High-Throughput Optimization of the C–H Arylation of Oxetanes via Ni/Aldehyde Photocatalysis

Justin B. Diccianni*, Bo Hao[‡], Wei Liu[‡], Iulia I. Strambeanu

Chemical Capabilities, Analytical and Purification, Global Discovery Chemistry, Therapeutics Discovery, Janssen Research & Development, LLC, Welsh & McKean Roads, Spring House, Pennsylvania 19477, United States

Supporting Information

I. C	General Experimental Information	2
General Information		2
Ins	strumentation	2
II. C	General Procedures	3
Ge	eneral Procedure A. General procedure for oxetane arylation via HTE	3
Ge	eneral Procedure B. General procedure for preparative scale oxetane arylation	3
General Procedure C. General procedure for parallel oxetane arylation		3
III.	Control reactions	4
IV.	Additional substrates	6
V.F	Reaction Kinetics	7
VI.	Compound Characterization	8
VII.	Pictures of NMR Spectra	20
VIII.	HTE Data	55
IX.	Mass Table for Parallel Oxetane Arylation	73

I. General Experimental Information

General Information. All reagents and starting materials were purchased and used as received without further purification. Solvents were used from sealed anhydrous bottles. Catalysts were purchased from commercial sources and stored inside of an MBraun glovebox ($O_2 < 0.1$ ppm and H₂O <0.1 ppm) High-throughput experiments were set up inside of the glovebox, in aluminum 24or 96-position reactor blocks (Analytical Sales & Services, SKU 24253 and SKU 96973) filled with 1 mL borosilicate vials (Analytical Sales & Services, 8 x 30 mm, flat bottom, SKU 84001) containing 4.80 mm parylene coated magnetic stir bars (Analytical Sales & Services, SKU 13258) and sealed with a film of PFA supported by a rubber mat and an aluminum backed screw-down plate cap, while stirring and heating were achieved by tumble stirring (V&P Scientific Magnetic Tumble Stirrer, 500 rpm) and heating on a temperature-controlled heating block. Liquid dispensing was achieved using standard single channel and multi-channel pipettes without additional calibration. Slurry transfer was achieved in parallel using a multi-channel pipette and clipped pipette tips to permit transfer of heterogenous mixtures. Scale-up reactions were performed in standard lab glassware or disposable borosilicate vials with stirring. Purified compounds were obtained in >95% purity, as assessed by UPLC-MS and/or ¹H NMR, unless otherwise indicated. Analytical thin layer chromatography (TLC) was performed using 250 µm Silica Gel 60 F254 pre-coated plates. Chemical shifts (δ) are reported in parts per million (ppm) downfield relative to tetramethylsilane (TMS, 0.0 ppm), CDCl₃ (7.26 ppm for ¹H NMR, 77.23 ppm for ¹³C NMR) or (CD₃)₂SO (2.50 ppm for ¹H NMR, 39.58 ppm for ¹³C NMR). Ratios of diastereomers were determined by ¹H NMR analysis of the crude reaction mixtures before purification. In reactions with substituted oxetanes, the relative stereochemistry of the major diastereomers was determined by analysis of coupling constants. Coupling constants (J) are reported in Hz. Multiplicities are reported using the following abbreviations: s, singlet; d, doublet; t, triplet; g, guartet; p, pentet; m, multiplet; b, broad.

Instrumentation. Irradiation of all reactions was performed with Analytical Sales and Services Lumidox II equipment – 24- and 96-position LED arrays (lens mat with active cooling, λ =375 nm, optical power = stage 1). Analytical samples were performed on a Waters Acquity I-Class Ultra-High Pressure Liquid Chromatography-Mass Spec with a PDA detector and SQD2 massdetection (ESI-pos/neg). Charged-Aerosol Detection was performed using a Waters Acquity I-Class UPLC-MS equipped with PDA and SQD2 detectors (ESI positive ionization mode); column: Waters CSH C18, 2.1mm x 50 mm (Waters # 186006101) with Waters ACQUITY UPLC Col. In-Line Filter Kit (Waters #205000343); Mobile Phase A: 0.1 % trifluoroacetic acid in MilliQ water, Mobile Phase B: 0.1% trifluoroacetic acid in Optima grade Acetonitrile. Corona Aerosol Detection (CAD) analysis was conducted with Thermo Corona[™] Veo[™] RS Charged Aerosol Detector. The flow rate was 2 mL/min using a gradient from 5-100% Acetonitrile over 2 minutes. The total run time for each injection was 2.3 minutes. Flash column chromatography was performed using an Isco with RediSep silica columns. Proton nuclear magnetic resonance (1H NMR) spectra were recorded using a Bruker AVANCE III HD NanoBay 400 NMR spectrometer. Carbon-13 nuclear magnetic resonance (13C NMR) spectra were recorded using a Bruker AVANCE III HD NanoBay 400 NMR spectrometer at 101 MHz. Reverse phase purification was performed using a Waters mass-triggered liquid chromatography using Waters XSelect CSH (C18, 5u, 19x100 mm) or Waters XBridge BEH (C18, 5u, 19x100 mm) reversed-phase columns and appropriate linear gradients of increasing concentration of acetonitrile in water, 0.1% TFA or FA. Fractions containing the desired product were combined and concentrated by centrifuge evaporation. Highthroughput NMR data were collected using a Bruker AVANCE III HD solution-state NMR spectrometer equipped with a room temperature 1 mm TXI Microprobe at 400 MHz proton frequency at 298 K. The pulse sequence used was a one-dimensional (1D) proton experiment with water presaturation (zgpr). The acquisition time was 2.04 s using 32768 points for 20 ppm sweep width. High resolution mass spectra (HRMS) are reported as m/z (relative ratio). An Agilent 1260 Infinity Series was used for ESI-TOF analysis (Agilent model 6230). Accurate m/z are reported for the molecular ion [M+H]+ unless stated otherwise.

II. General Procedures

General Procedure A. General procedure for oxetane arylation via HTE

In a nitrogen-filled glovebox, a 96-well plate of 1 mL vials was charged with base (20 μ mol, 2 equiv) and Ni catalyst (1 μ mol, 0.1 equiv) as solids. A solution of aldehyde (5 μ mol, 0.5 equiv) or other HAT reagent was added to the wells in the chosen solvent. A solution of aryl halide (10 μ mol, 1 equiv) and oxetane (6.5 μ mol, 10 equiv) in the chosen solvent was added to the wells. The plate was sealed, removed from the glovebox, and irradiated with 375 nm light on a 96 well plate Lumidox® II at power level 1 (50 mW) for 20 h. A solution of Ph₃N (0.5 mL, 0.01 M) internal standard in MeCN was added to each well and the plate was centrifuged to settle out the solids. Aliquots of 25 mL were taken from the supernatants and diluted with 0.75 mL MeCN. Analysis was performed by UPLC-MS and yields were determined by calibration against an authentic product standard.

General Procedure B. General procedure for preparative scale oxetane arylation

A 1 dram vial was charged with aryl halide (0.2 mmol, 1 equiv) and brought into a nitrogen-filled glovebox. KF (23.2 mg, 0.4 mmol, 2 equiv) was added to the vial. A solution of (dtbbpy)NiBr₂ (11.2 mg, 0.02 mmol, 10 mol %) and *p*-cyanobenzaldehyde (13.2 mg, 0.1 mmol, 0.5 equiv) in 2 mL of 3:1 TFT:acetone was added to the vial. Oxetane (130 mL, 2 mmol, 10 equiv) was added then the vial was capped and removed from the glovebox. The reaction mixture was irradiated with 375 nm light on a 24 well plate Lumidox® II at power level 1 (60 mW) for 20 h while being cooled with two fans. The reaction mixture was filtered, and volatiles were removed from the filtrate under vacuum. The residue was purified by chromatography (silica, EtOAc/heptane).

General Procedure C. General procedure for parallel oxetane arylation

In a nitrogen-filled glovebox, to 1-dram vials containing the appropriate aryl halide substrate (0.1 mmol) was added (dtbbpy)NiBr2 4H2O (5.59 mg, 0.01 mmol, 0.1 eq.), 4-cyanobenzaldehyde (6.6 mg, 0.05 mmol, 0.5 eq.), potassium fluoride (11.6 mg, 0.2 mmol, 2 eq.), trifluorotoluene (0.75 mL) and acetone (0.25 mL), followed by oxetane (65 uL, 1 mmol, 10 eq.). The 24-well plate was then sealed, stirred, and irradiated with LED arrays (24 well plate Lumidox® II at power level 1, 60 mW) overnight. Afterwards, the solvent was reduced to ~0.1 mL by Genevac. To each vial was added 0.2 mL of 1,3,5-trimethoxybenzene in d6-DMSO (0.1 M) as the internal standard. After stirring for 10 mins, a 0.1 mL aliquot was taken and filtered into a 96-well plate, followed by 0.2 mL d6-DMSO rinse. The plate was sealed and analyzed by HT-NMR of the crude reaction mixtures.

III. Control reactions

Experiments were set up according to General Procedure A with the modifications indicated in the table. Yields were determined by UPLC calibrated against an authentic product sample.

(10 equiv) p-CN benzaldehyde (50 %) (dtbbpy)NiBr₂ (10%) Br TFT:acetone 3:1 (0.1 M) KF (2 equiv), 375 nm 1a 2a UPLC Yield (%) Deviation from standard conditions 1 None 95 2 No ligand 10 3 0 No Ni 0 4 No aldehyde 5 No base 50 1 equiv TEMPO added 6 13 7 No light 0 8 445 nm 0 9 405 nm 23 10 395 nm 82 11 365 nm 42

Table S1. Control reactions

Figure S1. Yield of model reaction vs. wavelength of light employed.

