Supporting Information

Synthesis of 1,2,4-Diazaphospholes via Base-Promoted Cyclization Reaction of Hydrazonoyl Chlorides and [Bu₄N][P(SiCl₃)₂]

Xin Wang,^{‡a,b} Hui Luo,^{‡c} Bo Yang,^a Ming Li,^a Yong-Jun Ma,^a Xi-Cun Wang,^{*a} Zheng-Jun Quan^{*a}

- b Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
- c NO.1 Middle School of Tongwei, Dingxi 743300, China.
- [‡] These authors contributed equally to this work.

a Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.

Table of Contents

1. General Information	1
2. Preparation of Starting Materials	1
3. Optimization of Reaction Conditions	
4. General Procedure for Synthesis of Substrates	5
5. Procedure for Gram-Scale Synthesis of 3c	5
6. Control Experiment	6
7. X-ray Crystallographic Data of Compounds 3a	7
8. Characterization Data of the Corresponding Products	8
9. Copies of NMR Spectra	19
10. References	61

1. General Information

All manipulations are performed in a MO-40M glove box under a vacuum with an argon atmosphere or using standard Schlenk techniques. Unless otherwise stated, commercially available reagents and solvents were used without further purification. Deuterated solvents were purchased from Adamas. ¹H NMR, ³¹P NMR, ¹⁹F NMR spectra were recorded on a Varian Mercury-400 Plus in CDCl₃, and ¹³C NMR was recorded on Agilent Technologies DD2 (600 MHz) spectrometers in CDCl₃. The chemical shifts (ppm) were recorded using tetramethylsilane (TMS) as the internal reference standard, and the solvent peak was 7.26 ppm for ¹H and 77.00 ppm for ¹³C in CDCl₃. Multiplicities are given as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), td (triplet of doublets), or m (multiplet). Coupling constants (J) are reported in hertz (Hz). High-Resolution Mass Spectrometry (HRMS) was obtained using a Q-Exactive instrument equipped with an ESI source from the thermofisher, and the type of mass analyzer used for HRMS measurements was a quadrupole mass filter. X-ray single crystal diffraction data were collected on a Bruker D8 VENTURE diffractometer equipped with a liquid nitrogen cryogenic device. Melting points (m.p.) were measured on an X-4 apparatus (uncorrected). Reactions were monitored by thinlayer chromatography (TLC) using pre-coated silica gel plates (GF254). Visualization on TLC was achieved by use of UV light (254 nm). Column chromatography was performed using Yantai Xinnuo silica gel (200-300 mesh) using ethyl acetate/petroleum ether.

2. Preparation of Starting Materials

2.1 Preparation of [Bu₄N][P(SiCl₃)₂]

 $[Bu_4N][P(SiCl_3)_2]$ was synthesized, and it was pre-treated and post-treated as described in the literature.¹

$$[Bu_4N][H_2PO_4] + HSiCl_3 \xrightarrow{2,2'-bipyridine} [Bu_4N][P(SiCl_3)_2]$$

In a glove box, 2,2'-bipyridine (32 mg, 0.2 mmol, 0.1 equiv.) was added into a reaction tube with a magnetic stir bar. Subsequently, an excess of HSiCl₃ (6.7 mL, 66 mmol, 33 equiv.) was carefully added via a syringe. The reaction tube was immediately sealed and stirred at room temperature for 15-30 minutes, followed by

the addition of [TBA][H₂PO₄] (679 mg, 2.0 mmol, 1.0 equiv.), and the mixture was heated to 110 °C for 24 hours. After completion of the reaction, the reaction tube was cooled to room temperature and then immersed in cold hydrazine (-78 °C) for 10 minutes, and the resulting gas was subsequently vented to an oil bubbler and then to a water bubbler in series to remove the toxic gas. The volatile materials were removed in vacuo over a period of 2 hours on the Schlenk line. The reaction tube was then brought into the glovebox. The white solid was washed with ether (3 × 5 ml) and filtered through diatomaceous earth (fine pores, 1 cm) to eliminate most of the microsoluble material and insoluble impurities. The obtained white solid was collected and dried under a vacuum at a constant temperature. The ¹H NMR and ³¹P NMR spectra of the obtained [Bu₄N][P(SiCl₃)₂] were consistent with the data reported in the literature. ¹H NMR (400 MHz, CDCl₃) δ 3.30 (t, *J* = 8.4 Hz, 8H), 1.7 (m, 8H), 1.5 (m, 8H), 1.0 (t, *J* = 7.2 Hz, 12H). ³¹P NMR (162 MHz, CDCl₃) δ -171.03.

2.2 Preparation of hydrazones

Hydrazones were synthesized according to the reported methods.²

$$R^{1}$$
 + R^{1} $R^$

Methanol (50 mL), aldehyde (20 mmol, 1 equiv.), and phenylhydrazine (20 mmol, 1 equiv., 1.97 mL) were sequentially added to a 100 mL round bottom flask. The reaction was carried out at room temperature, and a large amount of pale yellow solid was precipitated, which was monitored by TLC. After the reaction was completed, the methanol was evaporated under reduced pressure, and the crude product was directly used in the preparation of the next raw material.

The substituted phenylhydrazine hydrochloride derivatives (20 mmol, 1 equiv.), methanol (50 mL), triethylamine (30 mmol, 1.5 equiv., 4.17 mL) were sequentially added to a 100 mL round bottom flask. The mixture was stirred until the substituted phenylhydrazine hydrochloride derivatives solid disappeared, then benzaldehyde (30 mmol, 1.5 equiv., 3.05 mL) was added, and the reaction was carried out under room temperature conditions and monitored by TLC. After completion of the reaction, methanol was evaporated under reduced pressure. The reaction mixture was treated with saturated salt solution, and the resulting mixture extracted three times. The

combined organic phases were dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. Finally, the crude product was directly used in the preparation of the next raw material.

2.3 Preparation of hydrazonoyl chlorides

All hydrazonoyl chlorides were prepared according to the methods provided in the literature and their spectra were consistent with those reported in the literature.³

$$R^{1} \sim N^{H} A_{r} + \frac{O}{CI} \sim N^{H} O + Me_{2}S \xrightarrow{CH_{2}CI_{2}} O^{\circ}C, 30 \text{ min} R^{1} \sim N^{H} A_{r}$$

TCCA

The reaction was carried out in a 250 mL round-bottomed flask. TCCA (22 mmol, 1.1 equiv., 5.11 g) was added, followed by dichloromethane (60 mL), and dimethyl sulfide (66 mmol, 3.3 equiv., 4.85 mL) sequentially under an ice bath. The mixture was stirred for 10 minutes, and a large amount of white turbidity appeared rapidly. Then, the hydrazone (20 mmol, 1 equiv.) was dissolved in dichloromethane (60 mL) and added to the above mixture, and the reaction was continued to be stirred in an ice bath for 20 min, and monitored by TLC. After the reaction was complete, distilled water (50 mL) was added to the flask to quench the reaction, and the reaction mixture was extracted with dichloromethane three times. The combined organic phases were dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. Then the residue was purified by column chromatography (petroleum ether/ethyl acetate or petroleum ether/dichloromethane) to afford the pure substituted hydrazonoyl chlorides.

