% yield, dr = 1:1.6).

¹H NMR (400 MHz, CDCl₃): δ 4.60–4.59 (m, 2/5H), 4.18–4.14 (m, 3/5H), 3.36–2.53(m, 2H), 2.46–1.39 (m, 13H), ¹³C{¹H} NMR (100 MHz, CDCl₃): 190.7 (q, *J* = 34.5 Hz), 115.4 (q, *J* = 291.3 Hz), 62.2, 61.6, 44.5, 40.9, 33.3, 32.6, 32.2, 31.0, 28.1, 26.8, 26.0, 25.8, 25.2, 25.0, 24.4; ¹⁹F NMR (376 MHz, CDCl₃): –79.2 (s, 3F); HRMS (EI) *m*/*z* Calcd for C₁₁H₁₅BrF₃O [M–H]⁺ 299.0258 found 299.0258.

Synthesis of 3-(2-bromocyclohexyl)-1,1,1-trifluoropropan-2-one (4aa): The GP was followed with cyclohexene (41.1 mg, 0.30 mmol), bromotrifluoroacetone (103 μ L, 1.00 mmol), 4DPAIPN (4.0 mg, 1 mol%) and MeCN (850 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (8:1). This afforded the title compound as colorless oil (61.0 mg, 45% yield, dr = 1:1).

¹H NMR (400 MHz, CDCl₃): δ 4.60–4.57 (m, 1/2H), 3.87 (dt, *J* = 4.1, 11.4 Hz, 1/2H), 3.32 (dd, *J* = 3.0, 18.8 Hz, 1/2H), 2.93 (dd, *J* = 6.6, 19.4 Hz, 1/2H), 2.73–2.62 (m, 1H), 2.44–1.10 (m, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃): 190.4 (q, *J* = 34.5 Hz), 115.4 (q, *J* = 290.4 Hz), 59.6, 57.6, 42.4, 42.1, 41.6, 38.5, 36.8, 34.7, 32.5, 27.4, 27.0, 25.1, 25.0, 20.5; ¹⁹F NMR (376 MHz, CDCl₃): -79.3 (s, 3/2F), -79.4 (s, 3/2F). The mass spectrum of product was not obtained due to the thermal decomposition

Synthesis of 5-bromo-1,1,1-trifluoro-9-(4-(1,2,2-triphenylvinyl)phenoxy)nonan-2-one (4ab): The GP was followed with (2-(4-(hex-5-en-1-yloxy)phenyl)ethene-1,1,2-triyl)tribenzene (129.1 mg, 0.30 mmol), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 4DPAIPN (2.4 mg, 1 mol%) and MeCN

(500 μ L). The reaction was irradiated with blue LEDs for 20 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (1:1). This afforded the title compound as a yellow solid (115.8 mg, 56% yield).

¹H NMR (500 MHz, CDCl₃): δ 7.14–7.00 (m, 15H), 6.92 (d, *J* = 8.8 Hz, 2H), 6.62 (d, *J* = 8.8 Hz, 2H), 4.07–4.01 (m, 1H), 3.90 (t, *J* = 6.1 Hz, 2H), 3.08–2.94 (m, 2H), 2.29–2.24 (m, 1H), 2.15–2.06 (m, 1H), 1.96–1.86 (m, 2H), 1.81–1.68 (m, 3H), 1.65, 1.53 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃): 190.8 (q, *J* = 34.5 Hz), 157.4, 144.0, 143.9, 140.5, 140.0 136.1, 132.5, 131.4, 131.3, 127.7, 127.6, 126.3, 126.2, 115.5 (q, *J* = 290.4 Hz), 114.0, 67.2, 55.6, 39.0, 34.8, 31.4, 28.6, 24.3; ¹⁹F NMR (376 MHz, CDCl₃): –79.0 (s, 3F); HRMS (FAB) *m*/*z* Calcd for C₃₅H₃₂BrF₃O₂ [M]⁺ 620.1538 found 620.1537.

Synthesis of ethyl 3-(2-(2,2,2-trifluoroacetyl)cyclopropyl)propyl benzoate (9a)

To a solution of 4-bromo-8,8,8-trifluoro-7-oxooctyl benzoate (**4a**) (30.0 mg, 0.08 mmol) in DMF (500 μ L) was added Cs₂CO₃ (30.9 mg, 1.2 equiv.). The mixture was stirred at room temperature for 10 h before quenching with H₂O. The crude mixture was extracted with Et₂O, and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated in vacuo. The residue was purified by column chromatography and eluted with hexane–AcOEt (2:1), affording the title compound as colorless oil (18.9 mg, 80% yield, dr = 1:1).

¹H NMR (400 MHz, CDCl₃): δ 8.05–8.03 (m, 2H), 7.59–7.55 (m, 1H), 7.46 (d, J = 8.0 Hz, 2H), 4.36 (t, J = 6.4 Hz, 1H), 4.33 (t, J = 6.2 Hz, 1H), 2.45–2.42 (m, 1/2H), 2.12–2.05 (m, 1/2H), 1.94–1.70 (m, 3H), 1.65–1.55 (m, 2H), 1.44–1.36 (m, 3/2H), 1.20–1.16 (m, 1/2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.9 (q, J = 35.5 Hz), 189.8 (q, J = 34.5 Hz), 166.6, 166.5, 133.0, 132.9, 130.2, 130.1, 129.5, 129.5, 128.4, 128.3, 115.8 (q, J = 289.4 Hz), 115.7 (q, J = 290.4 Hz), 64.1, 29.7, 29.6, 29.0, 28.4, 28.1, 23.6, 22.5, 21.3, 20.8, 17.7; ¹⁹F NMR (376 MHz, CDCl₃): –78.6 (s, 3/2F), –78.6 (s, 3/2F); HRMS (FAB) m/z Calcd for C₁₅H₁₆F₃O₃ [M+H]⁺ 301.1052 found 301.1052.

of

Synthesis

3-(5-hydroxy-5-(trifluoromethyl)-1,2,3,4,5,6-hexahydrobenzo[b][1,4]diazocin-2-yl)propyl benzoate (9b)

To a solution of 4-bromo-8,8,8-trifluoro-7-oxooctyl benzoate (**4a**) (57.0 mg, 0.15 mmol) in EtOH (2.0 mL) was added 1,2-phenylenediamine (32.4 mg, 2.0 equiv.). The mixture was stirred at 80 °C for 20 h before quenching with H₂O. The crude mixture was extracted with CH₂Cl₂, and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated in vacuo. The residue was purified by column chromatography and eluted with hexane–AcOEt (1:1), affording the title compound as brown oil (40.7 mg, 66% yield, dr = 1:1).