IV. Additional substrates

Compounds were synthesized according to General Procedure A using the substrates indicated.

Figure S2. Additional substrates that were not isolated in pure form.

Figure S3. Substrates that did not couple under the standard reaction conditions.

V. Reaction Kinetics

Parallel experiments were set up according to General Procedure A and quenched at the indicated time points. The reactions were analyzed by UPLC and calibrated with authentic samples of product and starting material. Reactions were conducted in duplicate.

Figure S4. Reaction kinetics measured by UPLC analysis in duplicate.

VI. Compound Characterization

1-(4-(oxetan-2-yl)phenyl)ethan-1-one (2a)

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.3 mmol). A colorless oil (46 mg, 88%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.2 Hz, 2H), 5.87 (t, *J* = 7.6 Hz, 1H), 4.86 (td, *J* = 8.0, 5.9 Hz, 1H), 4.69 (dt, *J* = 9.2, 5.9 Hz, 1H), 3.09 (dtd, *J* = 11.0, 8.1, 5.8 Hz, 1H), 2.70 - 2.55 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 148.9, 136.5, 128.7, 125.1, 82.2, 68.5, 30.6, 26.7. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₁H₁₃O₂⁺ 177.0916; found 177.0920.

1-(3-(oxetan-2-yl)phenyl)ethan-1-one (2b)

2b

Synthesized following General Procedure B starting with 3-bromoacetophenone (0.2 mmol). A colorless oil (23 mg, 65%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 8.01 (t, *J* = 1.9 Hz, 1H), 7.90 (dt, *J* = 7.8, 1.5 Hz, 1H), 7.66 (d, *J* = 7.9 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 5.87 (t, *J* = 7.5 Hz, 1H), 4.87 (td, *J* = 8.1, 5.9 Hz, 1H), 4.69 (dt, *J* = 9.2, 5.8 Hz, 1H), 3.08 (dtd, *J* = 11.0, 8.0, 5.7 Hz, 1H), 2.73 – 2.59 (m, 1H), 2.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.1, 144.3, 137.4, 129.9, 128.9, 127.8, 124.9, 82.3, 68.4, 30.7, 26.8. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₁H₁₃O₂ + 177.0916; found 177.0918.

6-(oxetan-2-yl)chroman-4-one (2c)

2c

Synthesized following General Procedure B starting with 6-bromochroman-4-one (0.2 mmol). A colorless oil (16 mg, 38%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 2.3 Hz, 1H), 7.66 (dd, *J* = 8.6, 2.3 Hz, 1H), 7.04 (d, *J* = 8.6 Hz, 1H), 5.79 (t, *J* = 7.5 Hz, 1H), 4.84 (td, *J* = 8.1, 5.9 Hz, 1H), 4.67 (dt, *J* = 9.2, 5.7 Hz, 1H), 4.57 (dd, *J* = 6.9, 6.0 Hz, 2H), 3.02 (dtd, *J* = 11.1, 8.0, 5.6 Hz, 1H), 2.85 (dd, *J* = 7.0, 5.9 Hz, 2H), 2.68 (dddd, *J* = 11.1, 9.3, 7.9, 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.7, 161.6, 136.7, 133.5, 124.2, 121.0, 118.3, 82.2, 68.1, 67.1, 37.8, 30.7. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₂H₁₃O₃ + 205.0865; found 205.0868.

2-(3-bromo-4-methylphenyl)oxetane (2e)

2e

Synthesized following General Procedure B starting with 2-bromo-4-iodo-1-methylbenzene (0.2 mmol). A colorless oil (18 mg, 39%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.25 - 7.22 (m, 2H), 5.74 (t, *J* = 7.5 Hz, 1H), 4.81 (td, *J* = 8.0, 5.9 Hz, 1H), 4.65 (dt, *J* = 9.2, 5.8 Hz, 1H), 3.01 (dtd, *J* = 11.0, 8.0, 5.7 Hz, 1H), 2.62 (dddd, *J* = 11.1, 9.2, 7.8, 7.1 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 137.3, 130.9, 129.2, 125.1, 124.1, 82.00, 68.3, 30.8, 22.7. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₀H₁₂BrO⁺ 227.0072; found 227.0065.

4-((2-fluoro-4-(oxetan-2-yl)phenyl)sulfonyl)morpholine (2f)

2f

Synthesized following General Procedure B starting with 4-((4-bromo-2-fluorophenyl)sulfonyl)morpholine (0.3 mmol). A colorless oil (48 mg, 53%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 8.1, 6.9 Hz, 1H), 7.34 (dd, *J* = 10.8, 1.6 Hz, 1H), 7.30 – 7.27 (m, 1H), 5.84 (t, *J* = 7.6 Hz, 1H), 4.87 (td, *J* = 7.9, 6.0 Hz, 1H), 4.68 (dt, *J* = 9.2, 5.9 Hz, 1H), 3.79 – 3.72 (m, 4H), 3.23 – 3.06 (m, 5H), 2.60 (ddt, *J* = 11.2, 9.2, 7.3 Hz, 1H).¹⁹F NMR (377 MHz, CDCl₃) δ -106.58.¹³C NMR (101 MHz, CDCl₃) δ 159.4 (d, *J* = 257.6 Hz), 152.5 (d, *J* = 7.4 Hz), 131.7, 123.4 (d, *J* = 15.1 Hz), 120.6 (d, *J* = 3.4 Hz), 113.8 (d, *J* = 23.1 Hz), 81.1 (d, *J* = 1.5 Hz), 68.6, 66.4, 45.8 (d, *J* = 2.0 Hz), 30.4. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₃H₁₇FNO₄S ⁺ 302.0862; found 302.0861.

6-(oxetan-2-yl)-2,3-dihydrobenzo[b]thiophene 1,1-dioxide (2g)

Synthesized following General Procedure B starting with 6-bromo-2,3-dihydrobenzo[b]thiophene 1,1-dioxide (0.2 mmol). A colorless oil (18 mg, 41%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.81 (dd, J = 1.6, 0.7 Hz, 1H), 7.68 - 7.61 (m, 1H), 7.40 (dt, J = 8.0, 0.9 Hz, 1H), 5.86 (t, J = 7.5 Hz, 1H), 4.85 (td, J = 8.0, 6.0 Hz, 1H), 4.67 (dt, J = 9.2, 5.9 Hz, 1H), 3.52 (ddd, J = 7.3, 6.3, 0.8 Hz, 2H), 3.39 (t, J = 6.9 Hz, 2H), 3.09 (dtd, J = 11.1, 8.1, 5.8 Hz, 1H), 2.60 (dddd, J = 11.2, 9.2, 7.8, 7.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 139.2, 136.5, 130.4, 127.4, 118.1, 81.8, 68.4, 50.9, 30.7, 25.2. HRMS (ESI) m/z: [M+H]⁺ calculated for $C_{11}H_{13}O_3S^+ 225.0585$; found 275.0587.

2-fluoro-4-(oxetan-2-yl)benzonitrile (2h)

Synthesized following General Procedure B starting with 4-bromo-2-fluorobenzonitrile (0.2 mmol). A colorless oil (24 mg, 68%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.64 (dd, *J* = 8.0, 6.4 Hz, 1H), 7.36 – 7.28 (m, 1H), 7.28 – 7.22 (m, 1H), 5.82 (t, *J* = 8.1 Hz, 1H), 4.86 (ddd, *J* = 8.3, 7.6, 6.0 Hz, 1H), 4.67 (dt, *J* = 9.2, 5.9 Hz, 1H), 3.13 (dtd, *J* = 11.1, 8.2, 5.9 Hz, 1H), 2.57 (dddd, *J* = 11.1, 9.2, 7.6, 7.0 Hz, 1H). ¹⁹F NMR (377 MHz, CDCl₃) δ -105.85. ¹³C NMR (101 MHz, CDCl₃) δ 163.5 (d, *J* = 260.6 Hz), 152.5 (d, *J* = 7.2 Hz), 133.8, 121.0 (d, *J* = 3.4 Hz), 114.0, 112.8 (d, *J* = 20.5 Hz), 100.3 (d, *J* = 15.8 Hz), 81.1 (d, *J* = 1.7 Hz), 68.6, 30.4. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₀H₉FNO ⁺ 178.0668; found 178.0669.

2-(4-(oxetan-2-yl)phenyl)-1,3,4-oxadiazole (2i)

Synthesized following General Procedure B starting with 2-(4-bromophenyl)-1,3,4-oxadiazole (0.2 mmol). A colorless oil (26 mg, 64%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.09 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.2 Hz, 2H), 5.86 (t, J = 7.6 Hz, 1H), 4.86 (td, J = 8.0, 5.9 Hz, 1H), 4.68 (dt, J = 9.2, 5.8 Hz, 1H), 3.09 (dtd, J = 11.1, 8.1, 5.8 Hz, 1H), 2.70 – 2.57 (m, 1H).¹³C NMR (101 MHz, CDCl₃) δ 164.6, 152.6, 147.9, 127.4, 125.7, 122.8, 82.1, 68.5, 30.7. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₁H₁₁N₂O₂ ⁺ 203.0821; found 203.0820.

1-(4-(oxetan-2-yl)phenyl)-1H-pyrrole (2j)

2j

Synthesized following General Procedure B starting with 1-(4-bromophenyl)-1H-pyrrole (0.2 mmol). A colorless oil (26 mg, 65%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.46 (m, 2H), 7.45 – 7.37 (m, 2H), 7.10 (t, *J* = 2.2 Hz, 2H), 6.35 (t, *J* = 2.2 Hz, 2H), 5.83 (t, *J* = 7.5 Hz, 1H), 4.85 (td, *J* = 8.0, 5.9 Hz, 1H), 4.67 (dt, *J* = 9.2, 5.8 Hz, 1H), 3.05 (dtd, *J* = 11.0, 8.0, 5.6 Hz, 1H), 2.69 (dddd, *J* = 11.0, 9.2, 7.9, 7.2 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 140.9, 140.3, 126.6, 120.5, 119.3, 110.5, 82.4, 68.2, 30.8. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₃H₁₄NO⁺ 200.1075; found 200.1077.