3. Optimization of Reaction Conditions

T 11 C	1 0	•	C C 1	
Table N	Nore	ening (ot Sol	vent ⁱ
I able b	1. 0010	vinnig v	01 001	vont

Entry	Solvent	Yield (4aa)/(%) ^b
1	CH ₃ CN	30
2	toluene	43
3	THF	35
4	CH_2Cl_2	38

5	CH ₃ OH	N.D.
6	1,4-dioxane	<10
7	MTBE	28

^{*a*} Reaction conditions: **1** (0.2 mmol, 1 equiv.), **2a** (0.2 mmol, 1 equiv.), Et₃N (0.4 mmol, 2.0 equiv.), Solvent (2 mL), 60 °C, Ar, 17 h. ^{*b*} Isolated yield. N.D. = Not Detected.

Table S2. Screening of Molar Ratio ^a			
Entry	1 (x mmol)	2a (y mmol)	Yield (4aa)/(%) ^b
1	0.2	0.15	40
2	0.2	0.24	50
3	0.2	0.3	73
4	0.2	0.4	56
5	0.2	0.5	55

^{*a*} Reaction conditions: **1** (x mmol), **2a** (y mmol), Et₃N (0.4 mmol, 2.0 equiv.), toluene (2 mL), 60 °C, Ar, 17 h. ^{*b*} Isolated yield.

Table S3. Screening of Base a		
Entry	Base	Yield (4aa)/(%) ^b
1	Et ₃ N	73
2	DIPEA	69
3	DBU	47
4	Na ₂ CO ₃	N.D.
5	K ₂ CO ₃	trace
6	Cs_2CO_3	N.D.
7	K ₃ PO ₄	trace
8	DABCO	65
9	NaOH	trace
10	DMAP	36
11	(^{<i>i</i>} Pr) ₂ HN	53
12	NaHMDS	<10
13	-	19

^{*a*} Reaction conditions: **1** (0.2 mmol, 1 equiv.), **2a** (0.3 mmol, 1.5 equiv.), Base (2 equiv.), toluene (2 mL), 60 °C, Ar, 17 h. ^{*b*} Isolated yield.

Table S4. Screening of Temperature ^a			
Entry	T (°C)	Yield (4aa) (%) ^b	
1	25	67	
2	40	71	
3	60	75	
4	80	81	
5	100	76	
6	110	61	

Table S5. Screening of Time a			
Entry	Time (x h)	Yield (4aa) (%) ^b	
1	6	72	
2	10	76	
3	14	86	
4	17	83	
5	20	81	
6	24	80	

^{*a*} Reaction conditions: **1** (0.2 mmol, 1 equiv.), **2a** (0.3 mmol, 1.5 equiv.), Et₃N (2 equiv.), toluene (2 mL), T (°C), Ar, 17 h. ^{*b*} Isolated yield.

^{*a*} Reaction conditions: **1** (0.2 mmol, 1 equiv.), **2a** (0.3 mmol, 1.5 equiv.), Et₃N (2 equiv.), toluene (2 mL), 80 °C, Ar, x h. ^{*b*} Isolated yield.

4. General Procedure for Synthesis of Substrates

Hydrazonoyl chlorides 2 (0.3 mmol, 1.5 equiv.), $[Bu_4N][P(SiCl_3)_2]$ 1 (0.2 mmol, 1 equiv., 108 mg), and toluene (0.1 M, 2 mL) were added sequentially into a 15 mL Schlenk reaction tube in a glove box. Subsequently, Et₃N (0.4 mmol, 2 equiv., 55.60 μ L) was added to the reaction tube using a microsyringe. The reaction was carried out at 80 °C for 14 h and monitored by TLC. After the reaction was cooled to room temperature, the reaction mixture was treated with saturated salt solution, and the resulting mixture extracted three times. The combined organic phases were dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. Then the residue was purified by column chromatography (petroleum ether/ethyl acetate) to obtain the corresponding product **3**.

5. Procedure for Gram-Scale Synthesis of 3c

(Z)-4-methoxy-*N*-phenylbenzohydrazonoyl chloride 2c (3.85 mmol, 1.0 g, 1.5 equiv.), [Bu₄N][P(SiCl₃)₂] 1 (2.56 mmol, 1.3842 g, 1 equiv.), and toluene (0.1 M, 25.6

ml) were added sequentially into a 100 ml round-bottomed flask in a glove box. Then Et_3N (5.12 mmol, 0.71 mL, 2 equiv.) was added to the above reaction solution using a syringe. The reaction was carried out at 80 °C for 14 h (monitored by TLC). The reaction mixture was cooled to room temperature, and extracted with ethyl acetate and saturated salt solution for three times. The combined organic phases were dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. Then the residue was purified by column chromatography (petroleum ether/ethyl acetate = 15/1, R_f = 0.36) to obtain the compound **3c** (1.33 mmol, 0.50 g, 69%).

6. Control Experiment

In order to further understand the reaction mechanism, eliminated diazenyl aryl compound was successfully detected by high-resolution mass spectrometry (HRMS), laying the data support for the proposed mechanism.

Eq (a): (Z)-4-methyl-*N*-phenylbenzohydrazonoyl chloride 2b (0.3 mmol, 73.22 mg, 1.5 equiv.), $[Bu_4N][P(SiCl_3)_2]$ 1 (0.2 mmol, 108 mg, 1 equiv.), and toluene (0.1 M, 2 ml) were added sequentially into a 15 mL Schlenk reaction tube in a glove box. Subsequently, Et₃N (0.4 mmol, 2 equiv., 55.60 µL) was added to the reaction tube using a microsyringe. The reaction was carried out at 80 °C for 2 h. After two hours, the sample of the reactions was tested by high-resolution mass spectrometry (HRMS). The possible diazenyl benzene could be successfully detected by HRMS.

Eq (b): (Z)-4-bromo-*N*-(*p*-tolyl)benzohydrazonoyl chloride 2z (0.3 mmol, 96.60 mg, 1.5 equiv.), [Bu₄N][P(SiCl₃)₂] 1 (0.2 mmol, 108 mg, 1 equiv.), and toluene (0.1 M, 2 ml) were added sequentially into a 15 mL Schlenk reaction tube in a glove box. Subsequently, Et₃N (0.4 mmol, 2 equiv., 55.60 µL) was added to the reaction tube using a microsyringe. The reaction was carried out at 80 °C for 2 h. After two hours, the sample of the reactions was tested by high-resolution mass spectrometry (HRMS). The possible diazenyl toluene could be successfully detected by HRMS.

