Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Aerobic oxidative C–C bond formation through C–H bond activation catalysed by flavin and iodine

Hazuki Miyake, Nico Ishige, Hayaki Okai and Hiroki Iida*

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan

E-mail address: iida@riko.shimane-u.ac.jp

1. General

Melting points (M.p.) were determined on a SANSYO SMP-300 (SANSYO, Tokyo, Japan) and are uncorrected. The IR spectra were recorded on a JASCO FT/IR-660plus spectrophotometer (JASCO, Tokyo, Japan). The NMR spectra were measured using a JEOL JNM ECX-500 spectrometer (JEOL, Akishima, Japan) operating at 500 MHz for ¹H and 126 MHz for ¹³C using tetramethylsilane (TMS) or a solvent residual peak as the internal standard. The electrospray ionization mass (ESI-MS) spectra were recorded on a Bruker microTOFII mass spectrometer (Bruker, Billerica, MA) using the positive or negative mode ESI-TOF method for acetonitrile solutions and sodium formate as the reference.

2. Materials

Riboflavin tetraacetate (**10b**), $5-ethyl-10-(2-hydroxylethyl)-3,7,8$ trimethylisoalloxazinium triflate $(11a \cdot TfO)$,^{S2} 5-ethyl-10-(2-hydroxylethyl)-7,8dimethylisoalloxazinium triflate (11b•TfO),^{S2} 5-ethyl-1,3,7,8-tetramethylalloxazinium triflate $(12a \cdot TfO)$, ^{S2} 5-ethyl-1,3-dimethylalloxazinium triflate $(12b \cdot TfO)$, ^{S2} 5-ethyl-1,3dimethyl-8-trifluoromethylalloxazinium triflate $(12c \cdot TfO)$,^{S2} 1,10-ethylene-3,7,8trimethylisoalloxazinium chloride $(13a^oCl)^{S3}$ 1,10-ethylene-7,8dimethylisoalloxazinium chloride (13b•Cl),^{S4} 1,10-ethylene-3-methylisoalloxazinium chloride (**13c•Cl**),^{S5} 1,10-ethylene-3-methyl-7-trifluoromethylalloxazinium chloride (**13d•Cl**), S6 and 1,10-ethylene-3,7,8-trimethylisoalloxazinium triflate (**13a•TfO**) S2 were synthesized according to the previously reported methods. Tetrahydroisoquinolines **1ac**, S7 **f** S7 , **d**, S8 **e**, S8 **h**S9 and tetrahydroisoquinolinylacetate **6**S10 were synthesized according to the previously reported method (Chart S1). Other starting materials including dimethylmalonate **2**s were purchased from Aldrich (Milwaukee, WI), FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan), Nacalai tesque (Kyoto, Japan), and Tokyo Kasei (TCI, Tokyo, Japan) and were used as received.

Chart S1. Structures of tetrahydroisoquinolines **1**s and tetrahydroisoquinolinylacetate **6**.

3. Experimental Procedures

Optimization of the reaction condition for the aerobic CDC between 1a and 2a. The effect of solvents, temperature, iodine sources, catalyst quantity, and reaction time on the aerobic CDC of **1a** and **2a** was investigated as shown in Table S1.

Table S1. Effect of solvents, temperature, iodine sources, catalyst quantity, and reaction time*^a*

a Conditions: **1a** (0.3 mmol), **2a**, **12c•TfO**, iodine source, and solvent under O2 (1 atm). Yield was determined by ¹H NMR using 1,3,5-trioxane as an internal standard. ^{*b*}Under air (1 atm, balloon).

Effects of catalyst on the catalytic activity of the reaction of 6 with 7. We examined the catalytic activity of the flavin catalysts for the reaction of **6** with **7** (Table S2). Among the seven flavins, **13a•TfO** showed the most efficient catalytic activity.

Table S2. Comparison with the catalytic activity of flavins for the reaction of **6** with **7***^a*

*a*Conditions: **6** (0.3 mmol), **7** (1.5 eq.), flavin (10 mol%), and I₂ (10 mol%) under O₂ (1 atm) at 80 °C for 24 h. Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as an internal standard. ^bFrom refs. S2, S11, and S12. ^cThe TfO salts were used for electrochemical measurements.