1-(4-(oxetan-2-yl)phenyl)cyclopropane-1-carbonitrile (2k)

2k

Synthesized following General Procedure B starting with 1-(4-bromophenyl)cyclopropane-1-carbonitrile (0.2 mmol). A colorless oil (27 mg, 68%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 5.79 (t, *J* = 7.5 Hz, 1H), 4.83 (td, *J* = 8.0, 5.8 Hz, 1H), 4.65 (dt, *J* = 9.3, 5.8 Hz, 1H), 3.03 (dtd, *J* = 11.1, 8.0, 5.6 Hz, 1H), 2.69 – 2.55 (m, 1H), 1.73 (q, *J* = 5.0 Hz, 2H), 1.41 (q, *J* = 5.0 Hz, 2H).¹³C NMR (101 MHz, CDCl₃) δ 143.2, 135.6, 126.0, 125.8, 122.6, 82.3, 68.3, 30.7, 18.2, 13.7. HRMS m/z: [M+Na]⁺ calcd. for C₁₃H₁₃NONa, 222.0895; found 222.0903.

tert-butyl-5-(oxetan-2-yl)-1H-indole-1-carboxylate (2l)

21

Synthesized following General Procedure B starting with *tert*-butyl 5-bromo-1*H*-indole-1-carboxylate (0.2 mmol). A colorless oil (28 mg, 51%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.6 Hz, 1H), 7.66 (dd, *J* = 1.7, 0.8 Hz, 1H), 7.60 (d, *J* = 3.7 Hz, 1H), 7.39 (dd, *J* = 8.6, 1.7 Hz, 1H), 6.57 (dd, *J* = 3.7, 0.8 Hz, 1H), 5.91 (t, *J* = 7.5 Hz, 1H), 4.85 (td, *J* = 8.0, 5.8 Hz, 1H), 4.69 (dt, *J* = 9.2, 5.7 Hz, 1H), 3.05 (dtd, *J* = 11.0, 8.0, 5.6 Hz, 1H), 2.71 (dddd, *J* = 11.0, 9.2, 7.9, 7.2 Hz, 1H), 1.67 (s, 9H).¹³C NMR (101 MHz, CDCl₃) δ 149.7, 138.1, 134.9, 130.7, 126.4, 121.8, 117.8, 115.2, 107.4, 83.7, 83.3, 68.1, 31.2, 28.2. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₆H₂₀NO₃ + 274.1443; found 274.1442.

2-(oxetan-2-yl)benzo[d]thiazole (2m)

Synthesized following General Procedure B starting with 2-bromobenzo[*d*]thiazole (0.2 mmol). A colorless oil (23 mg, 59%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (ddd, *J* = 8.2, 1.3, 0.7 Hz, 1H), 7.88 (ddd, *J* = 7.9, 1.3, 0.6 Hz, 1H), 7.43 (ddd, *J* = 8.3, 7.2, 1.3 Hz, 1H), 7.34 (ddd, *J* = 8.3, 7.2, 1.2 Hz, 1H), 6.04 (dd, *J* = 8.3, 6.5 Hz, 1H), 4.89 – 4.74 (m, 2H), 3.19 (dtd, *J* = 11.5, 8.4, 6.4 Hz, 1H), 2.82 (dddd, *J* = 11.4, 9.0, 7.3, 6.5 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 175.2, 153.5, 134.9, 126.2, 125.1, 123.1, 122.0, 80.4, 69.9, 29.4. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₀H₁₀NOS ⁺ 192.0483; found 192.0488.

1-(5-(oxetan-2-yl)thiophen-2-yl)ethan-1-one (2n)

Synthesized following General Procedure B starting with 1-(5-bromothiophen-2-yl)ethan-1-one (0.2 mmol). A colorless oil (16 mg, 44%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 3.8 Hz, 1H), 7.04 (dd, *J* = 3.8, 0.8 Hz, 1H), 5.95 (t, *J* = 7.3 Hz, 1H), 4.79 (td, *J* = 8.0, 6.0 Hz, 1H), 4.70 (dt, *J* = 9.1, 5.9 Hz, 1H), 3.12 (dtd, *J* = 11.3, 8.1, 6.0 Hz, 1H), 2.76 (dddd, *J* = 11.3, 9.1, 7.7, 6.9 Hz, 1H), 2.55 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 190.7, 156.4, 143.9, 132.4, 124.65, 78.5, 68.3, 31.5, 26.7. HRMS (ESI) m/z: [M+H]⁺ calculated for C₉H₁₀O₂S ⁺ 183.0480; found 183.0475.

3-methyl-5-(oxetan-2-yl)picolinonitrile (20)

20

Synthesized following General Procedure B starting with 5-bromo-3-methylpicolinonitrile (0.2 mmol). A colorless oil (25 mg, 72%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 2.0 Hz, 1H), 7.78 (d, *J* = 2.0 Hz, 1H), 5.87 (t, *J* = 7.6 Hz, 1H), 4.89 (td, *J* = 8.0, 6.0 Hz, 1H), 4.69 (dt, *J* = 9.2, 5.9 Hz, 1H), 3.14 (dtd, *J* = 11.2, 8.2, 5.9 Hz, 1H), 2.69 – 2.56 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 145.6, 142.5, 138.5, 134.6, 133.1, 116.4, 79.7, 68.8, 30.4, 18.7. HRMS m/z: [M+H]⁺ calcd. for C₁₀H₁₀N₂O, 175.0871; found 175.0869.

4-(5-(4-(oxetan-2-yl)phenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl)benzenesulfonamide (2p)

Synthesized following General Procedure B starting with 4-(5-(4-bromophenyl)-3-(trifluoromethyl)-1*H*-pyrazol-1-yl)benzenesulfonamide (0.1 mmol). A colorless oil (27 mg, 63%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.81 (m, 2H), 7.55 – 7.40 (m, 4H), 7.25 (d, J = 6.4 Hz, 1H), 6.78 (s, 1H), 5.82 (t, J = 7.5 Hz, 1H), 5.08 (s, 2H), 4.85 (td, J = 8.0, 5.9 Hz, 1H), 4.66 (dt, J = 9.3, 5.8 Hz, 1H), 3.06 (dtd, J = 11.1, 8.1, 5.7 Hz, 1H), 2.73 – 2.58 (m, 1H). ¹⁹F NMR (377 MHz, CDCl₃) δ -62.44. ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 144.9, 144.2 (q, J = 38.6 Hz), 142.4, 141.5, 129.0,

128.0, 127.6, 126.0, 125.6, 121.0 (q, J = 268 Hz), 106.7, 82.3, 68.4, 30.6. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₉H₁₇F₃N₃O₃S ⁺ 424.0943; found 424.0940.

Ethyl 4-(8-chloro-3-(oxetan-2-yl)-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11ylidene)piperidine-1-carboxylate (2q)

2q

Synthesized following General Procedure B starting with ethyl 4-(3-bromo-8-chloro-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11-ylidene)piperidine-1-carboxylate (0.2 mmol). A colorless oil (18 mg, 21%) was obtained after purification by reverse phase preparative HPLC. The product was isolated as the TFA salt.

¹H NMR (400 MHz, DMSO) δ 8.46 (dd, *J* = 9.8, 2.0 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.35 (dd, *J* = 4.0, 2.3 Hz, 1H), 7.25 (dd, *J* = 8.1, 2.3 Hz, 1H), 7.11 (d, *J* = 8.2 Hz, 1H), 5.77 (td, *J* = 7.5, 1.8 Hz, 1H), 4.69 (td, *J* = 8.0, 5.7 Hz, 1H), 4.58 (dtd, *J* = 9.2, 5.7, 1.4 Hz, 1H), 4.04 (q, *J* = 7.1 Hz, 2H), 3.70 – 3.65 (m, 5H), 3.43 – 3.29 (m, 2H), 3.20 – 3.10 (m, 2H), 3.05 – 2.80 (m, 2H), 2.70 – 2.55 (m, 1H), 2.38 – 2.13 (m, 2H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 158.9, 158.6, 158.2, 155.0, 142.7, 140.7, 140.7, 137.9, 132.3, 131.1, 129.5, 126.3, 79.8, 79.7, 68.1, 66.1, 61.7, 61.2, 44.7, 44.7, 31.1, 31.0, 30.8, 30.0, 15.1. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₅H₂₈CIN₂O₃ + 439.1788; found 439.1789.

5-((1H-1,2,3-triazol-1-yl)methyl)-3-(3-fluoro-4-((S)-oxetan-2-yl)phenyl)oxazolidin-2-one (2r)

Synthesized following General Procedure B starting with 5-((1*H*-1,2,3-triazol-1-yl)methyl)-3-(3-fluoro-4-iodophenyl)oxazolidin-2-one (0.1 mmol). A colorless oil (25 mg, 79%) was obtained after purification by silica gel chromatography. The compound is obtained as a 1:1 mixture of diastereomers that was not separable by chromatography. Diastereomers could not be unambiguously assigned by NMR but have been explicitly picked where possible.

¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.68 (s, 1H), 7.54 (t, *J* = 8.3 Hz, 1H), 7.27 (ddd, *J* = 18.0, 12.2, 2.3 Hz, 1H), 7.03 (ddd, *J* = 19.4, 8.5, 2.2 Hz, 1H), 5.91 (t, *J* = 7.5 Hz, 1H), 5.01 (ddd, *J* = 10.7, 8.9, 4.5 Hz, 1H), 4.80 – 4.66 (m, 3H), 4.59 (dt, *J* = 9.2, 5.9 Hz, 1H), 4.11 (td, *J* = 9.1, 1.6 Hz, 1H), 3.87 (ddd, *J* = 9.5, 6.2, 1.5 Hz, 1H), 3.00 (dtd, *J* = 11.2, 8.1, 5.9 Hz, 1H), 2.55 (ddd, *J* = 17.7, 10.6, 7.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.76 and -116.78 (pair of diastereomers). ¹³C NMR (101 MHz, CDCl₃) δ 159.25 (d, *J* = 247.5), 153.2, 138.3 – 137.7 (m), 134.6, 127.6 (d, *J* = 2.9 Hz) and 127.5 (d, *J* = 2.9 Hz) (pair of diastereomers), 126.9 (d, *J* = 14.1 Hz), 125.1, 113.50 (d, *J* = 10.4) and 113.47 (d, *J* = 10.4) (pair of diastereomers), 106.0 (d, *J* = 26.8) and 105.9 (d, *J* = 26.8) (pair of diastereomers), 70.5, 68.8, 52.0, 47.3, 47.2, 29.9. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₅H₁₆FN₄O₃⁺ 319.1206; found 319.1208.

1-(4-(3-hydroxy-3-methyloxetan-2-yl)phenyl)ethan-1-one (3a)

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.2 mmol) and replacing oxetane with 3-methyloxetan-3-ol. A colorless oil (16 mg, 39%, 10:1 d.r.) was obtained after purification by silica gel chromatography. The minor diastereomer could not fully be separated by chromatography and small peaks for the minor diastereomer remain in the NMR spectra.

¹H NMR (400 MHz, CDCl₃) δ 8.08 - 8.00 (m, 2H), 7.51 - 7.45 (m, 2H), 5.60 (s, 1H), 4.69 (d, J = 6.9 Hz, 1H), 4.58 (d, J = 6.9 Hz, 1H), 2.62 (s, 3H), 1.70 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 142.6, 137.0, 128.7, 126.0, 92.8, 83.7, 74.2, 26.7, 25.7. HRMS (ESI) m/z: [M+H]⁺ calculated for $C_{12}H_{15}O_3^+$ 207.1021; found 207.1017.

1-(4-(3-(hydroxymethyl)oxetan-2-yl)phenyl)ethan-1-one (3b)

3b

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.2 mmol) and replacing oxetane with oxetan-3-ylmethanol. A colorless oil (20 mg, 48%, 10:1 d.r.) was obtained after purification by silica gel chromatography. The minor diastereomer could not fully be separated by chromatography and small peaks for the minor diastereomer remain in the NMR spectra.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3 Hz, 2H), 7.53 (d, *J* = 8.2 Hz, 2H), 5.65 (d, *J* = 6.1 Hz, 1H), 4.75 (dd, *J* = 8.4, 6.2 Hz, 1H), 4.60 (t, *J* = 6.5 Hz, 1H), 3.99 (q, *J* = 10.7, 9.6 Hz, 2H), 3.03 (dp, *J* = 8.2, 6.5 Hz, 1H), 2.61 (s, 3H), 1.74 (br s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 148.1, 136.5, 128.7, 125.0, 84.9, 70.4, 63.5, 45.7, 26.7. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₂H₁₅O₃⁺ 207.1021; found 207.1017.

1-(4-(3-(1-hydroxyethyl)oxetan-2-yl)phenyl)ethan-1-one (3c)

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.2 mmol) and replacing oxetane with 1-(oxetan-3-yl)ethan-1-ol. A colorless oil (11 mg, 26%, 15:1 d.r.) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3 Hz, 2H), 7.56 (d, *J* = 8.2 Hz, 2H), 5.75 (d, *J* = 6.1 Hz, 1H), 4.71 (dd, *J* = 8.4, 6.2 Hz, 1H), 4.53 (t, *J* = 6.5 Hz, 1H), 4.27-4.22 (m, 1H), 2.78 (m, 1H), 2.61 (s, 3H), 1.19 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 144.8, 138.8, 128.9, 125.4, 85.2, 70.3, 69.5, 51.1, 26.9, 21.5. HRMS m/z: [M+H]⁺ calcd. for C₁₃H₁₆O₃, 221.1178; found 221.1175.

1-(4-(3-hydroxy-3-methyloxetan-2-yl)phenyl)ethan-1-one (3d)

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.2 mmol) and replacing oxetane with 3,3-dimethyloxetane. A colorless oil (18 mg, 44%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 8.01 - 7.92 (m, 2H), 7.41 - 7.33 (m, 2H), 5.54 (s, 1H), 4.55 (d, J = 5.4 Hz, 1H), 4.27 (d, J = 5.4 Hz, 1H), 2.61 (s, 3H), 1.43 (s, 3H), 0.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.0, 145.9, 136.4, 128.5, 125.3, 91.3, 81.5, 40.9, 27.1, 26.8, 22.6. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₃H₁₇O₂⁺ 205.1229; found 205.1226.

1-(4-(4,4-diethyloxetan-2-yl)phenyl)ethan-1-one (3e)

3e

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.2 mmol) and replacing oxetane with 2,2-diethyloxetane. A colorless oil (26 mg, 55%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 8.01 – 7.92 (m, 2H), 7.51 – 7.43 (m, 2H), 5.67 – 5.59 (m, 1H), 2.76 (dd, *J* = 10.9, 8.3 Hz, 1H), 2.60 (s, 3H), 2.34 – 2.20 (m, 1H), 1.98 – 1.59 (m, 4H), 1.03 (t, *J* = 7.5 Hz, 3H), 0.83 (dt, *J* = 10.2, 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 149.9, 136.1, 128.6, 124.9, 85.8, 74.6, 38.1, 32.6, 30.7, 26.6, 7.6, 7.3. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₅H₂₁O₂⁺ 233.1542; found 233.1535.

1-(4-(3-acetyloxetan-2-yl)phenyl)ethan-1-one (3f)

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.2 mmol) and replacing oxetane with 1-(oxetan-3-yl)ethan-1-one. A colorless oil (6 mg, 14%, >20:1 d.r.) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.3 Hz, 2H), 7.54 (d, *J* = 8.2 Hz, 2H), 5.89 (d, *J* = 6.1 Hz, 1H), 4.88 (t, *J* = 6.5 Hz, 1H), 4.79 (dd, *J* = 8.4, 6.2 Hz, 1H), 3.76 (m, 1H), 2.62 (s, 3H), 2.19 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 204.4, 197.6, 146.8, 137.1, 128.9, 125.2, 82.9, 68.8, 54.6, 28.4, 26.7. HRMS m/z: [M+H]⁺ calcd. for C₁₃H₁₄O₃, 219.1021; found 219.1019.

1-(4-(*tert*-butoxymethyl)phenyl)ethan-1-one(3i)

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.2 mmol) and replacing oxetane with methyl tert-butyl ether. A colorless oil (15 mg, 36%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.3 Hz, 2H), 7.44 (dp, *J* = 7.6, 0.9 Hz, 2H), 4.51 (s, 2H), 2.59 (s, 3H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 198.1, 145.8, 136.2, 128.5, 127.2, 73.9, 63.7, 27.8, 26.8. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₃H₁₉O₂⁺ 207.1385; found 207.1384.

1-(4-((cyclopentyloxy)methyl)phenyl)ethan-1-one (3j)

3j

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.2 mmol) and replacing oxetane with cyclopentyl methyl ether. A colorless oil (12 mg, 27%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.3 Hz, 2H), 7.43 (dp, *J* = 7.6, 0.9 Hz, 2H), 4.53 (s, 2H), 4.06 – 3.96 (m, 1H), 2.60 (s, 3H), 1.82 – 1.67 (m, 5H), 1.60 – 1.52 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 144.8, 136.2, 128.5, 127.3, 81.4, 70.1, 32.3, 26.7, 23.6. HRMS (ESI) m/z: [M+H]⁺ calculated for $C_{14}H_{19}O_2^+$ 219.1385; found 219.1386.

1-(4-(1,4-dioxan-2-yl)phenyl)ethan-1-one (3l)

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.2 mmol) and replacing oxetane with 1,4-dioxane. (ttbterpy)NiBr₂ was used in place of (dtbbpy)NiBr₂. One equivalent (100%) *p*-cyanobenzaldehyde was used. K_2HPO_4 was used instead of KF. A colorless oil (25 mg, 61%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.3 Hz, 2H), 7.45 (dp, *J* = 7.6, 0.9 Hz, 2H), 4.69 (dd, *J* = 6.9, 1.0 Hz 1H), 3.99 - 3.39 (m, 5H), 3.42 (dd, *J* = 9.2, 7.8 Hz, 1H), 2.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.7, 143.5, 136.8, 128.5, 126.3, 77.4, 72.3, 67.0, 66.4, 26.7. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₂H₁₅O₃⁺ 207.1021; found 207.1015.

1-(4-(tetrahydrofuran-2-yl)phenyl)ethan-1-one (3m)

3m

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.3 mmol) and replacing oxetane with tetrahydrofuran. One equivalent (100%) *p*-cyanobenzaldehyde was used. K_2HPO_4 was used instead of KF. A colorless oil (42 mg, 73%) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 4.95 (t, *J* = 7.2 Hz, 1H), 4.11 (dt, *J* = 8.4, 6.8 Hz, 1H), 3.97 (dt, *J* = 8.3, 6.9 Hz, 1H), 2.60 (s, 3H), 2.37 (dq, *J* = 12.5, 6.7 Hz, 1H), 2.09 – 1.92 (m, 2H), 1.85 – 1.70 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 197.8, 149.2, 136.1, 128.5, 125.6, 80.1, 77.4, 77.0, 76.7, 68.9, 34.7, 26.6, 26.0. HRMS (ESI) m/z: [M+H]⁺ calculated for $C_{12}H_{15}O_2^+$ 191.1072; found 191.1069.