Figure S1. Eliminated diazenyl aryl compound was detected by HRMS

7. X-ray Crystallographic Data of Compounds 3a

Table S6. X-ray Crystallographic Data of Compounds 3a

Cell: a=6.0016(4) alpha=90 298 K b=11.8760(7) beta=90.548(2) c=11.5703(8) gamma=90 Temperature: 298 K calculated Reported Volume 824.64(9) 824.64(9) 824.64(9) Space group P 21 P 1 21 1 1 Hall group P 2yb P 2yb P 2yb Moiety formula C20 H15 N2 P C20 H15 N2 P C20 H15 N2 P Sum formula C20 H15 N2 P C20 H15 N2 P Mr Mr 314.31 314.31 14.31 Dx,g cm-3 1.266 1.266 2 Z Mu (mm-1) 0.167 0.167 F000 328.0 328.0 328.0 F000' 328.0 328.0 F000' 328.0 0.671,0.746 Tmin, Tmax 0.968,0.975 0.671,0.746 Tmin' 0.967 0.967 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max)= 29.513 R(reflections)= 0.0435(2740) wR2(reflection 0.1008(3887)	Bond precision:	C-C = 0.0054 A	Wavelength=	=0.71073
Temperature: 298 K Calculated Reported Volume 824.64(9) 824.64(9) Space group P 21 P 1 21 1 Hall group P 2yb P 2yb Moiety formula C20 H15 N2 P C20 H15 N2 P Sum formula C20 H15 N2 P C20 H15 N2 P Mr 314.31 314.31 Dx,g cm-3 1.266 1.266 Z 2 Mu (mm-1) 0.167 0.167 F000 328.0 328.0 F000' 328.30 328.0 Nref 4613[2411] 3887 Tmin, Tmax 0.968, 0.975 0.671, 0.746 Tmin' 0.967 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Theta (max) = 29.513 Data completeness= 1.61/0.84 Theta (max) = 29.513	Cell:	a=6.0016(4) alpha=90	b=11.8760(7) beta=90.548(2)	c=11.5703(8) gamma=90
Calculated Reported Volume 824.64(9) 824.64(9) Space group P 21 P 1 21 1 Hall group P 2yb P 2yb Moiety formula C20 H15 N2 P C20 H15 N2 P Sum formula C20 H15 N2 P C20 H15 N2 P Mr 314.31 314.31 Dx,g cm-3 1.266 1.266 Z 2 2 Mu (mm-1) 0.167 0.167 F000 328.0 328.0 F000' 328.30	Temperature:	298 K		
Volume 824.64(9) 824.64(9) Space group P 21 P 1 21 1 Hall group P 2yb P 2yb Moiety formula C20 H15 N2 P C20 H15 N2 P Sum formula C20 H15 N2 P C20 H15 N2 P Mr 314.31 314.31 Dx,g cm-3 1.266 1.266 Z 2 2 Mu (mm-1) 0.167 0.167 F000 328.0 328.0 F000' 328.30		Calculated	Reported	
Space group P 21 P 1 21 1 Hall group P 2yb P 2yb Moiety formula C20 H15 N2 P C20 H15 N2 P Sum formula C20 H15 N2 P C20 H15 N2 P Mr 314.31 314.31 Dx,g cm-3 1.266 1.266 Z 2 2 Mu (mm-1) 0.167 0.167 F000 328.0 328.0 F000' 328.0 328.0 h,k,lmax 8,16,16 8,16,15 Nref 4613[2411] 3887 Tmin,Tmax 0.968,0.975 0.671,0.746 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max)= 29.513 R(reflections)= 0.0435(2740) WR2(reflection 0.1008(3887)	Volume	824.64(9)	824.64(9)	
Hall group P 2yb P 2yb Moiety formula C20 H15 N2 P C20 H15 N2 P Sum formula C20 H15 N2 P C20 H15 N2 P Mr 314.31 314.31 Dx,g cm-3 1.266 1.266 Z 2 2 Mu (mm-1) 0.167 0.167 F000 328.0 328.0 F000' 328.30	Space group	P 21	P 1 21 1	
Moiety formula C20 H15 N2 P C20 H15 N2 P Sum formula C20 H15 N2 P C20 H15 N2 P Mr 314.31 314.31 Dx,g cm-3 1.266 1.266 Z 2 2 Mu (mm-1) 0.167 0.167 F000 328.0 328.0 F000' 328.30 328.0 Nref 4613[2411] 3887 Tmin, Tmax 0.968, 0.975 0.671, 0.746 Tmin' 0.967 0.967 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta (max) = 29.513 R(reflections)= 0.0435(2740) wR2(reflection 0.1008(3887)	Hall group	P 2yb	P 2yb	
Sum formula C20 H15 N2 P C20 H15 N2 P Mr 314.31 314.31 Dx,g cm-3 1.266 1.266 Z 2 2 Mu (mm-1) 0.167 0.167 F000 328.0 328.0 F000' 328.30 3887 h,k,lmax 8,16,16 8,16,15 Nref 4613[2411] 3887 Tmin,Tmax 0.968,0.975 0.671,0.746 Tmin' 0.967 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max)= 29.513 R(reflections)= 0.0435(2740) wR2(reflection 0.1008(3887)	Moiety formula	C20 H15 N2 P	C20 H15 N	2 P
Mr 314.31 314.31 Dx,g cm-3 1.266 1.266 Z 2 2 Mu (mm-1) 0.167 0.167 F000 328.0 328.0 F000' 328.30 3887 h,k,lmax 8,16,16 8,16,15 Nref 4613[2411] 3887 Tmin,Tmax 0.968,0.975 0.671,0.746 Tmin' 0.967 0.967 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max)= 29.513 R(reflections)= 0.0435(2740) wR2(reflection 0.1008(3887))	Sum formula	C20 H15 N2 P	C20 H15 N	2 P
Dx,g cm-3 1.266 1.266 Z 2 2 Mu (mm-1) 0.167 0.167 F000 328.0 328.0 F000' 328.30 h,k,lmax 8,16,16 8,16,15 Nref 4613[2411] 3887 Tmin,Tmax 0.968,0.975 0.671,0.746 Tmin' 0.967 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max)= 29.513 R(reflections)= 0.0435(2740) WR2(reflections) 0.1008(3887)	Mr	314.31	314.31	
Z 2 2 2 Mu (mm-1) 0.167 0.167 F000 328.0 328.0 F000' 328.30 h,k,lmax 8,16,16 8,16,15 Nref 4613[2411] 3887 Tmin,Tmax 0.968,0.975 0.671,0.746 Tmin' 0.967 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max) = 29.513 R(reflections) = 0.0435(2740) WR2(reflections) 0.1008(3887)	Dx,g cm-3	1.266	1.266	
Mu (mm-1) 0.167 0.167 F000 328.0 328.0 F000' 328.30 328.0 h,k,lmax 8,16,16 8,16,15 Nref 4613[2411] 3887 Tmin,Tmax 0.968,0.975 0.671,0.746 Tmin' 0.967 0.671 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max)= 29.513 R(reflections)= 0.0435(2740) wR2(reflection 0.1008(3887))	Z	2	2	
F000 328.0 328.0 F000' 328.30	Mu (mm-1)	0.167	0.167	
F000' 328.30 h,k,lmax 8,16,16 8,16,15 Nref 4613[2411] 3887 Tmin,Tmax 0.968,0.975 0.671,0.746 Tmin' 0.967 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max)= 29.513 R(reflections)= 0.0435(2740) wR2(reflection 0.1008(3887))	F000	328.0	328.0	
h,k,lmax 8,16,16 8,16,15 Nref 4613[2411] 3887 Tmin,Tmax 0.968,0.975 0.671,0.746 Tmin' 0.967 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max) = 29.513 R(reflections) = 0.0435(2740) WR2(reflection 0.1008(3887)	F000'	328.30		
Nref 4613[2411] 3887 Tmin, Tmax 0.968,0.975 0.671,0.746 Tmin' 0.967 0.671 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 R(reflections)= 0.0435(2740) WR2(reflection 0.1008(3887))	h,k,lmax	8,16,16	8,16,15	
Tmin, Tmax 0.968, 0.975 0.671, 0.746 Tmin' 0.967 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max) = 29.513 R(reflections) = 0.0435(2740) WR2(reflection 0.1008(3887))	Nref	4613[2411]	3887	
Tmin' 0.967 Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max) = 29.513 R(reflections) = 0.0435(2740) WR2(reflection 0.1008(3887)	Tmin, Tmax	0.968,0.975	0.671,0.7	46
Correction method= # Reported T Limits: Tmin=0.671 Tmax=0.746 AbsCorr = MULTI-SCAN Data completeness= 1.61/0.84 Theta(max) = 29.513 R(reflections) = 0.0435(2740) WR2(reflection 0.1008(3887)	Tmin'	0.967		
Data completeness= 1.61/0.84 Theta(max)= 29.513 R(reflections)= 0.0435(2740) WR2(reflection 0.1008(3887)	Correction metho AbsCorr = MULTI-	od= # Reported T L -SCAN	imits: Tmin=0.671 Tma	ax=0.746
R(reflections) = 0.0435(2740) WR2(reflection 0.1008(3887)	Data completenes	ss= 1.61/0.84	Theta(max) = 29.513	3
2 1 024 View 000	R(reflections)=	0.0435(2740)		wR2(reflections) 0.1008(3887)
S = 1.034 Npar= 208	S = 1.034	Npar=	208	