¹H NMR (400 MHz, CDCl₃): δ 8.08 (dd, J = 1.4, 8.2 Hz, 1H), 8.01 (dd, J = 1.2, 8.3 Hz, 1H), 7.60–7.56 (m, 2H), 7.49–7.44 (m, 2H), 6.83–6.68 (m, 3H), 6.63 (d, J = 7.3 Hz, 1H), 4.45–4.41 (m, 1H), 4.35–4.25 (m, 1H), 3.79–3.69 (m, 1/2H), 3.48–3.41 (m, 1/2H), 2.61–2.55 (m, 1/2H), 2.47–2.41 (m, 1/2H), 2.28–2.22 (m, 1/2H), 2.18–1.91 (m, 7/2H), 1.83–1.65 (m, 5/2H), 1.39–1.27 (m, 1/2H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 166.6, 166.5, 142.7, 142.7, 140.3, 137.5, 133.0, 132.9, 130.3, 130.1, 129.5, 128.3, 125.0 (q, J = 285.6 Hz), 124.7 (q, J = 282.7 Hz), 122.5, 122.4, 120.5, 120.0, 115.7, 112.6, 109.1, 109.0, 90.2 (q, J = 30.7 Hz), 89.4 (q, J = 29.7 Hz), 69.6, 64.8, 64.5, 64.2, 33.9, 33.0, 32.6, 30.7, 30.0, 26.5, 26.3, 25.9; ¹⁹F NMR (376 MHz, CDCl₃): -84.7 (s, 3/2F), -85.7 (s, 3/2F); HRMS (FAB) *m*/*z* Calcd for C₂₁H₂₃F₃N₂O₃ [M]⁺ 408.1611 found 408.1659.

Synthesis of 4-azido-8,8,8-trifluoro-7-oxooctyl benzoate (9c)

To a solution of 4-bromo-8,8,8-trifluoro-7-oxooctyl benzoate (**4a**) (38.1 mg, 0.10 mmol) in DMF (1.0 mL) was added NaI (3.0 mg, 20 mol%), and NaN₃ (13.0 mg, 2.0 equiv.). The mixture was stirred at 80 °C for 4 h before quenching with H₂O. The crude mixture was extracted with AcOEt, and the combined organic layers were washed with brine, dried over MgSO₄ and evaporated in vacuo. The residue was purified by column chromatography and eluted with hexane–AcOEt (2:1), affording the title compound as yellow oil (18.8 mg, 55% yield).

¹H NMR (400 MHz, CDCl₃): δ 8.06–8.02 (m, 2H), 7.60–7.56 (m, 1H), 7.46 (t, *J* = 8.0 Hz, 2H), 4.40–4.38 (m, 2H), 3.52–3.28 (m, 1H), 2.97–2.83 (m, 2H), 2.05–1.74 (m, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 190.8 (q, *J* = 35.5 Hz), 166.5, 133.0, 130.0, 129.5, 128.4,115.4 (q, *J* = 290.4 Hz), 64.1, 61.0, 32.8, 31.0, 27.0, 25.3; ¹⁹F NMR (376 MHz, CDCl₃): –79.1 (s, 3F), –85.9 (hydrate); HRMS (FAB) *m*/*z* Calcd for C₁₅H₂₇F₃N₃O₃ [M+H]⁺ 344.1222 found 344.1222.

Synthesis (3R,4R,5S)-4-acetamido-5-(4-bromo-8,8,8-trifluoro-7-oxooctanamido)-3-(pentan-3-yloxy)cyclo GP hex-1-ene-1-carboxylate (10): The followed with was ethyl (3R,4R,5S)-4-acetamido-5-(pent-4-enamido)-3-(pentan-3-yloxy)cyclohex-1-ene-1-carboxylate (78.9 mg, 0.20 mmol), bromotrifluoroacetone (46.2 µL, 0.40 mmol), 4DPAIPN (1.6 mg, 1 mol%) and MeCN/CHCl₃ (3:1, 400 μ L). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with AcOEt. This afforded the title compound as yellow oil (36.2 mg, 31% yield, dr = 1:1).

¹H NMR (400 MHz, CDCl₃): δ 6.97 (br.t, J = 8.2 Hz, 1H), 6.78 (s, 1H), 6.22 (br. s, 1H), 4.24–4.16 (m, 2H), 4.15–4.03 (m, 3H), 3.41–3.35 (m, 1H), 3.09–2.93 (m, 2H), 2.77–2.73 (m, 1H), 2.47–2.03 (m, 7H), 2.00 (s, 3/2H), 1.95 (s, 3/2H), 1.55–1.45 (m, 4H), 1.31–1.25 (m, 3H), 0.92–0.83 (m, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): 190.6 (q, J = 35.5 Hz), 172.1, 172.0, 171.6, 171.6, 165.9, 138.6, 137.1, 137.0, 129.3, 129.3, 127.1, 115.4 (q, J = 290.4 Hz), 82.1, 82.1, 75.3, 75.3, 61.1, 61.0, 54.5, 54.9, 53.9, 53.8, 48.3, 34.7, 34.7, 34.6, 34.5, 34.2, 34.0, 31.5, 30.3, 26.2, 25.7, 23.3, 23.3, 14.1, 9.49, 9.20; ¹⁹F NMR (376 MHz, CDCl₃): -79.0 (s, 3F); HRMS (FAB) *m/z* Calcd for C₂₄H₃₇BrF₃N₂O₆ [M+H]⁺ 585.1787 found 585.1786.

