Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Construction of arylthio/arylamino methylene bonds by addition-elimination of nitroolefins with aromatic thiols and amines

Pooja Dahiya, Anoop Yadav, Rajnish Budhwan, Megha Rawat, and Rama Krishna Peddinti*

Department of Chemistry, Indian Institute of Technology Roorkee Roorkee-247 667, Uttarakhand, India

SUPPORTING INFORMATION

Table of contents

General procedure for the synthesis of 3a-3p General procedure for the synthesis of 5a-5v Characterization data of 3a-3p S3-Characterization data of 5a-5v S8-SCopies of NMR spectra of 3a-3p S16-SCopies of NMR spectra of 5a-5v S33-SThe ORTEP plot and crystallographic data for compound 3d The ORTEP plot and crystallographic data for compound 3j S16-ORTEP plot and crystallographic data for compound 5h	S3 S3
General procedure for the synthesis of 5a-5v S3-Characterization data of 3a-3p S3-Characterization data of 5a-5v S8-SCopies of NMR spectra of 3a-3p S16-SCopies of NMR spectra of 5a-5v S33-SThe ORTEP plot and crystallographic data for compound 3d SThe ORTEP plot and crystallographic data for compound 3j SThe ORTEP plot and crystallographic data for compound 5h S	S3
Characterization data of 3a-3p S3-Characterization data of 5a-5v S8-SCopies of NMR spectra of 3a-3p S16-SCopies of NMR spectra of 5a-5v S33-SThe ORTEP plot and crystallographic data for compound 3d SThe ORTEP plot and crystallographic data for compound 3j SThe ORTEP plot and crystallographic data for compound 5h S	
Characterization data of 5a-5v S8–SCopies of NMR spectra of 3a-3p S16–SCopies of NMR spectra of 5a-5v S33–SThe ORTEP plot and crystallographic data for compound 3d SThe ORTEP plot and crystallographic data for compound 3j SThe ORTEP plot and crystallographic data for compound 5h S	S 8
Copies of NMR spectra of 3a-3p S16–SCopies of NMR spectra of 5a-5v S33–SThe ORTEP plot and crystallographic data for compound 3d SThe ORTEP plot and crystallographic data for compound 3j SThe ORTEP plot and crystallographic data for compound 3j SState of the ORTEP plot and crystallographic data for compound 5h S	15
Copies of NMR spectra of 5a-5v S33-SThe ORTEP plot and crystallographic data for compound 3d SThe ORTEP plot and crystallographic data for compound 3j SThe ORTEP plot and crystallographic data for compound 5h S	32
The ORTEP plot and crystallographic data for compound 3dSThe ORTEP plot and crystallographic data for compound 3jSThe ORTEP plot and crystallographic data for compound 5hS	53
The ORTEP plot and crystallographic data for compound 3j SThe ORTEP plot and crystallographic data for compound 5h S	54
The ORTEP plot and crystallographic data for compound 5h S	55
	56
The ORTEP plot and crystallographic data for compound 5i S	57
DFT calculation of 3d and 3j S58–S	67
DFT calculation of 5h and 5i S68–S	76

General information:

Unless otherwise noted, chemicals were purchased from commercial suppliers at the highest purity grade available and were used without further purification. The isatin nitroolefin derivatives **2b**, **2c**, **2d** were synthesized by literature methods.²⁴ Thin layer chromatography was performed on pre-coated 0.25 mm silica gel plates (60F-254) using UV light as visualizing agent. Silica gel (100–200 mesh) was used for column chromatography. NMR spectra were recorded in CDCl₃ and/or DMSO-*d*₆ using TMS as an internal standard on 500 MHz and instrument. Chemical shifts (δ) were reported as parts per million (ppm) in δ scale downfield from TMS. ¹H NMR spectra were referenced to CDCl₃ (7.26 ppm) and ¹³C NMR spectra were referenced to CDCl₃ (77.0 ppm, the middle peak). Coupling constants were expressed in Hz. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet. High-resolution mass spectra (HRMS) were obtained on an Agilent 1290-6545XT LC QTOF instrument using ESI technique.

General procedures:

General procedure for the synthesis of 3a-3p:

Nitroolefin 2 (0.1 mmol) and thiophenol 1 (0.12 mmol) were taken in a 10 mL-RB. 1 mL of methanol was added in the reaction mixture and stirred until the completion of the reaction. Yellow solid was precipitated out within 1-10 minutes which is filtered and washed with a few drops of cold methanol and dried in vacuum.

General procedure for the synthesis of 5a-5v:

Nitroolefin 2 (0.1mmol) and aniline 4 (0.12 mmol) were taken in a 10 mL RB. 1 mL of methanol was added in the reaction mixture and stirred until the completion of the reaction. Yellow solid was precipitated out within 1-10 minutes which is filtered and washed with few drops of methanol and dried in vacuum.

Characterization data:

(Z)-2-(Nitromethylene)acenaphthylen-1(2H)-one (2a)

Yield: 13.7 gm (61%) as Yellow solid; MP: 132-134 °C.

¹H NMR (CDCl₃, 500 MHz): δ 8.78 (d, J = 7.4 Hz, 1H), 8.20 (dd, J = 8.2, 0.7 Hz, 1H), 8.14–8.10 (m, 2H), 7.85 (s, 1H), 7.81 (ddd, J = 8.4, 7.2, 1.2 Hz, 2 H) ppm.

 ^{13}C NMR (CDCl₃, 125 MHz): δ 190.9, 144.2, 137.4, 135.2, 132.4, 130.8, 130.27, 130.23, 129.2, 129.1, 129.0, 128.4, 128.4, 127.9, 127.4, 123.1 ppm.