Sample preparation: A saturated solution of compound 3a (40 mg) in ethyl acetate was placed in a vial (5 mL). Petroleum ether was added to the vial with a dropper until a small amount of solid precipitation. Then, ethyl acetate was added to the vial with a dropper until the solution clarification. The single crystal 3a was obtained by

slowly evaporating mixed solvent at room temperature under the air conditions.

8. Characterization Data of the Corresponding Products⁴

1,3,5-triphenyl-1*H*-1,2,4-diazaphosphole (3a)

40.6 mg, Yield: 86%. Pale Yellow solid, m.p. 135-137 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 7.2, 1.6 Hz, 2 H), 7.42 (t, J = 7.2 Hz, 2H), 7.37 (d, J = 7.2 Hz, 1H), 7.34 (s, 5H), 7.27 (s, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 177.6 (d, J = 57.0 Hz), 175.4 (d, J = 49.5 Hz), 141.2 (d, J = 3.0 Hz), 135.8 (d, J = 19.5 Hz), 132.7 (d, J = 18.0 Hz), 129.2 (d, J = 6.0 Hz), 128.8, 128.7, 128.6 (d, J = 1.5 Hz), 128.5, 128.4, 128.1, 126.4 (d, J = 10.5 Hz), 126.1. ³¹P NMR (162 MHz, CDCl₃) δ 94.40. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₆N₂P⁺: 315.1046; found: 315.1045.

1-phenyl-3,5-di-*p*-tolyl-1*H*-1,2,4-diazaphosphole (3b)

41.2 mg, Yield: 80%. Pale yellow solid, m.p. 116-118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.6 Hz, 2H), 7.34 (s, 5H), 7.22 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H), 2.33 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 177.5 (d, J = 57.0 Hz), 175.5 (d, J = 48.0 Hz), 141.3, 138.5 (d, J = 4.5 Hz), 133.2 (d, J = 19.5 Hz), 129.8 (d, J = 16.5 Hz), 129.4, 129.1, 129.0, 128.97, 128.8, 128.0, 126.2 (d, J = 9.0 Hz), 126.1, 21.33, 21.3. ³¹P NMR (162 MHz, CDCl₃) δ 92.75. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₀N₂P⁺: 343.1359; found: 343.1358.

3,5-bis(4-methoxyphenyl)-1-phenyl-1*H*-1,2,4-diazaphosphole (3c)

40.1 mg, Yield: 71%. Pale yellow solid, m.p. 128-129 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.8 Hz, 2H), 7.34 (s, 5H), 7.18 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 3.79 (s, 3H). ¹³C NMR (151 MHz,

CDCl₃) δ 177.1 (d, J = 57.0 Hz), 175.2 (d, J = 49.5 Hz), 160.1 (d, J = 1.5 Hz), 159.8, 141.3 (d, J = 1.5 Hz), 130.4 (d, J = 7.5 Hz), 128.8, 128.0, 127.62, 127.6, 126.1, 125.1 (d, J = 18.0 Hz), 114.0, 113.8, 55.3, 55.2. ³¹P NMR (162 MHz, CDCl₃) δ 90.03. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₀N₂O₂P⁺: 375.1257; found: 375.1257.

3,5-bis(4-(*tert*-butyl)phenyl)-1-phenyl-1*H*-1,2,4-diazaphosphole (3d)

41.6 mg, Yield: 65%. Pale yellow solid, m.p. 174-175 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 7.6 Hz, 2H), 7.44 (d, J = 8.4 Hz, 2H), 7.37 – 7.33 (m, 5H), 7.28 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 1.35 (s, 9H), 1.29 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 177.4 (d, J = 57.0 Hz), 175.4 (d, J = 48.0 Hz), 151.87, 141.4, 133.2 (d, J = 19.5 Hz), 129.7 (d, J = 18.0 Hz), 128.8, 128.7 (d, J = 7.5 Hz), 128.0, 126.08, 126.1 (d, J = 9.0 Hz), 125.6, 125.3, 34.68, 34.7, 31.3, 31.2. ³¹P NMR (162 MHz, CDCl₃) δ 93.20. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₈H₃₂N₂P⁺: 427.2298; found: 427.2299.

3,5-bis(4-fluorophenyl)-1-phenyl-1*H*-1,2,4-diazaphosphole (3e)

35.3 mg, Yield: 67%. Pale yellow solid, m.p. 144-146 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.93 (m, 2H), 7.36 – 7.29 (m, 5H), 7.22 (dd, J = 8.4, 5.6 Hz, 2 H), 7.10 (t, J = 8.4 Hz, 2H), 6.96 (t, J = 8.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 176.4 (d, J = 57.0 Hz), 174.3 (d, J = 49.5 Hz), 163.2 (dd, J = 247.5, 3.0 Hz), 162.8 (dd, J = 247.5, 1.5 Hz), 140.9 (d, J = 1.5 Hz), 132.0 (dd, J = 19.5, 3.0 Hz), 130.9 (q, J = 7.5 Hz), 129.0, 128.6 (dd, J = 18.0, 3.0 Hz), 128.4, 128.0 (q, J = 9.0 Hz), 126.0, 115.7 (d, J = 12.0 Hz), 115.5 (d, J = 10.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 93.44. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.19 – -112.27 (m), -113.09 – -113.17 (m). HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₄F₂N₂P⁺: 351.0857; found: 351.0856.