Spectroscopic data of products

Spectroscopic data of 2-(2-(4-trifluoromethyl)-1,2,3,4 tetrahydroisoquinoline-1-yl)-malonic acid dimethyl ester (4b):^{S11}

The yield was determined to be 87% by ¹H NMR measurement of MeO₂C \sim CO₂Me the reaction mixture. Column chromatography $(SiO₂$, hexane/ethyl acetate/triethylamine $= 94/1/5$, v/v) afforded the desired product (111 mg, 90%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.44 (d, J = 10.9 Hz, 2H), 7.24-7.12 (m, 4H), 7.01 (d, J = 11.1 Hz, 2H), 5.81 (d, J = 11.8 Hz, 1H), 3.90 (d, J = 11.7 Hz, 1H), 3.76-3.70 (m, 1H), 3.68 (s, 3H), 3.62-3.55 (m, 1H), 3.50 (s, 3H), 3.11-2.99 (m, 2H). 13C{1 H} NMR (126 MHz, CDCl3, 25 °C, *δ*): 168.2, 167.3, 150.8, 135.6, 134.6, 128.9, 128.2, 127.1, 126.5, 126.0, 119.6 (q, $J = 133$ Hz), 113.3, 59.0, 57.6, 52.8, 42.6, 26.6.

Spectroscopic data of 2-(2-(3-chlorophenyl)-1,2,3,4tetrahydroisoquinoline-1-yl)-malonic acid dimethyl ester (4c):^{S11} The yield was determined to be 94% by ¹H NMR measurement of $_{\text{MeO}_2C}$ \sim $_{\text{CO}_2Me}$

N C_l

the reaction mixture. Column chromatography (SiO₂, hexane/ethyl acetate = $30/1$) afforded the desired product $(92.4 \text{ mg}, 82%)$ as a colorless oil. ¹H NMR $(500 \text{ MHz},$ CDCl₃, 25 °C, δ): 7.22-7.19 (m, 2H), 7.16-7.11 (m, 3H), 6.92 (t, J = 2.2 Hz, 1H), 6.88 $(dd, J = 8.4, 2.3 Hz, 1H$, 6.73-6.71 (m, 1H), 5.67 (d, J = 9.5 Hz, 1H), 3.91 (d, J = 9.5 Hz, 1H), 3.70-3.65 (m, 4H), 3.58-3.53 (m, 4H), 3.11-3.05 (m, 1H), 2.94 (dt, J = 16.4, 5.7 Hz, 1H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 168.2, 167.3, 149.8, 135.5, 135.1, 134.7, 130.2, 129.0, 128.0, 127.2, 126.4, 118.3, 114.5, 113.0, 59.1, 58.0, 52.8, 42.5, 26.3.

Spectroscopic data of 2-(7-chloro-2-phenyl-1,2,3,4 tetrahydroisoquinoline-1-yl)-malonic acid dimethyl ester (**4d**): The yield was determined to be 81% by ¹H NMR measurement of the reaction mixture. Column chromatography (SiO₂, hexane/ethyl acetate = $30/1$ to $10/1$, v/v) afforded the desired product (70.7 mg, 63%) as a colorless oil. IR (neat, cm⁻¹): 2952, 2922, 1734, 1594, 1488, 1434, 1268, 945, 753. 1 H NMR (500 MHz, CDCl3, 25 °C, *δ*): 7.25-7.20 (m, 3H), 7.15 (dd, J = 8.2, 2.2 Hz, 1H), 7.04 (d, J = 8.2 Hz, 1H), 6.96 (d, J = 8.0 Hz, 2H), 6.79 (t, J = 7.3 Hz, 1H), 5.63 (d, J = 9.5 Hz, 1H), 3.93 (d, J = 9.5 Hz, 1H), 3.70 (s, 3H), 3.66 (dd, J = 8.1, 4.8 Hz, 2H), 3.57 (s, 3H), 3.04-2.97 (m, 1H), 2.78 (dt, J = 16.7, 4.7 Hz, 1H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 168.2, 167.2, 148.7, 137.3, 133.3, 131.6, 130.5, 129.3, 127.9, 127.2, 119.3, 115.7, 59.0, 58.0, 52.8, 52.7, 42.0, 25.4. Anal. Calcd for C₂₀H₂₀ClNO₄: C, 64.26; H, 5.39; N, 3.75. Found: C, 64.07; H, 5.26; N, 3.94. N $MeO₂C$ CO₂Me Cl