(3R,4R,5S)-4-acetamido-3-(pentan-3-yloxy)-5-(8,8,8-trifluoro-7-oxooctanamido)cyclohex-1-ene-1-carboxylate (11): To a solution of oseltamivir phosphate (41.0 mg, 0.10 mmol) and 8,8,8-trifluoro-7-oxooctanoic acid (3i) (21.2 mg, 0.10 mmol) in DMF (1.5 mL) was added TBTU (46.4 mg, 0.15 mmol), and iPr₂NEt (52.4 µL, 0.30 mmol). The mixture was stirred at room temperature for 2 d. The reaction mixture was evaporated in vacuo. The residue was purified by column chromatography on SiO₂ gel, affording the title compound as yellow oil (31.4 mg, 62%) yield).

¹H NMR (400 MHz, CDCl₃): δ 6.77 (s, 1H), 6.73 (d, J = 6.8 Hz, 1H), 6.27 (d, J = 6.8 Hz, 1H), 4.22-4.17 (m, 2H), 4.14-4.02 (m, 3H), 3.40-3.35 (m, 1H), 2.81-2.71 (m, 3H), 2.33-2.27 (m, 1H), 2.19-2.12 (m, 2H), 1.97 (s, 3H), 1.70-1.60 (m, 4H), 1.54-1.46 (m, 4H), 1.38-1.33 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H), 0.92–0.86 (m, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): 191.4 (q, J = 34.5 Hz), 173.2, 171.5, 165.9, 137.2, 129.2, 115.5 (q, J = 290.4 Hz), 82.1, 75.4, 61.0, 53.9, 48.4, 36.2, 36.0, 36.0, 30.5, 28.2, 26.2, 25.7, 25.2, 23.2, 22.0, 14.1, 9.49, 9.18; ¹⁹F NMR (376 MHz, CDCl₃): -79.2 (s, 3F); HRMS (FAB) *m/z* Calcd for C₂₄H₃₈F₃N₂O₆ [M+H]⁺ 506.2682 found 506.2681.

of

of

ethyl

ethyl

4. Control experiments

4-1. Deuteration of bromotrifluoroacetone (1) with THF-d8 as solvent

A 4 mL vial with a magnetic stirring bar was charged with 3DPA2FBN (1.9 mg, 1 mol%), and THF-d8 (500 μ L) Bromotrifluoroacetone (**1**) (31.0 μ L, 0.30 mmol) was added to the solution. The resulting mixture was stirred at room temperature under blue LED irradiation (470 nm) for 3 h. The reaction mixture is analyzed by ¹H, and ¹³C NMR (Figure S1). Yield of [D]**5** is 36%, which is determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard (Figure S2).

Figure S1. ¹H and ¹³C NMR spectrum of the reaction mixture of the reaction (400 MHz for ¹H NMR, 100 MHz for ¹³C NMR, THF-d8).

Figure S2. ¹⁹F NMR spectra of the crude mixture involving [D]5 (376 MHz, THF-d8).
4-2. Kinetic isotope effect

A 4 mL vial with a magnetic stirring bar was charged with 3DPA2FBN (1.9 mg, 1 mol%). pent-4-en-1-yl benzoate (57.1 mg, 0.30 mmol), and THF-d8 (500 μ L) was added. Finally, bromotrifluoroacetone (62.0 μ L, 0.60 mmol) was introduced to the reaction mixture. The resulting mixture was stirred at room temperature under blue LED irradiation (470 nm) for 3 h. The reaction mixture was analyzed by ¹⁹F NMR to determine yield of **3a** using benzotrifluoride as an internal standard (54% yield) as shown in Figure S3. The reaction mixture was evaporated in vacuo, and the residue was purified by column chromatography on SiO₂ gel, isolating **3a** (18.9 mg, 21% yield, D:53%). ¹H NMR spectrum should reflect a H/D ratio of hydrogens (Figure S4). For [D]**3a**: HRMS (FAB) *m*/*z* Calcd for C₁₅H₁₆DF₃O₃ [M]⁺ 303.1193 found 303.1193.

Figure S3. ¹⁹F NMR spectra of the crude mixture of the reaction (376 MHz, THF-d8).

Figure S4. ¹H NMR spectra of [D]**3a** (D: 53%) (400 MHz, CDCl₃).

Figure S5. ¹³C NMR spectra of [D]**3a** (D: 53%) (100 MHz, CDCl₃).

Figure S6. ¹⁹F NMR spectra of [D]**3a** (D: 53%) (376 MHz, CDCl₃).

4-3. Cascade reactions of cross-coupling between diethyl 2,2-diallylmalonate (6) and 1/cyclization

Synthesis of diethyl 3-methyl-4-(4,4,4-trifluoro-3-oxobutyl)cyclopentane-1,1-dicarboxylate (7a) and diethyl 5-hydroxy-5-(trifluoromethyl)octahydro-2H-indene-2,2-dicarboxylate (7b): The GP was followed with diethyl 2,2-diallylmalonate (72.1 mg, 0.30 mmol)), bromotrifluoroacetone (62.0 μ L, 0.60 mmol), 3DPA2FBN (1.9 mg, 1 mol%) and THF (500 μ L). The reaction was irradiated with blue LEDs for 3 h. The crude was purified by column chromatography and eluted with hexane–AcOEt (2:1). This afforded **7a** with an impurity (7.2 mg, <7% yield), and analyzed by ¹H, and ¹⁹F NMR, and ESI-MS (Figure S7 and S8). Moreover, isomers of **7b** were isolated in 26% yield (27.2 mg, dr = 1 : 5.7).