3,5-bis(4-chlorophenyl)-1-phenyl-1H-1,2,4-diazaphosphole (3f)

42.8 mg, Yield: 75%. Pale yellow solid, m.p. 161-162 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 7.2 Hz, 2H), 7.40 – 7.37 (m, 5H), 7.33 – 7.30 (m, 2H), 7.25 (d, J = 4.8 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 176.3 (d, J = 57.0 Hz), 174.1 (d, J = 49.5 Hz), 140.8, 134.8 (d, J = 1.5 Hz), 134.6 (d, J = 1.5 Hz), 134.2 (d, J = 19.5 Hz), 130.9 (d, J = 18.0 Hz), 130.3 (d, J = 6.0 Hz), 129.1, 128.9, 128.7, 128.5, 127.5 (d, J = 9.0 Hz), 126.0. ³¹P NMR (162 MHz, CDCl₃) δ 95.57. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₄Cl₂N₂P⁺: 383.0266; found: 383.0266.

3,5-bis(4-bromophenyl)-1-phenyl-1*H*-1,2,4-diazaphosphole (3g)

50.5 mg, Yield: 71%. White solid, m.p. 156-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.4, 1.2 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.39 – 7.34 (m, 5H), 7.30 – 7.28 (m, 2H), 7.09 (d, J = 8.0 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 176.3 (d, J =57.0 Hz), 174.0 (d, J = 49.5 Hz), 140.8 (d, J = 1.5 Hz), 134.6 (d, J = 19.5 Hz), 131.8, 131.6, 131.3 (d, J = 18.0 Hz), 130.5 (d, J = 7.5 Hz), 129.0, 128.5, 127.8 (d, J = 10.5Hz), 125.9, 123.1 (d, J = 1.5 Hz), 122.8 (d, J = 3.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 96.01. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₄Br₂N₂P⁺: 472.9235; found: 472.9235.

dimethyl 4,4'-(1-phenyl-1*H*-1,2,4-diazaphosphole-3,5-diyl)dibenzoate (3h)

32.7 mg, Yield: 51%. White solid, m.p. 205-207 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.09 (m, 2H), 8.08 – 8.05 (m, 2H), 7.95 (d, J = 8.4 Hz, 2H), 7.38 – 7.32 (m, 7H), 3.94 (s, 3H), 3.91 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.4 (d, J = 57.0 Hz), 174.2 (d, J = 49.5 Hz), 166.8, 166.4, 140.8 (d, J = 1.5 Hz), 139.8 (d, J = 19.5 Hz), 136.8 (d, J = 18.0 Hz), 130.1, 129.7, 129.11, 129.1, 129.05, 128.7, 126.2, 126.1, 126.0, 52.3, 52.1. ³¹P NMR (162 MHz, CDCl₃) δ 100.01. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₁₉N₂O₄P⁺: 431.1155; found: 431.1156.

1-phenyl-3,5-bis(4-(trifluoromethyl)phenyl)-1H-1,2,4-diazaphosphole (3i)

48.6 mg, Yield: 72%. Pale yellow solid, m.p. 148 – 150 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.41 – 7.37 (m, 5H), 7.34 – 7.32 (m, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 176.1 (d, J = 57.0 Hz), 173.8 (d, J = 49.5 Hz), 140.7 (d, J = 1.5 Hz), 138.9 (d, J = 19.5 Hz), 135.9 (d, J = 18.0 Hz), 130.7 (q, J = 33.0 Hz), 130.6 (q, J = 33.0 Hz), 129.4 (d, J = 7.5 Hz), 129.2, 128.8, 126.5 (d, J = 10.5 Hz), 126.0, 125.8 (q, J = 3.0 Hz), 125.5 (q, J = 3.0 Hz), 124.2 (q, J = 270.0 Hz), 123.8 (q, J = 271.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 99.67. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.57, -62.79. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₄F₆N₂P⁺ 451.0793, Found 451.0794.

1-phenyl-3,5-di-*m*-tolyl-1*H*-1,2,4-diazaphosphole (3j)

38.5 mg, Yield: 75%. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.82 – 7.77 (m, 2H), 7.35 – 7.29 (m, 6H), 7.18 – 7.08 (m, 4H), 6.98 (d, *J* = 6.8 Hz, 1H), 2.41 (s, 3H), 2.27 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 177.7 (d, *J* = 55.5 Hz), 175.6 (d, *J* = 49.5 Hz), 141.3 (d, *J* = 1.5 Hz), 138.3, 138.1, 135.7 (d, *J* = 19.5 Hz), 132.5 (d, *J* = 18.0 Hz), 129.9 (d, *J* = 7.5 Hz), 129.4 (d, *J* = 1.5 Hz), 129.2, 128.8, 128.6, 128.2, 128.1, 126.8 (d, *J* = 9.0 Hz), 126.1 (d, *J* = 7.5 Hz), 126.0, 123.7 (d, *J* = 10.5 Hz), 21.4, 21.3. ³¹P NMR (162 MHz, CDCl₃) δ 94.01. HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₂H₂₀N₂P⁺: 343.1359; found: 343.1359.

3,5-bis(3-fluorophenyl)-1-phenyl-1*H*-1,2,4-diazaphosphole (3k)

40.4 mg, Yield: 77%. Pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 10.0 Hz, 1H), 7.41 – 7.32 (m, 6H), 7.28 – 7.22 (m, 1H), 7.09 – 6.95 (m, 4H). ¹³**C NMR** (151 MHz, CDCl₃) δ 176.3 (dd, J = 57.0, 3.0 Hz), 174.0 (dd, J = 49.5, 3.0 Hz), 163.1 (d, J = 244.5 Hz), 162.4 (d, J = 246.0 Hz), 140.8 (d, J = 1.5 Hz), 137.8 (dd, J = 19.5, 7.5 Hz), 134.5 (dd, J = 19.5, 9.0 Hz), 130.2 (d, J = 9.0 Hz), 130.0 (d, J = 9.0 Hz), 129.1, 128.6, 125.9, 125.0 (dd, J = 7.5, 3.0 Hz), 122.2 (dd, J = 10.5, 3.0 Hz), 116.1 (dd, J = 22.5, 7.5 Hz), 115.6 (d, J = 16.5 Hz), 115.5 (d, J = 16.5 Hz), 112.9 (dd, J = 22.5, 9.0 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 97.07. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.14 – -112.20 (m), -112.94 – -113.01 (m). **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₂₀H₁₄F₂N₂P⁺ 351.0857, Found 351.0856.