1-(4-(1,3-dioxolan-2-yl)phenyl)ethan-1-one (3n)

3n

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.2 mmol) and replacing oxetane with 1,3-dioxolane. A colorless oil (20 mg, 51%, 3:1 r.r.) was obtained after purification by silica gel chromatography.

¹H NMR (400 MHz, CDCl₃) δ 8.01 - 7.98 (m, 2H), 7.63 - 7.54 (m, 2H), 5.89 (s, 1H), 4.20 - 4.03 (m, 4H), 2.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.9, 128.4, 126.7, 103.0, 96.2, 71.8, 65.4, 26.7. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₁H₁₃O₃⁺ 193.0865; found 193.0863.

tert-butyl 5-(4-acetylphenyl)-6-oxa-1-azaspiro[3.3]heptane-1-carboxylate (3o-1) and tertbutyl 2-(4-acetylphenyl)-6-oxa-1-azaspiro[3.3]heptane-1-carboxylate (3o-2)

Synthesized following General Procedure B starting with 4-bromoacetophenone (0.2 mmol) and replacing oxetane with *tert*-butyl 6-oxa-1-azaspiro[3.3]heptane-1-carboxylate (5 equiv). Purified by silica gel chromatography.

30-1, 1.5:1 d.r.

A colorless oil (10mg, 16%, 1.5:1 d.r.) was obtained.

¹H NMR – major isomer – (400 MHz, CDCl₃, 25 °C) δ 8.04 – 7.98 (m, 2H), 7.43 (d, *J* = 8.2 Hz, 2H), 6.22 – 6.17 (m, 1H), 5.35 – 5.19 (m, 1H), 4.63 – 4.53 (m, 1H), 3.78 – 3.64 (m, 1H), 3.61 – 3.51 (m, 1H), 2.63 (s, 3H), 2.00 (ddd, *J* = 12.1, 8.8, 5.6 Hz, 1H), 1.89 – 1.73 (m, 1H), 1.57 (s, 9H). A satisfactory ¹³C NMR spectrum could not be obtained at 25 °C due to broadening from the presence of rotamers. The ¹³C NMR spectrum was better resolved at 0 °C, but some broadening as well as additional peaks were still observed. ¹³C NMR (101 MHz, CDCl₃, 0 °C) δ 197.2, 154.3, 144.1, 136.7, 128.9, 125.6, 89.9, 88.7, 80.9, 79.4, 71.3, 67.2, 44.0, 28.7 (br), 26.9. HRMS (ESI) m/z: [M+H]⁺ calculated for C₁₈H₂₄NO₄⁺ 318.1705; found 318.1699.

30-2

A colorless oil (30mg, 47%) was obtained.

¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.98 – 7.88 (m, 2H), 7.40 – 7.28 (m, 2H), 5.60 – 5.18 (br m, 2H), 5.08 (br t, *J* = 7.1 Hz, 1H), 4.68 (t, *J* = 6.0 Hz, 2H), 2.93 (dd, *J* = 12.0, 8.5 Hz, 1H), 2.59 (s, 3H), 2.32 (dd, *J* = 12.0, 5.8 Hz, 1H), 1.68 – 1.37 (br m, 9H). A satisfactory ¹³C NMR spectrum could not be obtained at 25 °C due to broadening from the presence of rotamers. The ¹³C NMR spectrum was better resolved at 0 °C, some broadening as well as additional peaks were still observed. ¹³C NMR (101 MHz, CDCl₃, 0 °C) δ 198.0, 154.5, 146.5, 136.4, 129.0, 125.7,

82.6, 81.6, 80.1, 65.3, 58.9, 38.3, 28.6 (br), 26.9. HRMS (ESI) m/z: [M+H]⁺ calculated for $C_{18}H_{24}NO_4{}^+$ 318.1705; found 318.1701.

VII. Pictures of NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S31

S35

The minor diastereomer was not fully separable by chromatography.

S46

S50

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

HSQC-DEPT for **30-1** (CDCl₃, 0 °C)

HMBC of **30-2** (CDCl₃, 0 °C)

HSQC-DEPT of **30-2** (CDCl₃, 0 °C)

VIII. HTE Data

Table S2. Full HTE data set. Reactions set up as described in General Procedure A.

Photocatalyst (PC)	PC %	Ni Catalyst	Ni %	Base (2 equiv)	Oxetane Equivs	Solvent (0.1 M)	Additive	Additive %	Yield (%)
benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN			0.0
benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	DMSO			0.0
benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	DCM			0.0
benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	DMF			4.7
benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT			37.0
benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	acetone			0.0
benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN			0.0
benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DMSO			6.0
benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DCM			0.0
benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DMF			4.6
benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT			3.7
benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	acetone			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	DMSO			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	DCM			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	DMF			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	acetone			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DMSO			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DCM			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DMF			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT			0.0
p-anisaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	acetone			0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN			77.7
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	DMSO			0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	DCM			51.8
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	DMF			0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT			54.4
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	acetone			63.6
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN			30.9
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DMSO			4.9
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DCM			7.1
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DMF			0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT			87.9
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	acetone			46.7
benzophenone	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN			0.0
benzophenone	100	(dtbbpy)NiBr2	10	K2HPO4	10	DMSO			7.0

benzophenone	100	(dtbbpy)NiBr2	10	K2HPO4	10	DCM		0.0
benzophenone	100	(dtbbpy)NiBr2	10	K2HPO4	10	DMF		7.8
benzophenone	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT		21.1
benzophenone	100	(dtbbpy)NiBr2	10	K2HPO4	10	acetone		20.3
benzophenone	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN		36.9
benzophenone	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DMSO		35.3
benzophenone	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DCM		2.8
benzophenone	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DMF		13.1
benzophenone	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT		35.0
benzophenone	100	(dtbbpy)NiBr2	10	Quinuclidine	10	acetone		36.8
none	0	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN		0.0
none	0	(dtbbpy)NiBr2	10	K2HPO4	10	DMSO		2.8
none	0	(dtbbpy)NiBr2	10	K2HPO4	10	DCM		0.0
none	0	(dtbbpy)NiBr2	10	K2HPO4	10	DMF		0.0
none	0	(dtbbpy)NiBr2	10	K2HPO4	10	TFT		0.0
none	0	(dtbbpy)NiBr2	10	K2HPO4	10	acetone		0.0
none	0	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN		0.0
none	0	(dtbbpy)NiBr2	10	Quinuclidine	10	DMSO		3.5
none	0	(dtbbpy)NiBr2	10	Quinuclidine	10	DCM		0.0
none	0	(dtbbpy)NiBr2	10	Quinuclidine	10	DMF		0.0
none	0	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT		0.0
none	0	(dtbbpy)NiBr2	10	Quinuclidine	10	acetone		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	K2HPO4	10	DMSO		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	K2HPO4	10	DCM		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	K2HPO4	10	DMF		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	K2HPO4	10	acetone		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DMSO		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DCM		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	Quinuclidine	10	DMF		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT		0.0
Eosin Y	100	(dtbbpy)NiBr2	10	Quinuclidine	10	acetone		0.0
TBADT	10	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN		42.7
TBADT	10	(dtbbpy)NiBr2	10	K2HPO4	10	DMSO		3.1
TBADT	10	(dtbbpy)NiBr2	10	K2HPO4	10	DCM		16.0
TBADT	10	(dtbbpy)NiBr2	10	K2HPO4	10	DMF		2.2
TBADT	10	(dtbbpy)NiBr2	10	K2HPO4	10	TFT		16.9
TBADT	10	(dtbbpy)NiBr2	10	K2HPO4	10	acetone		54.3
TBADT	10	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN		0.0
TBADT	10	(dtbbpy)NiBr2	10	Quinuclidine	10	DMSO		4.4
TBADT	10	(dtbbpy)NiBr2	10	Quinuclidine	10	DCM		0.0