For a major isomer of **7b**: ¹H NMR (400 MHz, CDCl₃): δ 4.20–4.15 (m, 4H), 2.59–2.52 (m, 1H), 2.42–2.34 (m, 2H), 2.31–2.24 (m, 1H), 2.19 (dd, J = 2.8, 14.2 Hz, 1H), 2.03–1.57 (m, 7H), 1.26–1.22 (m, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃): 173.1, 172.9, 126.3(q, J = 283.6 Hz), 72.7 (q, J = 26.8 Hz), 61.4, 58.8, 39.3, 38.0, 37.8, 36.3, 29.4, 29.2, 22.1, 14.0; ¹⁹F NMR (376 MHz, CDCl₃): -84.3 (s, 3F); HRMS (FAB) *m/z* Calcd for C₁₆H₂₄F₃O₅ [M+H]⁺ 353.1576 found 353.1575.

Figure S8. ES-MS spectra of 7a with an impurity.

Synthesis

diethyl

3-(bromomethyl)-4-(4,4,4-trifluoro-3-oxobutyl)cyclopentane-1,1-dicarboxylate (8a) and diethyl 5-hydroxy-5-(trifluoromethyl)octahydro-2H-indene-2,2-dicarboxylate (7b)

of

The GP followed diethyl 2,2-diallylmalonate was with (72.1)mg, 0.30 mmol)), bromotrifluoroacetone (62.0 µL, 0.60 mmol), 4DPAIPN (4.0 mg, 1 mol%) and MeCN (850 µL). The reaction was irradiated with blue LEDs for 8 h. The crude was purified by column chromatography and eluted with hexane-AcOEt (2:1). This afforded 8a with the impurity (9.0 mg, <7% yield), and analyzed by ¹H, and ¹⁹F NMR (Figure S9) and HRMS. Moreover, isomers of **7b** were isolated in 17% yield (18.0 mg).

For **8a**: HRMS (FAB) m/z Calcd for C₁₆H₂₃BrF₃O₅ [M+H]⁺ 431.0681 found 431.0681.

Figure S9. ¹H and ¹⁹F NMR spectrum of 8a with an impurity.

5. Cyclic Voltammetric Studies

Tetraethyl ammonium tetrafluoroborate (434 mg) as supporting electrolyte was dissolved in 20 mL anhydrous acetonitrile (0.1 M). The solvent was degassed with N_2 prior measurement. For each measurement 2.0 mL and the analyte were added to the cyclovoltammetric cell and experiments were purged with inert gas. Cyclic voltammetry measurements were performed with an ALS electrochemical analyzer (model 611E) equipped with platinum as the working electrode, Ag as the counter electrode, and Ag/AgNO₃ as the reference electrode. Scan rate was set to 0.1 V/s/.

Figure S10. Cyclovoltammograms of bromotrifluoromethyl acetone (10 mM) in MeCN (0.1 M Et_4NBF_4). Measured in positive direction first.

Figure S11. Cyclovoltammograms of bromotrifluoromethyl acetone (10 mM) in MeCN (0.1 M Et₄NBF₄). Measured in negative direction first.

$$Ep^{ox} = 0.73 V Ag/AgNO_3$$

Figure S12. Cyclovoltammograms of phenacyl bromide (10 mM) in MeCN (0.1 M Et₄NBF₄). Measured in positive direction first.

Figure S13. Cyclovoltammograms of phenacyl bromide (10 mM) in MeCN (0.1 M Et₄NBF₄). Measured in negative direction first.

$$Ep^{ox} = 0.87 V Ag/AgNO_3$$

6. Stern-Volmer Quenching Experiments

Stern-Volmer quenching experiments were carried out in a quartz cuvette (d = 10 mm) monitoring the emission intensity of solution of photocatalyst (20 μ M) against concentrations of bromotrifluoroacetone (1) and alkene 2a.

Figure S14. Emission quenching of 3DPA2FBN with bromotrifluoroacetone (1) in THF ($\lambda ex = 420$ nm, $\lambda em = 420$ -700 nm).

Figure S15. Emission quenching of 3DPA2FBN with alkene **2a** in THF ($\lambda ex = 420$ nm, $\lambda em = 420$ -700 nm).

Figure S16. Emission quenching of 4DPAIPN with bromotrifluoroacetone (1) in MeCN ($\lambda ex = 430$ nm, $\lambda em = 440-700$ nm).

Figure S17. Emission quenching of 4DPAIPN with alkene **2a** in MeCN ($\lambda ex = 430$ nm, $\lambda em = 440-700$ nm).

 20μ M stock solution of photocatalyst was prepared. For the validation experimetns, the microplate used was a 96-well quartz microplate (Bio Medical Science Inc., BC-MGPL-96S). For each

measurement of solution (200 μ L) and the conentrations of bromotrifluoroacetone (1) and alkene 2a were added to the 96-well quartz microplate. Stern-Volmer measurements were performed with an plate reader (BioTek. Inc., Cytation3)

Plate data analysis

•

	Full Plate								
	Filter Set 1								
	Excitation: 420, Emission: 470								
	Optics: Top, Gain: 7	5							
	Filter Set 1 Image: Set 1 Image: Set 1 Excitation: 420, Emission: 470 Image: Set 1 Image: Set 1 Optics: Top, Gain: 75 Image: Set 1 Image: Set 1 Light Source: Xenon Flash, Lamp Energy: High Image: Set 1 Image: Set 1 Read Speed: Normal, Delay: 100 msec, Measurements/Data Point: 10 Read Height: 8.25 mm Image: Set 1 Image: Set 1 Actual Temperature: 20.5 Image: Set 1 Image: Set 1 Image: Demotrifluoroacetone 1 Image: Set 1 Image: Set 1 Image: Set 1 Image: Demotrifluoroacetone 1 Image: Set 1 Image: Set 1 Image: Set 1 Image: Demotrifluoroacetone 1 Image: Set 1 Image: Set 1 Image: Set 1 Image: Demotrifluoroacetone 1 Image: Set 1 Image: Set 1 Image: Set 1 Image: Demotrifluoroacetone 1 Image: Set 1 Image: Set 1 Image: Set 1 Image: Set 1 Image: Demotrifluoroacetone 1 Image: Set 1 Image: Set 1 Image: Set 1 Image: Set 1 Image: Demotrifluoroacetone 1 Image: Set 1 Imag								
	Read Speed: Normal, I	Delay: 100	10						
	Read Height: 8.25 mm								
Results									
	Actual Temperature:	20.5							
		bromotriflu	oroacetone	e 1		alkene 2a	alkene 2a		
Q (mM)		1	2	3	4	5	6	7	8
0	А	53288	51977	51927	52656	51573	51534	49332	52605
20	В	53047	52525	54168	53670	53661	55924	53552	56732
40	С	52424	52064	54494	53752	54735	55363	54261	56439
120	D	53009	52477	53153	54750	56563	56545	55993	58675
240	E	50376	50209	50690	50669	56169	56978	58319	58535
360	F	47650	45827	45552	47281	56892	57464	59180	61360
480	G	44396	43806	42493	42205	59451	59197	60819	63339