Spectroscopic data of 2-(5-bromo-2-phenyl-1,2,3,4 tetrahydroisoquinoline-1-yl)-malonic acid dimethyl ester (**4e**): The yield was determined to be 88% by ¹H NMR measurement of the reaction mixture. Column chromatography $(SiO₂, hexane/ethyl)$

acetate $= 20/1$) afforded the desired product (33.6 mg, 54%) as a colorless oil. IR (neat, cm⁻¹): 3025, 2952, 1732, 1596, 1436, 1267, 1146, 1030, 752. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.28 (s, 1H) 7.26-7.20 (m, 3H), 7.12 (d, J = 8.3 Hz, 1H), 6.95 (d, J = 8.0 Hz,

2H), 6.79 (t, J = 7.3 Hz, 1H), 5.63 (d, J = 9.4 Hz, 1H), 3.92 (d, J = 9.3 Hz, 1H), 3.66-3.64 $(m, 5H), 3.56$ (s, 3H), 3.07-3.00 $(m, 1H), 2.82$ (dt, J = 16.7, 4.8 Hz, 1H). ¹³C{¹H} NMR (126 MHz, CDCl3, 25 °C, *δ*): 168.3, 167.3, 148.7, 137.3, 134.7, 132.0, 129.32, 129.28, 129.0, 121.6, 119.3, 115.7, 59.0, 57.9, 52.8, 41.9, 25.9. Anal. Calcd for C₂₀H₂₀BrNO₄: C, 57.43; H, 4.82; N, 3.35. Found: C, 57.05; H, 4.43; N, 3.54.

Spectroscopic data of 2-(2-*p*-tolyl-1,2,3,4-tetrahydroisoquinoline-1 yl)-malonic acid dimethyl ester (4f):^{S13} The yield was determined to be 90% by ¹H NMR measurement of the reaction mixture. Column chromatography (SiO₂, hexane/ethyl acetate = $30/1$, v/v) afforded the

desired product (71.2 mg, 67%) as a pale yellow solid. ¹H NMR (500 MHz, CDCl₃, 25 °C, *δ*): 7.20-7.14 (m, 2H), 7.10-7.07 (m, 2H), 7.01 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 5.61 (d, J = 9.5 Hz, 1H), 3.96 (d, J = 9.4 Hz, 1H), 3.69-3.59 (m, 5H), 3.57 (s, 3H), 3.07-3.01 (m, 1H), 2.79 (dt, J = 16.5, 4.7 Hz, 1H), 2.22 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl3, 25 °C, *δ*): 168.4, 167.6, 146.8, 135.6, 134.9, 129.7, 129.2, 128.3, 127.6, 127.2, 126.0, 116.0, 59.2, 58.7, 52.64, 52.59, 42.4, 25.8, 20.4.

Spectroscopic data of 2-(2-phenyl-1,2,3,4-tetrahydroisoquinoline-1-yl)-malonic acid diethyl ester (4g):^{S9} The yield was determined to be 82% by ¹H NMR measurement of the reaction mixture. Column chromatography $(SiO₂, hexane/ethyl)$ acetate = $30/1$ to $20/1$, v/v) afforded the desired product (64.1 mg, 58%) as a colorless oil. 1 H NMR (500 MHz, CDCl3, 25 °C, *δ*): 7.26-7.09 (m, 6H), 6.98 (d, J = 8.0 Hz, 2H), 6.74 (t, J = 7.2 Hz, 1H), 5.72 (d, J = 9.2 Hz, 1H), 4.18-3.94 (m, 4H), 3.90 (d, J = 9.2 Hz, 1H), 3.73-3.61 (m, 2H), 3.10-3.03 (m, 1H), 2.88 (dt, J = 16.4, 5.1 Hz, 1H), 1.16 (t, J = 7.2 Hz, 3H), 1.08 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 168.1, 167.3, 149.0, 136.1, 134.9, 129.2, 129.0, 127.6, 127.3, 126.1, 118.6, 115.2, 61.7, 59.7, 58.0, 42.4, 26.2, 14.04, 13.99. N E tO₂C $CO₂Et$