TBADT	10	(dtbbpy)NiBr2	10	Quinuclidine	10	DMF	0.0
TBADT	10	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	0.0
TBADT	10	(dtbbpy)NiBr2	10	Quinuclidine	10	acetone	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	K2HPO4	10	DMSO	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	K2HPO4	10	DCM	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	K2HPO4	10	DMF	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	K2HPO4	10	acetone	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	13.9
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Quinuclidine	10	DMSO	75.3
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Quinuclidine	10	DCM	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Quinuclidine	10	DMF	8.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Quinuclidine	10	acetone	6.4
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	70.0
p-NO2-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	0.0
m-CHO-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	45.7
3,5-diCF3-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	51.4
3-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	39.8
4-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	0.0
pentafluorobenzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	48.5
p-Ac-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	54.4
2-naphthaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	0.0
o-Me-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	6.7
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	36.9
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	54.8
p-NO2-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	0.0
m-CHO-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	35.5
3,5-diCF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	42.0
3-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	34.1
4-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	7.7
pentafluorobenzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	74.9
p-Ac-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	54.6
2-naphthaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	0.0
o-Me-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	TFT	45.6
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	58.4
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	65.6
p-NO2-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	3.5

m-CHO-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	26.2
3,5-diCF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	67.5
3-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	25.6
4-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	50.2
pentafluorobenzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	13.5
p-Ac-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	0.0
2-naphthaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	0.0
o-Me-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	TFT	16.2
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
p-NO2-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
m-CHO-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
3,5-diCF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
3-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
4-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
pentafluorobenzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
p-Ac-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
2-naphthaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
o-Me-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	TFT	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	40.6
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	0.0
p-NO2-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	0.0
m-CHO-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	42.2
3,5-diCF3-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	0.0
3-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	32.4
4-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	44.8
pentafluorobenzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	45.0
p-Ac-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	44.2
2-naphthaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	0.0
o-Me-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	MeCN	13.1
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	13.7
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	16.2
p-NO2-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	0.0

m-CHO-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	2.4
3,5-diCF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	4.4
3-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	1.9
4-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	0.0
pentafluorobenzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	0.0
p-Ac-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	5.2
2-naphthaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	0.0
o-Me-benzaldehyde	100	(dtbbpy)NiBr2	10	Cs2CO3	10	MeCN	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	9.7
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	0.0
p-NO2-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	0.0
m-CHO-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	1.7
3,5-diCF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	5.8
3-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	0.0
4-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	0.0
pentafluorobenzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	3.6
p-Ac-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	0.0
2-naphthaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	0.0
o-Me-benzaldehyde	100	(dtbbpy)NiBr2	10	Quinuclidine	10	MeCN	0.0
(Ir[dF(CF3)ppy]2(dtbpy))PF6	10	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	0.0
p-CF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	0.0
p-NO2-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	0.0
m-CHO-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	0.0
3,5-diCF3-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	0.0
3-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	0.0
4-py-carboxaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	0.0
pentafluorobenzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	2.9
p-Ac-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	0.0
2-naphthaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	0.0
o-Me-benzaldehyde	100	(dtbbpy)NiBr2	10	Barton's base	10	MeCN	0.0
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	10	K2HPO4	5	TFT	9.7
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	10	K2HPO4	5	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	10	K2HPO4	5	TFT	35.4

p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	5	TFT	40.8
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	10	K2HPO4	5	TFT	21.5
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K2HPO4	5	TFT	59.7
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	10	K3PO4	5	TFT	24.0
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	10	K3PO4	5	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	10	K3PO4	5	TFT	45.2
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	5	TFT	55.1
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	10	K3PO4	5	TFT	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K3PO4	5	TFT	37.6
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	21.4
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	10	K2HPO4	10	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	10	K2HPO4	10	TFT	42.2
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4	10	TFT	54.2
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	10	K2HPO4	10	TFT	19.9
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K2HPO4	10	TFT	83.3
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	10	K3PO4	10	TFT	41.2
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	10	K3PO4	10	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	10	K3PO4	10	TFT	42.2
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	67.6
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	10	K3PO4	10	TFT	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K3PO4	10	TFT	93.4
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	20	K2HPO4	5	TFT	24.8
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	20	K2HPO4	5	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	20	K2HPO4	5	TFT	35.2
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	K2HPO4	5	TFT	18.7
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	20	K2HPO4	5	TFT	6.1
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	20	K2HPO4	5	TFT	64.2
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	20	K3PO4	5	TFT	42.0
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	20	K3PO4	5	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	20	K3PO4	5	TFT	40.5
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	K3PO4	5	TFT	34.4

p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	20	K3PO4	5	TFT	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	20	K3PO4	5	TFT	68.8
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	20	K2HPO4	10	TFT	0.0
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	20	K2HPO4	10	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	20	K2HPO4	10	TFT	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	K2HPO4	10	TFT	49.7
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	20	K2HPO4	10	TFT	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	20	K2HPO4	10	TFT	76.3
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	20	K3PO4	10	TFT	47.5
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	20	K3PO4	10	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	20	K3PO4	10	TFT	52.7
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	K3PO4	10	TFT	41.9
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	20	K3PO4	10	TFT	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	20	K3PO4	10	TFT	87.0
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	10	K2HPO4 (slurry)	5	TFT	16.8
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	10	K2HPO4 (slurry)	5	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	10	K2HPO4 (slurry)	5	TFT	6.1
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4 (slurry)	5	TFT	46.4
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	10	K2HPO4 (slurry)	5	TFT	11.9
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K2HPO4 (slurry)	5	TFT	51.1
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	10	K2HPO4 (lab ram)	5	TFT	16.0
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	10	K2HPO4 (lab ram)	5	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	10	K2HPO4 (lab ram)	5	TFT	51.7
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4 (lab ram)	5	TFT	0.0
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	10	K2HPO4 (lab ram)	5	TFT	27.4
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K2HPO4 (lab ram)	5	TFT	49.4
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	10	K2HPO4 (slurry)	10	TFT	20.0
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	10	K2HPO4 (slurry)	10	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	10	K2HPO4 (slurry)	10	TFT	0.0

p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4 (slurrv)	10	TFT	52.9
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	10	K2HPO4 (slurry)	10	TFT	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K2HPO4 (slurry)	10	TFT	95.3
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	10	K2HPO4 (lab ram)	10	TFT	31.6
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	10	K2HPO4 (lab ram)	10	TFT	5.3
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	10	K2HPO4 (lab ram)	10	TFT	61.4
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K2HPO4 (lab ram)	10	TFT	55.3
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	10	K2HPO4 (lab ram)	10	TFT	25.4
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K2HPO4 (lab ram)	10	TFT	77.7
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	20	K2HPO4 (slurry)	5	TFT	20.7
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	20	K2HPO4 (slurry)	5	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	20	K2HPO4 (slurry)	5	TFT	27.8
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	K2HPO4 (slurry)	5	TFT	0.0
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	20	K2HPO4 (slurry)	5	TFT	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	20	K2HPO4 (slurry)	5	TFT	52.4
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	20	K2HPO4 (lab ram)	5	TFT	23.8
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	20	K2HPO4 (lab ram)	5	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	20	K2HPO4 (lab ram)	5	TFT	63.8
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	K2HPO4 (lab ram)	5	TFT	22.8
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	20	K2HPO4 (lab ram)	5	TFT	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	20	K2HPO4 (lab ram)	5	TFT	57.9
p-CN-benzaldehyde	50	(dtbbpy)NiBr2	20	K2HPO4 (slurry)	10	TFT	0.0
p-CN-benzaldehyde	100	Ni(acac)2 + ttbterpy	20	K2HPO4 (slurry)	10	TFT	0.0
p-CN-benzaldehyde	50	NiBr2(DME) + ttbterpy	20	K2HPO4 (slurry)	10	TFT	40.3
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	K2HPO4 (slurry)	10	TFT	54.6
p-CN-benzaldehyde	50	Ni(acac)2 + ttbterpy	20	K2HPO4 (slurry)	10	TFT	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	20	K2HPO4 (slurry)	10	TFT	62.3

p-CN-benzaldehyde	50	(dtbbpy)NiBr2	20	K2HPO4	10	TFT		40.0
p-CN-benzaldehyde	100	Ni(acac)2 +	20	K2HPO4	10	TFT		0.0
	50		- 20	(lab ram)	10	тст		40.4
p-CN-benzaldenyde	50	ttbterpv	20	(lab ram)	10			42.4
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	K2HPO4	10	TFT		44.8
		(, , , , , , , , , , , , , , , , , , ,		(lab ram)				
p-CN-benzaldehyde	50	Ni(acac)2 +	20	K2HPO4	10	TFT		0.0
n CN hanzaldahuda	100		20	(lab ram)	10	тст		70.4
p-CN-benzaidenyde	100	ttbterpy	20	(lab ram)	10			70.4
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DABCO	10	TFT		73.4
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	Quinuclidine	10	TFT		21.9
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	NMI	10	TFT		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	TBD	10	TFT		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	NaBHT	10	TFT		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	CsF	10	TFT		75.9
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	KOPiv	10	TFT		5.3
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DIPEA	10	TFT		37.6
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	P2Et	10	TFT		3.5
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DBU	10	TFT		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	2,6-lutidine	10	TFT		24.9
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	iPr2NH	10	TFT		71.7
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DABCO	10	MeCN		5.3
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	Quinuclidine	10	MeCN		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	NMI	10	MeCN		14.3
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	TBD	10	MeCN		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	NaBHT	10	MeCN		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	CsF	10	MeCN		26.4
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	KOPiv	10	MeCN		1.6
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DIPEA	10	MeCN		4.8
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	P2Et	10	MeCN		3.6
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DBU	10	MeCN		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	2,6-lutidine	10	MeCN		17.9
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	iPr2NH	10	MeCN		28.2
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DABCO	10	acetone		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	Quinuclidine	10	acetone		20.7
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	NMI	10	acetone		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	TBD	10	acetone		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	NaBHT	10	acetone		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	CsF	10	acetone		42.6
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	KOPiv	10	acetone		3.5
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DIPEA	10	acetone		22.2
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	P2Et	10	acetone		0.0

p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DBU	10	acetone		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	2,6-lutidine	10	acetone		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	iPr2NH	10	acetone		61.5
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DABCO	10	t-amyl OH		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	Quinuclidine	10	t-amyl OH		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	NMI	10	t-amyl OH		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	TBD	10	t-amyl OH		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	NaBHT	10	t-amyl OH		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	CsF	10	t-amyl OH		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	KOPiv	10	t-amyl OH		3.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DIPEA	10	t-amyl OH		6.5
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	P2Et	10	t-amyl OH		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	DBU	10	t-amyl OH		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	2,6-lutidine	10	t-amyl OH		0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	20	iPr2NH	10	t-amyl OH		34.1
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	DABCO	10	TFT		6.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	Quinuclidine	10	TFT		63.8
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	NMI	10	TFT		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	TBD	10	TFT		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	NaBHT	10	TFT		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	CsF	10	TFT		88.9
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	KOPiv	10	TFT		51.4
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	DIPEA	10	TFT		50.7
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	P2Et	10	TFT		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	DBU	10	TFT		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	2,6-lutidine	10	TFT		16.9
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	iPr2NH	10	TFT		64.2
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpv	10	DABCO	10	MeCN		4.8
p-CN-benzaldehyde	100	NiBr2(DME) +	10	Quinuclidine	10	MeCN		5.4