Figure S18. Fluorescence quenching of 20 μ M 3DPA2FBN by bromotrifluoroacetone (1), and alkene **2a** with a Stern–Volmer plot (λ ex = 420 nm, λ em = 470 nm).

Plate			data								analysis	
Plate Type	96 WELL PLATE											
Read	Fluorescence End	ooint										
	Full Plate											
	Filter Set 1											
	Excitation: 430,	Emission:	530									
	Optics: Top, G	ain: 75										
	Light Source: Xend	on Flash, L	amp Energ	y: High								
	Read Speed: Norn	nal, Delay:	100 msec	Measure	ments/Data	P	oint: 10					
	Read Height: 9.5 n	nm										
Results												
	Actual Temperatur	19.6										
		bromotrifluoroacetone						alkene				
Q (mM)		1	2	3	4		Q (mM)	6	7	8	9	
C	A	57988	58395	59322	56194		0	64152	63503	62050	64850	
2	B	30706	37267	38227	34546		20	62977	63255	61529	63380	
4	С	27568	30165	31442	30010		40	62306	61482	59672	63981	
12	D	26735	28243	25016	27552		120	61144	60579	59761	60605	
24	E	24323	26853	27940	26223		240	57436	58838	55478	57291	
36	F F	22047	23507	23535	23436		360	55654	55291	54152	56146	
48	G	20926	23734	22498	21605		480	54962	53851	54588	54948	

Figure S19. Fluorescence quenching of 20 μ M 4DPAIPN by bromotrifluoroacetone (1), and alkene **2a**, with a Stern–Volmer plot (λ ex = 430 nm, λ em = 530 nm).

7. Biological data of anti-influenza A virus activity of 2ac, 10, 11 and oseltamivir phosphate

A virus (A/WSN/33) was propagated in MDCK cells at 37°C. Culture supernatants were harvested and stored at -80°C. Compounds **2ac**, and **10** were dissolved in DMSO to a stock concentration of 10 mM and stored at -20°C until use. MDCK cells (3×10^4 cells/well) were seeded in 96-well tissue culture plates and incubated for 24 h at 37°C. Compounds were serially diluted with MEM vitamin (MEM containing 1% of 100× MEM vitamin, Invitrogen, Carlsbad, CA). The cells were washed with FBS free MEM, and 100 µL of serially diluted compounds were added to the cells followed by addition of 100 µL of virus solution (1000 TCID₅₀ /mL in MEM vitamin). Oseltamivir phosphate was used as a positive control. Cells were incubated at 37°C for 48 h before fixing with 70% EtOH and staining with 0.5% crystal violet (CV), as previously described.¹⁰ The plates were washed and air dried at RT.

A. Plata data analysis

	anti-influenza act	ivity (A/WSN/33	(H1N1)					
	2ac		10		11		Oseltamivir phosphate	
con. (uM)	Exp: 1 viability (%)	Exp: 2 viability (%)	Exp: 1 viability (%)	Exp: 2 viability (%)	Exp: 1 viability (%)	Exp: 2 viability (%)	Exp: 1 viability (%)	Exp: 2 viability (%)
0	-1.4147	-1.56467	0.41	0.09	0.00919	-0.0007	-0.43	1.29
0.31	0.39405	-1.40678	39.34188	16.45036	0.01464	0.01049	48.33417	26.44468
0.63	0.41827	-1.5173	70.13614	62.2379	0.02319	0.01124	80.70606	57.34337
1.25	1.15308	0.51157	90.13744	62.97998	0.01889	0.01754	79.14763	66.4772
2.5	2.02516	-1.12258	75.71583	74.97158	0.00879	0.00434	99.13699	83.68701
5	0.49095	0.306303	81.1421	67.85083	0.00914	0.01299	93.78725	103.0599
10	1.18538	33788	78.7867928	81.93445	0.02464	0.03439	86.59259	100.5258
no drug	0.63336	0.65209	0.62089	0.62214	0.63019	0.66754	0.60599	0.62214
no virus/drug	107.967	102.9572	96.7265	98.03114	101.773	105.397	97.865	98.22849
EC50 (uM)	0	0	0.39658205	0.51930437	0	0	0.32384768	0.530075
	2ac		10		11		Oseltamivir pho	sphate
EC50 (uM) ±	ND		0.46 ± 0.09		ND		0.43±0.15	
CC50 (uM)	>10		>10		>10		>10	

B. Images of plates with CV assays

C. Anti-influenza virus activity of inhibitors 2ac, 10, 11 and oseltamivir phosphate were plotted.

Figure S20. Influenza virus inhibitory activity and cytotoxicity of compounds **2ac**, **10**, **11** and oseltamivir phosphate. The potency was determined using CV assay by incubating MDCK cells infected with or without A/WSN/33 virus in the presence of varying concentrations of compounds **2ac**, **10** and **11**. At 48 h post-infection, the cells were fixed and stained with CV and relative OD values the cells were fixed and stained with CV and relative OD values (%) are expressed relative to the percentage of cells without infection. A: Plate data analysis. B: Images of plates with CV assays. C: Anti-influenza virus activity of inhibitors **2ac**, **10**, **11** and oseltamivir phosphate were plotted.