Spectroscopic data of 1-(nitromethyl)-2-phenyl-1,2,3,4 tetrahydroisoquinoline $(5a)$ ^{:S9} The yield was determined to be 85% by ¹H NMR measurement of the reaction mixture. Column chromatography (SiO₂, hexane/ethyl acetate=15/1, v/v) afforded the desired product (58.6 mg, 73%) as a yellow solid. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.28-7.16 (m, N $O₂N$

5H), 7.11 (d, J = 7.4 Hz, 1H), 6.97 (d, J = 8.2 Hz, 2H), 6.84 (t, J = 7.3 Hz, 1H), 5.54 (t, J $= 7.2$ Hz, 1H), 4.85 (dd, J = 11.8, 7.9 Hz, 1H), 4.54 (dd, J = 11.8, 6.6 Hz, 1H), 3.67-3.57 $(m, 2H)$, 3.10-3.04 $(m, 1H)$, 2.77 $(dt, J = 16.3, 4.9 Hz, 1H)$. ¹³C $\{^1H\}$ NMR (126 MHz, CDCl3, 25 °C, *δ*): 148.5, 135.4, 133.0, 129.6, 129.3, 128.2, 127.1, 126.8, 119.5, 115.2, 78.9, 58.3, 42.1, 26.5.

Spectroscopic data of 2-(3-chlorophenyl)-1-(nitromethyl)-1,2,3,4 tetrahydroisoquinoline (**5c**):S14 The yield was determined to be 69% by ¹H NMR measurement of the reaction mixture. Column

chromatography (SiO₂, hexane/diethyl ether=30/1 to 5/1, v/v) afforded the desired product (57.3 mg, 64%) as a yellow oil. 1 H NMR (500 MHz, CDCl3, 25 °C, *δ*): 7.27- 7.12 (m, 5H), 6.92 (t, J = 2.2 Hz, 1H), 6.85 (dd, J = 8.4, 2.5 Hz, 1H), 6.79 (dd, J = 8.0, 1.8 Hz, 1H), 5.51 (t, J = 7.3 Hz, 1H), 4.84 (dd, J = 12.0, 8.0 Hz, 1H), 4.56 (dd, J = 12.1, 6.7 Hz, 1H), 3.66-3.57 (m, 2H), 3.11-3.05 (m, 1H), 2.80 (dt, J = 16.4, 5.1 Hz, 1H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 149.6, 135.4, 135.1, 132.5, 130.6, 129.3, 128.4, 127.1, 127.0, 119.3, 114.8, 112.9, 78.7, 58.1, 42.1, 26.4

Spectroscopic data of 1-(nitromethyl)-2-*p*-tolyl-1,2,3,4 tetrahydroisoquinoline (**5f**):S14 The yield was determined to be 88% by ¹H NMR measurement of the reaction mixture. Column chromatography $(SiO₂, hexane/ethyl acetate=10/1, v/v)$ afforded the desired product (72.0 mg, 85%) as a white solid. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 7.24-7.15 (m, 3H), 7.11 (d, J = 7.3 Hz, 1H), 7.06 (d, J = 8.4 Hz, 2H), 6.87 (dt, $J = 8.6$, 2.5 Hz, 2H), 5.48 (t, $J = 7.3$ Hz, 1H), 4.83 (dd, $J = 11.9$, 8.2 Hz, 1H), 4.53 (dd, J = 11.9, 6.3 Hz, 1H), 3.65-3.53 (m, 2H), 3.07-3.01 (m, 1H), 2.73 (dt, J = 16.4, 4.5 Hz, 1H), 2.25 (s, 3H). 13C{1 H} NMR (126 MHz, CDCl3, 25 °C, *δ*): 146.5, 135.5, 133.0, 130.1, 129.4, 129.2, 128.1, 127.1, 126.7, 116.0, 78.9, 58.5, 42.4, 26.3, 20.5. N O_2N \sim CH_3

Spectroscopic data of 2-(2-methoxyphenyl)-1-(nitromethyl)- 1,2,3,4-tetrahydroisoquinoline (5h):^{S9} The yield was determined to be 71% by $1H$ NMR measurement of the reaction mixture.