		ttbterpy						
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	NMI	10	MeCN		11.6
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	TBD	10	MeCN		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	NaBHT	10	MeCN		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	CsF	10	MeCN		17.8
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	KOPiv	10	MeCN		15.6
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	DIPEA	10	MeCN		30.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	P2Et	10	MeCN		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	DBU	10	MeCN		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	2,6-lutidine	10	MeCN		4.7
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	iPr2NH	10	MeCN		14.1
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	DABCO	10	acetone		25.6
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	Quinuclidine	10	acetone		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	NMI	10	acetone		12.8
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	TBD	10	acetone		1.4
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	NaBHT	10	acetone		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	CsF	10	acetone		12.5
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	KOPiv	10	acetone		21.2
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	DIPEA	10	acetone		65.3
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	P2Et	10	acetone		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	DBU	10	acetone		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	2,6-lutidine	10	acetone		5.4
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	iPr2NH	10	acetone		16.2
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	DABCO	10	t-amyl OH		35.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	Quinuclidine	10	t-amyl OH		0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	NMI	10	t-amyl OH		14.8
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	TBD	10	t-amyl OH		0.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	NaBHT	10	t-amyl		0.0

		ttbterpy				OH			
p-CN-benzaldehyde	100	NiBr2(DME) +	10	CsF	10	t-amyl			0.0
		ttbterpy				OH			
p-CN-benzaldehyde	100	NiBr2(DME) +	10	KOPiv	10	t-amyl			4.3
	400	ttbterpy	40		10	OH			047
p-CN-benzaldehyde	100	NIBr2(DME) +	10	DIPEA	10	t-amyl			21.7
n CN bonzoldobydo	100		10		10	UH t omvl			0.0
p-CN-benzaidenyde	100	tthterny		FZEL	10				0.0
p-CN-benzaldehvde	100	NiBr2(DMF) +	10	DBU	10	t-amvl			0.0
p ert benzaldenigde		ttbterpy		220		OH			0.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	2,6-lutidine	10	t-amyl			11.7
		ttbterpy				OH			
p-CN-benzaldehyde	100	NiBr2(DME) +	10	iPr2NH	10	t-amyl			24.3
		ttbterpy				OH			
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DCE	50	0.0
	400	ttbterpy	10	1/0004	40			50	0.0
p-CN-benzaidenyde	100	NIBr2(DME) +	10	K3P04	10		acetone	50	0.0
n CN benzaldebyde	100	NiBr2(DME) +	10	K3DO1	10	TET	tamyl	50	60.5
p-CN-benzaidenyde	100			NJF 04	10			50	00.5
p-CN-benzaldehvde	100	NiBr2(DMF) +	10	K3PO4	10	TFT	TFF	50	0.0
p ert benzaldenigde		ttbterpy							0.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DMSO	50	0.0
		ttbterpy							
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DCM	50	29.6
		ttbterpy							
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DMF	50	0.0
	400		10		40		Machi	50	00.4
p-CN-benzaidenyde	100	NIBr2(DIVIE) +	10	K3P04	10		MeCN	50	88.4
n-CN-benzaldebyde	100	NiBr2(DME) +	10	K3PO4	10	TET		50	100.0
p-on-benzaidenyde	100	ttbterpy			10			50	100.0
p-CN-benzaldehvde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DMA	50	0.0
p		ttbterpy							
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	2,6-	50	3.3
		ttbterpy					lutidine		
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	water	50	0.0
	100	ttbterpy	4.0	1/25.0.4	10			0.5	=
p-CN-benzaldehyde	100	NIBr2(DME) +	10	КЗРО4	10	11-1	DCE	25	51.1
n CN bonzaldobyda	100		10	K3DO4	10	тст	acotono	25	100.0
p-CN-benzaidenyde	100	tthterny		NJF 04	10		acelone	25	100.0
p-CN-benzaldehvde	100	NiBr2(DMF) +	10	K3PO4	10	TFT	t-amvl	25	77.0
p ert benzaldenigde		ttbterpy					OH		
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	TFE	25	22.2
		ttbterpy							
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DMSO	25	0.0
		ttbterpy							
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DCM	25	24.1
n ON harmald back	400		40	K0D04	40			05	
p-UN-penzaidenyde	100	NIBC2(DIVIE) +	10	K3PU4	10			25	0.0
p-CN-benzaldebyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	MeCN	25	76.0
p-ora-benzaidenyde	100			1.01 04			INECIA	25	10.8

		ttbterpy							
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	TFT	25	85.8
		ttbterpy							
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DMA	25	0.0
p-CN-benzaldebyde	100	NiBr2(DME) +	10		10	TET	2.6-	25	3.6
p-onv-benzaidenyde	100	ttbterpy	10				lutidine	20	0.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	water	25	0.0
		ttbterpy							
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K3PO4	10	TFT	DCE	12.5	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K3PO4	10	TFT	acetone	12.5	100.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K3PO4	10	TFT	t-amyl OH	12.5	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K3PO4	10	TFT	TFE	12.5	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K3PO4	10	TFT	DMSO	12.5	0.0
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K3PO4	10	TFT	DCM	12.5	40.1
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DMF	12.5	0.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	MeCN	12.5	1.4
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	TFT	12.5	100.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DMA	12.5	0.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	2,6-	12.5	11.7
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	water	12.5	0.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DCE	6.25	5.8
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	acetone	6.25	98.3
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	t-amyl	6.25	83.8
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	TFE	6.25	1.5
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DMSO	6.25	0.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DCM	6.25	52.4
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DMF	6.25	0.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	MeCN	6.25	53.3
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	TFT	6.25	0.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	DMA	6.25	0.0
p-CN-benzaldehyde	100	NiBr2(DME) +	10	K3PO4	10	TFT	2,6-	6.25	0.0
					1				

		ttbterpy					lutidine		
p-CN-benzaldehyde	100	NiBr2(DME) + ttbterpy	10	K3PO4	10	TFT	water	6.25	1.8
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DCE	50	68.6
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	acetone	50	2.9
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	t-amyl OH	50	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	TFE	50	7.7
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMSO	50	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DCM	50	66.2
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMF	50	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	MeCN	50	42.4
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	TFT	50	75.8
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMA	50	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	2,6- lutidine	50	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	water	50	2.9
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DCE	25	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	acetone	25	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	t-amyl OH	25	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	TFE	25	5.7
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMSO	25	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DCM	25	57.5
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMF	25	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	MeCN	25	46.3
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	TFT	25	61.1
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMA	25	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	2,6- lutidine	25	15.9
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	water	25	2.2
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DCE	12.5	25.6
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	acetone	12.5	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	t-amyl OH	12.5	39.1
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	TFE	12.5	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMSO	12.5	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DCM	12.5	63.8
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMF	12.5	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	MeCN	12.5	39.4
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	TFT	12.5	59.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMA	12.5	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	2,6- Iutidine	12.5	31.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	water	12.5	3.3
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DCE	6.25	72.2

p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	acetone	6.25	7.4
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	t-amyl OH	6.25	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	TFE	6.25	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMSO	6.25	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DCM	6.25	74.4
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMF	6.25	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	MeCN	6.25	8.8
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	TFT	6.25	9.4
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	DMA	6.25	0.0
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	2,6- lutidine	6.25	42.3
p-CN-benzaldehyde	100	(dtbbpy)NiBr2	10	K3PO4	10	TFT	water	6.25	3.6
4-CN-benzaldehyde	50	dtbbpy + NiBr2(DME)	10	K2HPO4	10	TFT			35.2
4-CN-benzaldehyde	50	diOMe bpy + NiBr2(DME)	10	K2HPO4	10	TFT			25.4
4-CN-benzaldehyde	50	diMe bpy + NiBr2(DME)	10	K2HPO4	10	TFT			27.1
4-CN-benzaldehyde	50	diMe Phen + NiBr2(DME)	10	K2HPO4	10	TFT			22.7
4-CN-benzaldehyde	50	diOMe phen + NiBr2(DME)	10	K2HPO4	10	TFT			29.0
4-CN-benzaldehyde	50	bphen + NiBr2(DME)	10	K2HPO4	10	TFT			36.1
4-CN-benzaldehyde	50	ttbterpy + NiBr2(DME)	10	K2HPO4	10	TFT			100.0
4-CN-benzaldehyde	50	BPyCamCN + NiBr2(DME)	10	K2HPO4	10	TFT			28.0
4-CN-benzaldehyde	50	Me bpp + NiBr2(DME)	10	K2HPO4	10	TFT			9.8
4-CN-benzaldehyde	50	PyCamCN + NiBr2(DME)	10	K2HPO4	10	TFT			25.1
4-CN-benzaldehyde	50	BnBiox + NiBr2(DME)	10	K2HPO4	10				21.5
4-CN-benzaldehyde	50	IndenoBOX + NiBr2(DME)	10	K2HPO4	10				21.1
4-CN-benzaldehyde	50	dtbbpy + Ni(cod)(DQ)	10	K2HPO4	10				59.9
4-CN-benzaldehyde	50	diOMe bpy + Ni(cod)(DQ)	10	K2HPO4	10	TFT			30.1
4-CN-benzaldehyde	50	diMe bpy + Ni(cod)(DQ)	10	K2HPO4	10	TFT			24.0
4-CN-benzaldehyde	50	diMe Phen + Ni(cod)(DQ)	10	K2HPO4	10	TFT			21.2
4-CN-benzaldehyde	50	diOMe phen + Ni(cod)(DQ)	10	K2HPO4	10	TFT			31.4
4-CN-benzaldehyde	50	bphen + Ni(cod)(DQ)	10	K2HPO4	10	TFT			24.1
4-CN-benzaldehyde	50	ttbterpy + Ni(cod)(DQ)	10	K2HPO4	10	TFT			0.0
4-CN-benzaldehyde	50	BPyCamCN +	10	K2HPO4	10	TFT			10.4