8. Docking studies

The three-dimensional structure of neuraminidase was extracted from an X-ray structure of the complex with an oseltamivir derivative (PDB-ID: $6HP0^{11}$). Missing hydrogen atoms were added to this structure, and the peptide chain was capped with -COCH₃ and -NHCH₃ at the N- and C-terminals, respectively, followed by a 100-step energy minimization using FF14SB force fields¹² with AmberTools22¹³. The resulting structure was used as a receptor in our docking simulation. The ligand structure was prepared by a quantum chemistry-based energy minimization at the B3LYP/6-31G(d, p) level of theory using Gaussian 16¹⁴. A cubic region of 30×30×30 Å, centered at the binding site of the oseltamivir derivative, was selected as the search region. AutoDock Vina¹⁵ was used for our docking simulation, in which EXHAUSTIVENESS was set to 20 (Figure S21).

Figure S20. Docking simulation of neuraminidase influenza A virus with compound 10.

Figure S20. Docking structures of neuraminidase influenza A virus with 20 conformations of 10.

Compound **10** sets to 20 conformations. These figures display the docking energy with neuraminidase and key amino acid residues within 2.5 Å from each **10** conformation. Among them, 10th conformer with -6.7 kcal/mol might be most reasonable because of interaction with various amino acid residues of neuraminidase; ARG293, ASN295, ASN344, ARG368, TRP399, ILE399, ILE427, and LYS432. We presume that a hydrogen bonding interaction between the acid moiety and Arg293 and a hydrophobic effect of the lipophilic trifluoromethyl group with a hydrophobic amino acid ILE427. In addition, an amino acid Lys432 may serve as a nucleophile to the TFMK moiety (Figure S21).

Figure S21. Docking structures of neuraminidase influenza A virus with 10th conformation of 10.

9. References

- Tang, L.; Lv, G.; Fu, Y.; Chang, X.-P.; Cheng, R.; Wang, L.; Zhou, Q. Bifunctional 1,8-Diazabicyclo[5.4.0]undec-7-ene for Visible Light-Induced Heck-Type Perfluoroalkylation of Alkenes. J. Org. Chem. 2022, 87, 14763–14777.
- Xie, Y.; Sun, P.-W.; Li, Y.; Wang, S.; Ye, M. Li, Z. Ligand-Promoted Iron(III)-Catalyzed Hydrofluorination of Alkenes. *Angew. Chem. Int. Ed.* 2019, 58, 7097 –7101.
- Yue, Q.; Yang, T.; Yang, Y.; Zhang, C.; Zhang, Q.; Lim D. Diivergent Reactivity of (Diacyloxyiodo)arenes under Palladium Catalysis: Controlled Allylic C–H Acyloxylation and Vinylic Arylation. *Asian J. Org. Chem.* 2017, 6, 936–942.
- Wang, F.; Xu P.; Cong, F.; Tang, P. Silver-mediated oxidative functionalization of alkylsilanes *Chem. Sci.* 2018, 9, 8836–8841.
- Zhang, C.-C.; Wu, H.-L.; Yu, X.-C.; Wang, L.-T.; Zhou, Y.; Sun, Y.-B.; Wei, W.-T. Photoinduced Copper-Catalyzed Aminoalkylation of Amino-Pendant Olefins. *Org. Lett.* 2023, 25, 5862–5868.
- Hu, J.; Tang, M.; Wang, J.; Wu, Z.; Friedrich, A.; Marder, T. B. Photocatalyzed Borylcyclopropanation of Alkenes with a (Diborylmethyl)iodide Reagent. *Angew. Chem. Int. Ed.* 2023, 62, e202305175.
- Gaspar, B.; Carreira, E. M. Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide. *Angew. Chem. Int. Ed.* 2007, 46, 4519–4522.
- Modal, B.; Hazra, S.; Chatterjee, A.; Patel, M.; Saha, J. Fe-Catalyzed Hydroallylation of Unactivated Alkenes with Vinyl Cyclopropanes. *Org. Lett.* 2023, 25, 5676–5681.
- Dobah, F.; Mazodze, C. M.; Petrsen, W.; Cross-Dehydrogenative Cyclization–Dimerization Cascade Sequence for the Synthesis of Symmetrical 3,3'-Bisoxindoles. *Org. Lett.* 2021, 23, 5466–5470.

- Makau, N.J.; Watanabe, K.; Otaki, H.; Mizuta, S.; Ishikawa, T.; Kamatari, O, Y.; Nishida, N. A Quinolinone Compound Inhibiting the Oligomerization of Nucleoprotein of Influenza A Virus Prevents the Selection of Escape Mutants. *Viruses* 2020, *12*, 337.
- Zima, V.; Albiñana, C. B.; Rojíková, K.; Pokorná, J.; Pachl, P.; Řezáčová, P.; Hudlicky, J.; Navrátil, V.; Majer, P.; Konvalinka, J.; Kožíšek, M.; Machara, A. Investigation of flexibility of neuraminidase 150-loop using tamiflu derivatives in influenza A viruses H1N1 and H5N1. *Bioorganic & Medicinal Chemistry*, 2019, 27, 2935–2947.
- Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. *J. Chem. Theory Comput.* 2015, *11*, 3696–3713.
- Case, D. A., Aktulga, H. M., Belfon, K., Ben-Shalom, I. Y., Berryman, J. T., Brozell, S. R., Cerutti, D. S., Cheatham, T. E. I., Cisneros, G. A., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Giambasu, G., Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, R., Izadi, S., Izmailov, S. A., Kasavajhala, K., Kaymak, M. C., King, E., Kovalenko, A., Kurtzman, T., Lee, T. S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T., Luo, R., Machado, M., Man, V., Manathunga, M., Merz, K. M., Miao, Y., Mikhailovskii, O., Monard, G., Nguyen, H., O'Hearn, K. A., Onufriev, A., Pan, F., Pantano, S., Qi, R., Rahnamoun, A., Roe, D. R., Roitberg, A., Sagui, C., SchottVerdugo, S., Shajan, A., Shen, J., Simmerling, C. L., Skrynnikov, N. R., Smith, J., Swails, J., Walker, R. C., Wang, J., Wang, J., Wei, H., Wolf, R. M., Wu, X., Xiong, Y., Xue, Y., York, D. M., Zhao, S., and P.A., K. (2022) AMBER 22, University of California, San Francisco.
- Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.
- 15. Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *J. Comput. Chem.*, **2010**, *31*, 455-461.