1-phenyl-3,5-di-o-tolyl-1H-1,2,4-diazaphosphole (31)

33.1 mg, Yield: 64%. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (t, J = 4.8 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.29 – 7.19 (m, 10H), 7.12 (d, J = 7.6 Hz, 1H), 2.64 (s, 3H), 1.99 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 177.9 (d, J = 60.0 Hz), 174.0 (d, J = 49.5 Hz), 141.2 (d, J = 1.5 Hz), 136.4 (d, J = 4.5 Hz), 135.9 (d, J = 3.0 Hz), 135.3 (d, J = 18.0 Hz), 132.3 (d, J = 16.5 Hz), 131.0, 130.9 (d, J = 4.5 Hz), 130.4, 129.8 (d, J = 7.5 Hz), 129.0, 128.6, 128.1, 127.7, 125.9, 125.7, 124.9, 21.9 (d, J = 6.0 Hz), 20.2 (d, J = 1.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 103.90. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₀N₂P⁺: 343.1359; found: 343.1358.

3,5-bis(2-fluorophenyl)-1-phenyl-1*H*-1,2,4-diazaphosphole (3m)

41.6 mg, Yield: 79%. Pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (t, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.37 – 7.30 (m, 7H), 7.24 – 7.13 (m, 3H), 6.96 (t, *J*

= 9.2 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 170.3 (dd, J = 64.5, 6.0 Hz), 168.4 (dd, J = 49.5, 12.0 Hz), 160.5 (d, J = 249.0 Hz), 158.5 (dd, J = 249.0, 4.5 Hz), 141.3, 131.9 (dd, J = 7.5, 3.0 Hz), 131.0 (d, J = 7.5 Hz), 129.7 (d, J = 7.5 Hz), 128.7, 128.3, 128.1 (q, J = 3.0 Hz), 125.2, 124.3 (d, J = 3.0 Hz), 124.2 (d, J = 4.5 Hz), 123.6 (dd, J = 16.5, 12.0 Hz), 120.8 (dd, J = 19.5, 16.5 Hz), 116.0 (d, J = 6.0 Hz), 115.9 (d, J = 6.0Hz). ³¹P NMR (162 MHz, CDCl₃) δ 110.65, 110.58, 109.83, 109.75. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.13 - -111.23 (m), -111.79 - -111.85 (m), -112.15 - -112.21 (m). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₄F₂N₂P⁺ 351.0857, Found 351.0856.

3,5-bis(3,5-dimethylphenyl)-1-phenyl-1*H*-1,2,4-diazaphosphole (3n)

33.2 mg, Yield: 60%. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 2H), 7.34 – 7.29 (m, 5H), 6.99 (s, 1H), 6.90 (s, 1H), 6.86 (s, 2H), 2.36 (s, 6H), 2.19 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 177.7 (d, J = 57.0 Hz), 175.7 (d, J = 48.0 Hz), 141.3 (d, J = 1.5 Hz), 138.1, 137.8, 135.7 (d, J = 18.0 Hz), 132.4 (d, J = 16.5 Hz), 130.3 (d, J = 1.5 Hz), 130.1, 128.7, 128.0, 126.9 (d, J = 7.5 Hz), 126.0, 124.1 (d, J = 9.0 Hz), 21.3, 21.1. ³¹P NMR (162 MHz, CDCl₃) δ 93.68. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₂₄N₂P⁺: 371.1672; found: 371.1673.

3,5-bis(3,4-dichlorophenyl)-1-phenyl-1*H*-1,2,4-diazaphosphole (30)

55.4 mg, Yield: 82%. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (t, J = 2.0 Hz, 1H), 7.81 – 7.78 (m, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.43 – 7.40 (m, 4H), 7.34 – 7.31 (m, 3H), 7.02 – 6.99 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 175.1 (d, J = 58.5 Hz), 172.7 (d, J = 51.0 Hz), 140.5 (d, J = 1.5 Hz), 135.5 (d, J = 21.0 Hz), 133.2 (d, J = 1.5 Hz), 133.0, 132.8, 132.7 (d, J = 3.0 Hz), 132.2 (d, J = 18.0 Hz), 130.8 (d, J = 7.5 Hz), 130.7, 130.4, 129.3, 128.9, 128.1 (d, J = 7.5 Hz), 127.8 (d, J = 9.0 Hz), 125.9, 125.6 (d, J = 10.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 98.04. HRMS (ESI) m/z:

 $[M+H]^+$ Calcd for $C_{20}H_{12}C_{14}N_2P^+$ 452.9457, Found 452.9456.

1-phenyl-3,5-bis(3,4,5-trimethoxyphenyl)-1*H*-1,2,4-diazaphosphole (3p)

47.4 mg, Yield: 64%. Pale yellow solid, m.p. 156 – 158 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.37 (m, 5H), 7.21 (s, 2H), 6.45 (s, 2H), 3.95 (s, 6H), 3.90 (s, 3H), 3.85 (s, 3H), 3.65 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 177.3 (d, J = 57.0 Hz), 175.4 (d, J = 48.0 Hz), 153.4, 152.9, 141.3 (d, J = 1.5 Hz), 138.5 (d, J = 55.5 Hz), 131.5 (d, J = 19.5 Hz), 128.9, 128.3, 127.6 (d, J = 18.0 Hz), 126.1, 106.5 (d, J = 9.0 Hz), 103.5 (d, J = 9.0 Hz), 60.9, 56.2, 55.9. ³¹P NMR (162 MHz, CDCl₃) δ 91.43. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₈N₂O₆P⁺ 495.1679, Found 495.1680.

3,5-di(naphthalen-2-yl)-1-phenyl-1*H*-1,2,4-diazaphosphole (3q)

41.6 mg, Yield: 67%. Pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.17 (d, J = 8.4 Hz, 1H), 7.95 – 7.76 (m, 6H), 7.67 (d, J = 8.4 Hz, 1H), 7.50 – 7.45 (m, 4H), 7.42 – 7.40 (m, 2H), 7.35 – 7.29 (m, 3H), 7.22 – 7.19 (m, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 177.5 (d, J = 57.0 Hz), 175.4 (d, J = 49.5 Hz), 141.3, 133.62, 133.6, 133.3 (d, J = 19.5 Hz), 133.0, 132.9, 130.0 (d, J = 16.5 Hz), 129.0, 128.7 (d, J = 7.5Hz), 128.42, 128.4, 128.3, 128.2, 128.0, 127.72, 127.7, 126.8, 126.6, 126.3 (d, J = 6.0Hz), 126.3, 126.1, 126.0, 125.2 (d, J = 10.5 Hz), 124.5 (d, J = 9.0 Hz). ³¹**P NMR** (162 MHz, CDCl₃) δ 96.20. **HRMS (ESI)** m/z: [M+H]⁺ Calcd for C₂₈H₂₀N₂P⁺ 415.1359, Found 415.1359.