N O₂N OMe

Column chromatography (SiO₂, hexane/ethyl acetate=10/1, v/v) afforded the desired product (56.5 mg, 63%) as a white solid. 1 H NMR (500 MHz, CDCl3, 25 °C, *δ*): 7.25-

7.20 (m, 2H), 7.16-7.14 (m, 2H), 7.02 (td, $J = 7.7$, 1.8 Hz, 1H), 6.89-6.82 (m, 3H), 5.50 $(dd, J = 8.3, 5.0 Hz, 1H$, 4.82 (dd, J = 12.0, 8.4 Hz, 1H), 4.53 (dd, J = 12.1, 5.0 Hz, 1H), 3.62-3.58 (m, 1H), 3.51-3.45 (m, 1H), 3.02-2.95 (m, 1H), 2.71 (ddd, J = 16.5, 4.0, 2.3 Hz, 1H). 13C{1 H} NMR (126 MHz, CDCl3, 25 °C, *δ*): 153.2, 139.0, 135.5, 133.8, 129.7, 127.7, 127.0, 126.6, 124.2, 122.1, 121.1, 112.6, 79.3, 58.3, 55.9, 43.1, 27.0

Spectroscopic data of triethyl 5,6-dihydropyrro[1,2 *a*lisoquinoline-1,2,3-tricarboxylate (9a):^{S15} Column chromatography (SiO₂, hexane/CH₂Cl₂ = 1:1 to 2:8,v/v) afforded the desired product (60.7 mg, 52%) as an orange solid. ¹H NMR (500 MHz, CDCl3, 25 °C, *δ*): 8.20-8.16 (m, 1H), 7.34-7.29 (m, 2H), 7.26-7.24 (m, 1H), 4.54 (t, 2H), 4.38 (q, J = 7.2 Hz, 2H), 4.34-4.29 (m, 4H), 3.00 (t, J = 6.5 Hz, 2H), 1.41 $(t, J = 7.2 \text{ Hz}, 3H), 1.36-1.32 \text{ (m, 6H)}.$ ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, δ): 166.2, 163.5, 160.0, 136.8, 134.4, 129.3, 128.6, 127.4, 127.0, 126.5, 119.1, 110.8, 61.6, 61.1, 60.8, 42.6, 29.4, 14.21, 14.17, 14.1. $CO₂Et$ E tO₂C $CO₂Et$

Spectroscopic data of ethyl 9,14-dioxo-5,6,9,14 tetrahydrobenzo[5,6]isoindolo[1,2-*a*]isoquinoline-8-carboxylate (9b):^{S15} Column chromatography (SiO₂, hexane/ethyl) acetate/triethylamine = $99/1/0.2$, v/v) afforded the desired product $(61.9 \text{ mg}, 56\%)$ as an orange solid. ¹H NMR (500 MHz, CDCl₃, 25 °C, δ): 8.99 (dd, J = 8.0, 0.8 Hz, 1H), 8.31-8.27 (m, 1H), 8.23-8.19 (m, 1H), 7.74-7.68 (m, 2H), 7.45 (td, J = 7.6, 1.1 Hz, 1H), 7.37 (td, J = 7.4, 1.3 Hz, 1H), 7.27 (d, J = 7.0 Hz, 1H, overlapped with CHCl₃), 4.55 (q, J = 7.2 Hz, 2H), 4.29 (t, J = 6.6 Hz, 2H), 3.10 (t, J = 6.6 Hz, 2H), 1.50 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃, 25 °C, *δ*): 179.9, 179.6, 161.6, 135.8, 134.8, 133.8, 133.4, 133.1, 130.2, 129.0, 127.6, 127.3, 126.7, 126.5,126.2, 123.3, 117.6, 62.6, 43.3, 29.2, 14.1. N \circ \prec \searrow \circ CO₂Et

ESI-MS Analysis of 14a. The reaction intermediate **14a** was confirmed by ESI-TOF-MS measurement of the reaction mixture obtained after stirring for 12 h under the standard condition (Scheme 3C, Figure S1).