6. NMR spectra

Figure S23. ¹³C NMR of 2b (125 MHz, CDCl₃)

Figure S24. ¹H NMR of 2ab (500 MHz, CDCl₃)

Figure S25. ¹³C NMR of 2ab (125 MHz, CDCl₃)

Figure S26. ¹H NMR of 2ac (500 MHz, CDCl₃)

Figure S27. ¹³C NMR of 2ac (125 MHz, CDCl₃)

Figure S29. ¹³C NMR of 3a (100 MHz, CDCl₃)

Figure S31. ¹H NMR of 3b (400 MHz, CDCl₃)

Figure S33. ¹⁹F NMR of 3b (376 MHz, CDCl₃)

Figure S34. ¹H NMR of 3c (400 MHz, CDCl₃)

Figure S35. ¹³C NMR of 3c (100 MHz, CDCl₃)

Figure S37. ¹H NMR of 3d (400 MHz, CDCl₃)

Figure S39. ¹⁹F NMR of 3d (376 MHz, CDCl₃)

Figure S41. ¹³C NMR of 3e (100 MHz, CDCl₃)

Figure S42. ¹⁹F NMR of 3e (376 MHz, CDCl₃)

Figure S43. ¹H NMR of 3f (400 MHz, CDCl₃)

Figure S44. ¹³C NMR of 3f (100 MHz, CDCl₃)

Figure S45. ¹⁹F NMR of 3f (376 MHz, CDCl₃)

Figure S46. ¹H NMR of 3g (400 MHz, CDCl₃)

Figure S47. ¹³C NMR of 3g (100 MHz, CDCl₃)

Figure S49. ¹H NMR of 3h (400 MHz, CDCl₃)

Figure S50. ¹³C NMR of 3h (100 MHz, CDCl₃)

Figure S51. ¹⁹F NMR of 3h (376 MHz, CDCl₃)

Figure S53. ¹³C NMR of 3i (100 MHz, CDCl₃)

Figure S54. ¹⁹F NMR of 3i (376 MHz, CDCl₃)

Figure S55. ¹H NMR of 3j (400 MHz, CDCl₃)

Figure S56. ¹³C NMR of 3j (100 MHz, CDCl₃)

Figure S57. ¹⁹F NMR of **3j** (376 MHz, CDCl₃)

Figure S58. ¹H NMR of 3k (400 MHz, CDCl₃)

Figure S59. ¹³C NMR of 3k (100 MHz, CDCl₃)

Figure S60. ¹⁹F NMR of 3k (376 MHz, CDCl₃)

Figure S61. ¹H NMR of 3l (400 MHz, CDCl₃)

Figure S62. ¹³C NMR of 3l (100 MHz, CDCl₃)

Figure S63. ¹⁹F NMR of **3l** (376 MHz, CDCl₃)

Figure S65. ¹³C NMR of 3m/4m (100 MHz, CDCl₃)

Figure S66. ¹⁹F NMR of 3m/4m (376 MHz, CDCl₃)

Figure S67. ¹H NMR of 3n/4n (400 MHz, CDCl₃)

Figure S68. ¹³C NMR of 3n/4n (100 MHz, CDCl₃)

Figure S69. ¹⁹F NMR of 3n/4n (376 MHz, CDCl₃)

Figure S70. ¹H NMR of 30/40 (400 MHz, CDCl₃)

Figure S71. ¹³C NMR of 30/40 (100 MHz, CDCl₃)

Figure S72. ¹⁹F NMR of 30/40 (376 MHz, CDCl₃)

Figure S73. ¹H NMR of 3p/4p (400 MHz, CDCl₃)

Figure S74. ¹³C NMR of **3p/4p** (100 MHz, CDCl₃)

Figure S75. ¹⁹F NMR of 3p/4p (376 MHz, CDCl₃)

Figure S76. ¹H NMR of 3q (400 MHz, CD₃OD)

Figure S77. ¹³C NMR of **3q** (100 MHz, CD₃OD)

Figure S78. ¹⁹F NMR of **3q** (376 MHz, CD₃OD)

Figure S79. ¹H NMR of 3r (400 MHz, CDCl₃)

Figure S80. ¹³C NMR of 3r (100 MHz, CDCl₃)

Figure S81. ¹⁹F NMR of 3r (376 MHz, CDCl₃)

Figure S83. ¹³C NMR of 3s (100 MHz, CDCl₃)

Figure S84. ¹⁹F NMR of 3s (376 MHz, CDCl₃)

Figure S85. ¹H NMR of 3t (500 MHz, CDCl₃)

Figure S86. ¹³C NMR of 3t (100 MHz, CDCl₃)

Figure S87. ¹⁹F NMR of **3t** (376 MHz, CDCl₃)

Figure S88. ¹H NMR of 3u (400 MHz, CDCl₃)

Figure S89. ¹³C NMR of 3u (100 MHz, CDCl₃)

Figure S91. ¹H NMR of 3v (400 MHz, CDCl₃)

Figure S92. ¹³C NMR of **3v** (100 MHz, CDCl₃)

Figure S93. ¹⁹F NMR of 3v (376 MHz, CDCl₃)

Figure S94. ¹H NMR of 3w (400 MHz, CDCl₃)

Figure S95. ¹³C NMR of 3w (100 MHz, CDCl₃)

Figure S96. ¹⁹F NMR of 3w (376 MHz, CDCl₃)