1-phenyl-3,5-di((*E*)-styryl)-1*H*-1,2,4-diazaphosphole (3r)

21.3 mg, Yield: 39%. Pale yellow solid, m.p. 207-209 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55 – 7.50 (m, 7H), 7.43 – 7.28 (m, 11H), 6.93 (dd, J = 16.0, 9.6 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 176.4 (d, J = 55.5 Hz), 172.9 (d, J = 49.5 Hz), 140.4, 136.8, 136.2, 134.8 (d, J = 16.5 Hz), 132.6 (d, J = 15.0 Hz), 129.3, 128.9, 128.8, 128.67, 128.65, 128.0, 126.9, 126.7, 126.1, 124.2 (d, J = 19.5 Hz), 119.2 (d, J = 13.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 83.97. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₂₀N₂P⁺: 367.1359; found: 367.1359.

3,5-diphenyl-1-(*p*-tolyl)-1*H*-1,2,4-diazaphosphole (3s)

37.4 mg, Yield: 76%. Pale yellow solid, m.p. 134-135 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.4 Hz, 2H), 7.42 (t, J = 7.2 Hz, 2H), 7.38 – 7.34 (m, 1H), 7.28 (s, 5H), 7.22 (d, J = 8.4 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 177.4 (d, J = 57.0 Hz), 175.3 (d, J = 49.5 Hz), 138.8 (d, J = 3.0 Hz), 138.1, 135.9 (d, J = 19.5 Hz), 132.8 (d, J = 18.0 Hz), 129.4, 129.1 (d, J = 7.5 Hz), 128.7, 128.6 (d, J = 1.5 Hz), 128.4, 128.3, 126.3 (d, J = 9.0 Hz), 125.8, 21.1. ³¹P NMR (162 MHz, CDCl₃) δ 93.69. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₈N₂P⁺: 329.1202; found: 329.1202.

1-(4-chlorophenyl)-3,5-diphenyl-1*H*-1,2,4-diazaphosphole (3t)

31.4 mg, Yield: 60%. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2H), 7.43 (t, J = 7.2 Hz, 2H), 7.38 (d, J = 7.2 Hz, 1H), 7.32 – 7.26 (m, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 177.7 (d, J = 57.0 Hz), 175.5 (d, J = 49.5 Hz), 139.6 (d, J = 1.5 Hz), 135.6 (d, J = 19.5 Hz), 133.9, 132.4 (d, J = 18.0 Hz), 129.1 (d, J = 7.5 Hz), 129.0, 128.8 (d, J = 1.5 Hz), 128.75, 128.6, 127.2, 126.4, 126.3. ³¹P NMR (162 MHz, CDCl₃) δ 96.01. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₅ClN₂P⁺ 349.0656, Found 349.0656.

3,5-diphenyl-1-(*m*-tolyl)-1*H*-1,2,4-diazaphosphole (3u)

39.4 mg, Yield: 80%. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 6.8 Hz, 2H), 7.42 (t, J = 6.8 Hz, 2H), 7.37 (d, J = 7.2 Hz, 1H), 7.31 – 7.25 (m, 5H), 7.20 – 7.12 (m, 3H), 7.03 (d, J = 7.6 Hz, 1H), 2.33 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.5 (d, J = 57.0 Hz), 175.4 (d, J = 49.5 Hz), 141.1 139.1, 135.9 (d, J = 19.5 Hz), 132.7 (d, J = 18.0Hz), 129.1 (d, J = 7.5 Hz), 128.9, 128.7, 128.6 (d, J = 1.5 Hz), 128.50, 128.47, 128.3, 126.6, 126.4 (d, J = 9.0 Hz), 123.2, 21.3. ³¹P NMR (162 MHz, CDCl₃) δ 93.87. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₈N₂P⁺ 329.1202, Found 329.1203.

3,5-diphenyl-1-(*o*-tolyl)-1*H*-1,2,4-diazaphosphole (3v)

38.4 mg, Yield: 78%. Pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 7.2 Hz, 2H), 7.41 (t, J = 6.8 Hz, 2H), 7.36 (d, J = 7.2 Hz, 1H), 7.32 – 7.19 (m, 9H), 2.04 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.6 (d, J = 57.0 Hz), 176.7 (d, J = 49.5 Hz), 140.7 (d, J = 3.0 Hz), 135.9 (d, J = 18.0 Hz), 135.1, 132.3 (d, J = 18.0 Hz), 131.1, 129.2, 128.8 (d, J = 9.0 Hz), 128.7, 128.6 (d, J = 1.5 Hz), 128.5, 128.2, 127.7, 126.5, 126.3 (d, J = 9.0 Hz), 17.7. ³¹P NMR (162 MHz, CDCl₃) δ 87.84. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₁H₁₈N₂P⁺ 329.1202, Found 329.1201.

1-(2-chlorophenyl)-3,5-diphenyl-1*H*-1,2,4-diazaphosphole (3w)

33.9 mg, Yield: 65%. White solid, m.p. 133 – 135 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 6.8 Hz, 2H), 7.42 (t, J = 7.2 Hz, 4H), 7.38 – 7.22 (m, 8H). ¹³C NMR (151 MHz, CDCl₃) δ 177.9 (d, J = 57.0 Hz), 177.6 (d, J = 49.5 Hz), 139.2 (d, J = 1.5 Hz), 135.7 (d, J = 19.5 Hz), 132.1 (d, J = 18.0 Hz), 131.9, 130.42, 130.39, 129.5, 128.9, 128.8, 128.7, 128.3, 127.4, 126.5, 126.4. ³¹**P** NMR (162 MHz, CDCl₃) δ 89.11. HRMS (ESI) *m/z*: [M+H]⁺ Calcd for C₂₀H₁₅ClN₂P⁺ 349.0656, Found 349.0657.

1,3,5-tri-*p*-tolyl-1*H*-1,2,4-diazaphosphole (3x)

30.3 mg, Yield: 57%. White solid, m.p. 153-155 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.6 Hz, 2H), 7.23 – 7.20 (m, 4H), 7.14 (t, J = 8.8 Hz, 4H), 7.07 (d, J = 8.0 Hz, 2H), 2.38 (s, 3H), 2.35 (s, 3H), 2.32 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 177.4 (d, J = 57.0 Hz), 175.3 (d, J = 48.0 Hz), 139.0 (d, J = 1.5 Hz), 138.4, 138.0, 133.2 (d, J = 19.5 Hz), 129.9 (d, J = 18.0 Hz), 129.4, 129.3, 129.03, 128.99, 128.95, 126.2 (d, J = 9.0 Hz), 125.8, 21.3, 21.2, 21.1. ³¹P NMR (162 MHz, CDCl₃) δ 92.08. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₂₂N₂P⁺: 357.1515; found: 357.1515.