Figure S1. ESI-TOF mass spectrum of the reaction mixture.

4. 1 H and 13C{1 H} NMR Spectra of Novel Compounds

Spectrum S1. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **4d**.

Spectrum S2. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **4d**.

Spectrum S3. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **4e**.

Spectrum S4. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **4e**.

Spectrum S5. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **4a**.

Spectrum S6. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **4a**.

Spectrum S7. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **4b**.

Spectrum S8. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **4b**.

Spectrum S9. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **4c**.

Spectrum S10. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **4c**.

Spectrum S11. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **4f**.

Spectrum S12. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **4f**.

Spectrum S13. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **4g**.

Spectrum S14. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **4g**.

Spectrum S15. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **5a**.

Spectrum S16. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **5a**.

Spectrum S17. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **5c**.

Spectrum S18. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **5c**.

Spectrum S19. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **5f**.

Spectrum S20. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **5f**.

Spectrum S21. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **5h**.

Spectrum S22. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **5h**.

Spectrum S23. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **9a**.

Spectrum S24. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **9a**.

Spectrum S25. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **9b**.

Spectrum S26. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **9b**.

Spectrum S27. ¹ H NMR (CDCl3, 500 MHz) spectrum of compound **9c**.

Spectrum S28. 13C{1 H} NMR (CDCl3, 126 MHz) spectrum of compound **9c**.

6. References

- (S1) F. Müller, B. M. Donald, D. W. Lemuel, *Methods Enzymol.*, 1971, **18**, 453-458.
- (S2) T. Sakai, T. Kumoi, T. Ishikawa, T. Nitta, H. Iida, *Org. Biomol. Chem.*, 2018, **16**, 3999-4007.
- (S3) A. Pokluda, Z. Anwar, V. Boguschov, I. Anusiewicz, P. Skurski, M. Sikorski, R. Cibulka, *Adv. Synth. Catal.*, 2021, **363**, 4371-4379.
- (S4) T. Ishikawa, M. Kimura, T. Kumoi, H. Iida, *Acs Catal.*, 2017, **7**, 4986-4989.
- (S5) J. Zelenka, T. Hartman, K. Klimova, F. Hampl, R. Cibulka, *ChemCatChem*, 2014, **6**, 2843-2846.
- (S6) W. S. Li, N. J. Zhang, L. M. Sayre, *Tetrahedron*, 2001, **57**, 4507-4522.
- (S7) B. Yi, N. Yan, N. N. Yi, Y. J. Xie, X. Y. Wen, C. T. Au, D. H. Lan, *Rsc Adv.*, 2019, **9**, 29721-29725.
- (S8) B. Huang, Y. Chen, X. Zhang and M. Yan, *Eur. J. Org. Chem.*, 2021, **2021**, 3015- 3022.
- (S9) Z. P. Li, D. S. Bohle, C. J. Li, *Proc. Natl. Acad. Sci. U. St. A.*, 2006, **103**, 8928- 8933.
- (S10) L. Huang and J. Z. Zhao, *Chem. Commun.*, 2013, **49**, 3751-3753.
- (S11) H. Miyake and H. Iida, *Adv. Synth. Catal.*, 2024, **366**, 402-407.
- (S12) T. Mizushima, M. Oka, Y. Imada and H. Iida, *Adv. Synth. Catal.*, 2022, **364**, 2443- 2448.
- (S13) L. Möhlmann, M. Baar, J. Riess, M. Antonietti, X. C. Wang, S. Blechert, *Adv. Synth. Catal.*, 2012, **354**, 1909-1913.
- (S14) C. Lin, P. W. Li and L. Wang, *Tetrahedron Lett.*, 2021, **73**.
- (S15) H. M. Huang, Y. J. Li, Q. Ye, W. B. Yu, L. Han, J. H. Jia and J. R. Gao, *J. Org. Chem.*, 2014, **79**, 1084-1092.