Figure S97. ¹H NMR of 4a (400 MHz, CDCl₃)

Figure S99. ¹⁹F NMR of 4a (376 MHz, CDCl₃)

Figure S100. ¹H NMR of 4b (400 MHz, CDCl₃)

Figure S101. ¹³C NMR of **4b** (100 MHz, CDCl₃)

Figure S102. ¹⁹F NMR of 4b (376 MHz, CDCl₃)

Figure S103. ¹H NMR of 4c (400 MHz, CDCl₃)

Figure S104. ¹³C NMR of **4c** (100 MHz, CDCl₃)

Figure S105. ¹⁹F NMR of 4c (376 MHz, CDCl₃)

Figure S106. ¹H NMR of 4d (400 MHz, CDCl₃)

Figure S107. ¹³C NMR of 4d (100 MHz, CDCl₃)

Figure S109. ¹H NMR of 4e (400 MHz, CDCl₃)

Figure S111. ¹⁹F NMR of 4e (376 MHz, CDCl₃)

Figure S112. ¹H NMR of 4f (400 MHz, CDCl₃)

Figure S113. ¹³C NMR of 4f (100 MHz, CDCl₃)

Figure S114. ¹⁹F NMR of 4f (376 MHz, CDCl₃)

Figure S115. ¹H NMR of 3g/4g (400 MHz, CDCl₃)

Figure S116. ¹³C NMR of 3g/4g (100 MHz, CDCl₃)

Figure S117. ¹⁹F NMR of 3g/4g (376 MHz, CDCl₃)

Figure S118. ¹H NMR of 4h (500 MHz, CDCl₃)

Figure S119. ¹³C NMR of 4h (100 MHz, CDCl₃)

Figure S120. ¹⁹F NMR of 4h (376 MHz, CDCl₃)

Figure S121. ¹H NMR of 4k (400 MHz, CDCl₃)

Figure S122. ¹³C NMR of **4k** (100 MHz, CDCl₃)

Figure S123. ¹⁹F NMR of 4k (376 MHz, CDCl₃)

Figure S124. ¹H NMR of 4m (400 MHz, CDCl₃)

Figure S125. ¹³C NMR of 4m (100 MHz, CDCl₃)

Figure S126. ¹⁹F NMR of **4m** (376 MHz, CDCl₃)

Figure S127. ¹H NMR of 40 (400 MHz, CDCl₃)

Figure S128. ¹³C NMR of 4o (100 MHz, CDCl₃)

Figure S129. ¹⁹F NMR of **40** (376 MHz, CDCl₃)

Figure S130. ¹H NMR of 4p (500 MHz, CDCl₃)

Figure S131. ¹³C NMR of 4p (100 MHz, CDCl₃)

Figure S132. ¹⁹F NMR of **4p** (376 MHz, CDCl₃)

Figure S133. ¹H NMR of 4q (400 MHz, CDCl₃)

Figure S134. ¹³C NMR of **4q** (100 MHz, CDCl₃)

Figure S135. ¹⁹F NMR of 4q (376 MHz, CDCl₃)

Figure S136. ¹H NMR of 4s (400 MHz, CDCl₃)

Figure S137. ¹³C NMR of 4s (100 MHz, CDCl₃)

Figure S138. ¹⁹F NMR of **4s** (376 MHz, CDCl₃)

Figure S139. ¹H NMR of 4t (400 MHz, CDCl₃)

Figure S140. ¹³C NMR of 4t (100 MHz, CDCl₃)

Figure S141. ¹⁹F NMR of 4t (376 MHz, CDCl₃)

Figure S143. ¹³C NMR of 4x (100 MHz, CDCl₃)

Figure S144. ¹⁹F NMR of 4x (376 MHz, CDCl₃)

Figure S145. ¹H NMR of 4y (400 MHz, CDCl₃)

Figure S146. ¹³C NMR of 4y (100 MHz, CDCl₃)

Figure S147. ¹⁹F NMR of 4y (376 MHz, CDCl₃)

Figure S149. ¹³C NMR of 4z (100 MHz, CDCl₃)

Figure S150. ¹⁹F NMR of **4z** (376 MHz, CDCl₃)

Figure S151. ¹H NMR of 4aa (400 MHz, CDCl₃)

Figure S152. ¹³C NMR of 4aa (100 MHz, CDCl₃)

Figure S153. ¹⁹F NMR of 4aa (376 MHz, CDCl₃)

Figure S154. ¹H NMR of 4ab (400 MHz, CDCl₃)

Figure S155. ¹³C NMR of 4ab (100 MHz, CDCl₃)

Figure S156. ¹⁹F NMR of 4ab (376 MHz, CDCl₃)

Figure S157. ¹H NMR of 7b (400 MHz, CDCl₃)

Figure S158. ¹³C NMR of 7b (100 MHz, CDCl₃)

Figure S159. ¹⁹F NMR of 7b (376 MHz, CDCl₃)

Figure S161. ¹³C NMR of 9a (100 MHz, CDCl₃)

Figure S162. ¹⁹F NMR of 9a (376 MHz, CDCl₃)

Figure S163. ¹H NMR of 9b (400 MHz, CDCl₃)

Figure S164. ¹³C NMR of **9b** (100 MHz, CDCl₃)

Figure S165. ¹⁹F NMR of 9b (376 MHz, CDCl₃)

Figure S166. ¹H NMR of 9c (400 MHz, CDCl₃)

Figure S167. ¹³C NMR of 9c (100 MHz, CDCl₃)

Figure S168. ¹⁹F NMR of **9c** (376 MHz, CDCl₃)

Figure S169. ¹H NMR of 10 (400 MHz, CDCl₃)

Figure S170. ¹³C NMR of 10 (100 MHz, CDCl₃)

Figure S171. ¹⁹F NMR of 10 (376 MHz, CDCl₃)

Figure S173. ¹³C NMR of 11 (100 MHz, CDCl₃)

Figure S174. ¹⁹F NMR of 11 (376 MHz, CDCl₃)