		Ni(cod)(DQ)						
4-CN-benzaldehyde	50	Me bpp + Ni(cod)(DQ)	10	K2HPO4	10	TFT	22.4	
4-CN-benzaldehyde	50	PyCamCN + Ni(cod)(DQ)	10	K2HPO4	10	TFT	10.1	
4-CN-benzaldehyde	50	BnBiox + Ni(cod)(DQ)	10	K2HPO4	10	TFT	16.7	
4-CN-benzaldehyde	50	IndenoBOX + Ni(cod)(DQ)	10	K2HPO4	10	TFT	10.3	
4-CN-benzaldehyde	50	dtbbpy + Ni(acac)2	10	K2HPO4	10	TFT	40.3	
4-CN-benzaldehyde	50	diOMe bpy + Ni(acac)2	10	K2HPO4	10	TFT	29.1	
4-CN-benzaldehyde	50	diMe bpy + Ni(acac)2	10	K2HPO4	10	TFT	27.3	
4-CN-benzaldehyde	50	diMe Phen + Ni(acac)2	10	K2HPO4	10	TFT	75.7	
4-CN-benzaldehyde	50	diOMe phen + Ni(acac)2	10	K2HPO4	10	TFT	57.9	
4-CN-benzaldehyde	50	bphen + Ni(acac)2	10	K2HPO4	10	TFT	77.9	
4-CN-benzaldehyde	50	ttbterpy + Ni(acac)2	10	K2HPO4	10	TFT	90.0	
4-CN-benzaldehyde	50	BPyCamCN + Ni(acac)2	10	K2HPO4	10		14.7	
4-CN-benzaldehyde	50	Me bpp + Ni(acac)2	10	K2HPO4	10		35.7	
4-CN-benzaldehyde	50	PyCamCN + Ni(acac)2	10	K2HPO4	10		16.3	
4-CN-benzaldehyde	50	BnBiox + Ni(acac)2	10	K2HPO4	10		22.7	
4-CN-benzaldehyde	50	IndenoBOX + Ni(acac)2	10	K2HPO4	10		12.8	
4-CN-benzaldehyde	50	NiCl2-6H2O	10	K2HPO4	10		38.5	
4-CN-benzaldehyde	50	diOMe bpy + NiCl2-6H2O	10	K2HPO4	10		8.7	
4-CN-benzaldehyde	50	diMe bpy + NiCl2-6H2O	10	K2HPO4	10		20.8	
4-CN-benzaldehyde	50	diMe Phen + NiCl2-6H2O	10	K2HPO4	10		0.0	
4-CN-benzaldehyde	50	diOMe phen + NiCl2-6H2O	10	K2HPO4	10		5.4	
4-CN-benzaldehyde	50	bphen + NiCl2- 6H2O	10	K2HPO4	10		20.9	
4-CN-benzaldehyde	50	ttbterpy + NiCl2-6H2O	10	K2HPO4	10		85.8	
4-CN-benzaldehyde	50	BPyCamCN + NiCl2-6H2O	10	K2HPO4	10		14.1	
4-CN-benzaldehyde	50	Me bpp + NiCl2-6H2O	10	K2HPO4	10		8.3	
4-CN-benzaldehyde	50	PyCamCN + NiCl2-6H2O	10	K2HPO4	10	TFT	0.0	
4-CN-benzaldehyde	50	BnBiox +	10	K2HPO4	10	IFT	20.2	
		NiCl2-6H2O						
-------------------------	----	-----------------------------	----	--------	----	-----	--	------
4-CN-benzaldehyde	50	IndenoBOX + NiCl2-6H2O	10	K2HPO4	10	TFT		18.0
pentafluorobenzaldehyde	50	dtbbpy + NiBr2(DME)	10	Cs2CO3	10	TFT		46.6
pentafluorobenzaldehyde	50	diOMe bpy + NiBr2(DME)	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	diMe bpy + NiBr2(DME)	10	Cs2CO3	10	TFT		6.0
pentafluorobenzaldehyde	50	diMe Phen + NiBr2(DME)	10	Cs2CO3	10	TFT		5.1
pentafluorobenzaldehyde	50	diOMe phen + NiBr2(DME)	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	bphen + NiBr2(DME)	10	Cs2CO3	10	TFT		27.2
pentafluorobenzaldehyde	50	ttbterpy + NiBr2(DME)	10	Cs2CO3	10	TFT		55.7
pentafluorobenzaldehyde	50	BPyCamCN + NiBr2(DME)	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	Me bpp + NiBr2(DME)	10	Cs2CO3	10	TFT		8.2
pentafluorobenzaldehyde	50	PyCamCN + NiBr2(DME)	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	BnBiox + NiBr2(DME)	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	IndenoBOX + NiBr2(DME)	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	dtbbpy + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		49.8
pentafluorobenzaldehyde	50	diOMe bpy + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		28.5
pentafluorobenzaldehyde	50	diMe bpy + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		25.1
pentafluorobenzaldehyde	50	diMe Phen + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		26.2
pentafluorobenzaldehyde	50	diOMe phen + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		15.8
pentafluorobenzaldehyde	50	bphen + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		49.7
pentafluorobenzaldehyde	50	ttbterpy + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		51.9
pentafluorobenzaldehyde	50	BPyCamCN + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	Me bpp + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		15.3
pentafluorobenzaldehyde	50	PyCamCN + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		5.3
pentafluorobenzaldehyde	50	BnBiox + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	IndenoBOX + Ni(cod)(DQ)	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	dtbbpy + Ni(acac)2	10	Cs2CO3	10	TFT		52.3
pentafluorobenzaldehyde	50	diOMe bpy +	10	Cs2CO3	10	TFT		48.1

		Ni(acac)2						
pentafluorobenzaldehyde	50	diMe bpy + Ni(acac)2	10	Cs2CO3	10	TFT		43.4
pentafluorobenzaldehyde	50	diMe Phen + Ni(acac)2	10	Cs2CO3	10	TFT		36.8
pentafluorobenzaldehyde	50	diOMe phen + Ni(acac)2	10	Cs2CO3	10	TFT		31.9
pentafluorobenzaldehyde	50	bphen + Ni(acac)2	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	ttbterpy + Ni(acac)2	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	BPyCamCN + Ni(acac)2	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	Me bpp + Ni(acac)2	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	PyCamCN + Ni(acac)2	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	BnBiox + Ni(acac)2	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	IndenoBOX + Ni(acac)2	10	Cs2CO3	10	TFT		8.1
pentafluorobenzaldehyde	50	dtbbpy + NiCl2-6H2O	10	Cs2CO3	10	TFT		62.3
pentafluorobenzaldehyde	50	diOMe bpy + NiCl2-6H2O	10	Cs2CO3	10	TFT		14.1
pentafluorobenzaldehyde	50	diMe bpy + NiCl2-6H2O	10	Cs2CO3	10	TFT		16.4
pentafluorobenzaldehyde	50	diMe Phen + NiCl2-6H2O	10	Cs2CO3	10	TFT		34.4
pentafluorobenzaldehyde	50	diOMe phen + NiCl2-6H2O	10	Cs2CO3	10	TFT		21.2
pentafluorobenzaldehyde	50	bphen + NiCl2- 6H2O	10	Cs2CO3	10	TFT		39.7
pentafluorobenzaldehyde	50	ttbterpy + NiCl2-6H2O	10	Cs2CO3	10	TFT		21.0
pentafluorobenzaldehyde	50	BPyCamCN + NiCl2-6H2O	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	Me bpp + NiCl2-6H2O	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	PyCamCN + NiCl2-6H2O	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	BnBiox + NiCl2-6H2O	10	Cs2CO3	10	TFT		0.0
pentafluorobenzaldehyde	50	IndenoBOX + NiCl2-6H2O	10	Cs2CO3	10	TFT		0.0

Row	Column	Expected	Observed	lon	
Α	1	306.1	306.2	[M-tBu+H]⁺	
Α	2	249.1	249.1	[M+H]⁺	
Α	3	-	N/A	-	
Α	4	261.2	261.3	[M+H]⁺	
Α	5		N/A	-	
Α	6	252.1	252.1	[M+H]⁺	
В	1	-	N/A	-	
В	2	233.1	233.1	[M+H]⁺	
В	3	-	N/A	-	
В	4	-	N/A	-	
В	5	263.1	263.0	[M+H]⁺	
В	6	327.1	327.3	[M+H]⁺	
С	1	247.1	247.1	[M+H]⁺	
С	2	243.1	243.1	[M+H]⁺	
С	3	150.1	150.0	[M+H]⁺	
С	4	217.1	217.2	[M+H]⁺	
С	5	295.1	295.2	[M+H]⁺	
С	6	391.1	391.2	[M+Na]⁺	
D	1	224.1	224.1	[M-tBu+H]⁺	
D	2	210.1	210.1	[M-tBu+H]⁺	
D	3	-	N/A	-	
D	4	190.1	190.1	[M+H]⁺	
D	5	244.1	244.1	[M+H]+	
D	6	312.1	312.1	[M+H]⁺	

IX. Mass Table for Parallel Oxetane Arylation