3,5-bis(4-fluorophenyl)-1-(p-tolyl)-1H-1,2,4-diazaphosphole (3y)

33.4 mg, Yield: 61%. White solid, m.p. 125-126 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 – 7.92 (m, 2H), 7.22 (dd, J = 8.4, 5.2 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 7.08 (t, J = 8.4 Hz, 2H), 6.95 (t, J = 8.4 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2 (d, J = 57.0 Hz), 174.1 (d, J = 49.5 Hz), 163.1 (dd, J = 247.5, 3.0 Hz), 162.7 (dd, J = 247.5, 1.5 Hz), 138.5 (d, J = 1.5 Hz), 138.4, 132.0 (dd, J = 19.5, 3.0 Hz), 130.9 (q, J = 7.5 Hz), 129.5, 128.7 (dd, J = 18.0, 4.5 Hz), 128.0 (q, J = 7.5 Hz), 125.7, 115.6 (d, J = 13.5 Hz), 115.4 (d, J = 15.0 Hz), 21.1. ³¹P NMR (162 MHz, CDCl₃) δ 92.75. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.29 – -112.37 (m), -113.16 – -113.24 (m). HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₆F₂N₂P⁺: 365.1014; found: 365.1015.

3,5-bis(4-bromophenyl)-1-(p-tolyl)-1H-1,2,4-diazaphosphole (3z)

54.4 mg, Yield: 75%. Yellow solid, m.p. 190 – 192 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 6.8 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.19 – 7.14 (m, 4H), 7.11 (d, J = 8.4 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 176.2 (d, J = 57.0 Hz), 174.0 (d, J = 49.5 Hz), 138.6, 138.4 (d, J = 3.0 Hz), 134.7 (d, J = 21.0 Hz), 131.8, 131.6, 131.5 (d, J = 18.0 Hz), 130.5 (d, J = 7.5 Hz), 129.6, 127.8 (d, J = 10.5 Hz), 125.7, 123.0 (d, J = 1.5 Hz), 122.7 (d, J = 3.0 Hz), 21.2. ³¹P NMR (162 MHz, CDCl₃) δ 95.15. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₁H₁₆Br₂N₂P⁺ 486.9392, Found 486.9393.

9. Copies of NMR Spectra

¹H NMR (400 MHz, CDCl₃) of [Bu₄N][P(SiCl₃)₂]

3.3.24 3.3.303 3.3.303 3.3.303 3.3.303 3.3.303 3.3.303 3.3.303 3.3.304 1.1.716 1.1.657 1.1.656 1.1.657 1.1.6566 1.1.6566 1.1.6566 1.1.6566 1.1.6566 1.1.6566 1.1.6566 1.1.6566 1.1.6566 1.1.6566 1.1.6566 1.1.

³¹P NMR (162 MHz, CDCl₃) of [Bu₄N][P(SiCl₃)₂]

 ^{13}C NMR (151 MHz, CDCl₃) of 3a

177.74 177.36 175.50 175.50 175.50 141.18 135.90 141.18 135.77 135.79 129.17 132.59 129.17 128.64 12

 $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) of $\mathbf{3b}$

³¹P NMR (162 MHz, CDCl₃) of **3b**

 ^{13}C NMR (151 MHz, CDCl₃) of 3c

¹H NMR (400 MHz, CDCl₃) of **3d**

³¹P NMR (162 MHz, CDCl₃) of 3d

 ^{13}C NMR (151 MHz, CDCl₃) of 3e

¹⁹F NMR (376 MHz, CDCl₃) of **3e**

 ^{13}C NMR (151 MHz, CDCl₃) of 3f

 ^1H NMR (400 MHz, CDCl₃) of 3g

 31 P NMR (162 MHz, CDCl₃) of **3g**

 ^{13}C NMR (151 MHz, CDCl₃) of 3h

¹H NMR (400 MHz, CDCl₃) of **3i**

³¹P NMR (162 MHz, CDCl₃) of **3i**

¹H NMR (400 MHz, CDCl₃) of **3j**

³¹P NMR (162 MHz, CDCl₃) of **3j**

¹³C NMR (151 MHz, CDCl₃) of **3k**

^{19}F NMR (376 MHz, CDCl₃) of 3k

 ^{13}C NMR (151 MHz, CDCl₃) of 3l

¹H NMR (400 MHz, CDCl₃) of **3m**

³¹P NMR (162 MHz, CDCl₃) of **3m**

-89 -91 -93 -95 -97 -99 -101 -103 -105 -107 -109 -111 -113 -115 -117 -119 -121 -123 -125 -1: f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of **3n**

³¹P NMR (162 MHz, CDCl₃) of **3n**

 ^{13}C NMR (151 MHz, CDCl₃) of 30

 $\sum_{\substack{i=1,\ldots,n\\i\in \mathbb{Z}}} \sum_{\substack{i=1,\ldots,n\\i\in \mathbb{Z}$

¹H NMR (400 MHz, CDCl₃) of **3p**

³¹P NMR (162 MHz, CDCl₃) of **3p**

 ^{13}C NMR (151 MHz, CDCl₃) of 3q

¹H NMR (400 MHz, CDCl₃) of 3r

³¹P NMR (162 MHz, CDCl₃) of **3r**

-83.97

¹³C NMR (151 MHz, CDCl₃) of **3s**

¹H NMR (400 MHz, CDCl₃) of **3t**

³¹P NMR (162 MHz, CDCl₃) of **3t**

 ^{13}C NMR (151 MHz, CDCl₃) of 3u

 ^1H NMR (400 MHz, CDCl₃) of 3v

³¹P NMR (162 MHz, CDCl₃) of **3v**

401 383 379

7.984

С -4.00 8.25 85-.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 f1 (ppm) 4.0 3.0 2.0 1.0 0.0 -1 5.0

---0.000

7.222

237

 ^{13}C NMR (151 MHz, CDCl₃) of 3w

¹H NMR (400 MHz, CDCl₃) of 3x

³¹P NMR (162 MHz, CDCl₃) of **3x**

¹³C NMR (151 MHz, CDCl₃) of **3**y

 $^{^{19}\}text{F}$ NMR (376 MHz, CDCl₃) of 3y

¹H NMR (400 MHz, CDCl₃) of **3z**

¹³C NMR (151 MHz, CDCl₃) of **3z**

10. References

- (a) M. B. Geeson and C. C. Cummins, *Science*, 2018, **359**, 1383-1385; (b) M. B. Geeson, P. Ríos, W. J. Transue and C. C. Cummins, *J. Am. Chem. Soc.*, 2019, **141**, 6375-6384; (c) H. Luo, M. Li, X.-C. Wang and Z.-J. Quan, *Org. Biomol. Chem.*, 2023, **21**, 2499-2503.
- (a) C. J. A. Ribeiro, R. C. Nunes, J. D. Amaral, L. M. Gonçalves, C. M. P. Rodrigues, R. Moreira and M. M. M. Santos, *Eur. J. Med. Chem.*, 2017, **140**, 494-509; (b) T. Shi, Z. Wu, T. Jia, C. Zhang, L. Zeng, R. Zhuang, J. Zhang, S. Liu, J. Shao and H. Zhu, *Chem. Commun.*, 2021, **57**, 8460-8463.
- W. Zong, Y. Hu, X. Wang, J. Liu, D. Huang and K. Wang, Chin. J. Org. Chem., 2019, 39, 1396-1403.
- X. Wang, D.-P. Chen, W.-P. Wang, C.-H. Yang, M. Li, W.-B. Xu, X.-C. Wang and Z.-J. Quan, Org. Lett., 2024, DOI: 10.1021/acs.orglett.4c00993.