HRMS (ESI): m/z calcd for C₁₃H₈NO₃ [M + H]⁺ 226.0499; found; 226.0509.

(E)-2-((Phenylthio)methylene)acenaphthylen-1(2H)-one (3a)

Yield: 25 mg (87%) as Yellow solid; MP: 130-132 °C.

¹H NMR (CDCl₃, 500 MHz): δ 8.76 (d, 2H, J = 7.4 Hz), 8.21–8.10 (m, 5H), 7.84 (s, 1H), 7.81 (ddd, 4H, J = 8.2, 7.3, 3.8 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 190.8, 144.1, 137.3, 135.1, 132.4, 130.8, 130.2, 130.2, 130.2, 130.2, 130.2, 130.1, 130.1, 129.0, 128.4, 127.8, 127.4, 123.0 ppm.

HRMS (ESI): m/z calcd for C₁₉H₁₃OS [M + H]⁺ : 289.0682; found; 289.0686.

(E)-2-((p-Tolylthio)methylene)acenaphthylen-1(2H)-one (3b)

Yield: 28 mg (93%) as Yellow solid; MP: 119–121 °C.

¹H NMR (CDCl₃, 500 MHz): δ 8.07 (d, 1H, *J* = 8.1 Hz), 8.01 (d, 1H, *J* = 7.0 Hz), 7.96 (d, 1H, *J* = 7.0 Hz), 7.9(s, 1H), 7.85 (d, 1H, *J* = 8.4 Hz), 7.71(dd, 2H, *J* = 15.3, 7.5 Hz), 7.62 (d, 1H, *J* = 7.6 Hz), 7.34–7.28 (m, 3H), 2.52 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ 189.8, 139.8, 139.1, 138.4, 133.6, 133.1, 132.8, 132.7, 132.7, 132.7, 132.6, 131.3, 131.3, 131.3, 130.9, 130.8, 130.6, 130.4, 129.3, 128.5, 128.0, 127.3, 125.0, 121.8, 121.0, 21.0 ppm.

HRMS (ESI): m/z calcd for C₂₀H₁₅OS [M + H]⁺: 303.0844; found; 303.0850.

(E)-2-(((4-Chlorophenyl)thio)methylene)acenaphthylen-1(2H)-one (3c)

Yield: 30 mg (93%) as Yellow solid; MP: 193–195 °C.

¹H NMR (CDCl₃, 500 MHz): δ 8.08 (d, 1H, J = 8.2 Hz), 8.02–8.00 (m, 1H), 7.92 (s, 1H), 7.87 (dd, 2H, J = 13.0, 7.6 Hz), 7.71 (ddd, 2H, J = 16.6, 8.2, 7.0 Hz), 7.55(d, 2H, J = 8.6 Hz), 7.42 (d, 2H, J = 8.6 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 193.9, 138.7, 135.4, 134.87, 134.80, 134.2, 131.1, 130.1, 129.8, 128.6, 128.3, 127.8, 122.7, 121.5, 117.1, 113.5, 109.7 ppm.

HRMS (ESI): *m*/*z* calcd for C₁₉H₁₂ClOS [M + H]⁺: 323.0297; found: 323.0255.

(E)-2-(((2-Chlorophenyl)thio)methylene)acenaphthylen-1(2H)-one (3d)

Yield: 30 mg (93%) as Yellow solid; MP: 130–132 °C.

IR (neat): 1705, 1587, 1498, 1437, 1305, 1254, 1174, 1106, 1032, 926, 841, 805, 730, 653, 567, 479 cm⁻¹ ¹H NMR (CDCl₃, 500 MHz): δ 8.09 (d, 1H, *J* = 8.1 Hz), 8.02 (d, 1H, *J* = 7.0 Hz), 7.98 (d, 1H, *J* = 7.0 Hz), 7.93 (s, 1H), 7.87 (d, 1H, *J* = 8.4 Hz), 7.74–7.67 (m, 3H), 7.52-7.50 (m, 1H), 7.40–7.32 (m, 2H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 189.8, 139.4, 135.4, 135.1, 133.2, 132.9, 132.2, 131.7, 131.3, 130.4, 130.3, 129.8, 128.5, 128.1, 128.03, 128.02, 125.3, 121.9, 121.3 ppm.

HRMS (ESI): m/z calcd for C₁₉H₁₂ClOS [M + H]⁺: 323.0297; found : 323.0260.

(E)-2-((Naphthalen-2-ylthio)methylene)acenaphthylen-1(2H)-one (3e)

Yield: 30 mg (89%) as Yellow solid; MP: 142–144 °C.

¹H NMR (CDCl₃, 500 MHz): δ 8.14 (s, 1H), 8.12–8.07 (m, 2H), 8.02 (dd, 1H, *J* = 7.0, 0.8 Hz), 7.96 (d, 1H, *J* = 7.1 Hz), 7.92 (d, 1H, *J* = 8.8 Hz), 7.88 (dd, 2H, *J* = 7.4, 2.9 Hz), 7.86 (s, 1H), 7.72 (dt, 2H, *J* = 8.6, 7.0 Hz), 7.66 (dd, 1H, *J* = 8.6, 2.1 Hz), 7.57–7.54 (m, 2H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 189.8, 139.1, 137.3, 133.6, 133.5, 133.0, 132.8, 131.2, 130.7, 130.3, 130.0, 129.5, 128.4, 128.0, 127.8, 127.7, 127.7, 127.1, 127.0, 125.0, 121.8, 120.9 ppm.

HRMS (ESI): m/z calcd for C₂₃H₁₅OS [M + H]⁺: 339.0844; found: 339.0810.

(Z)-3-((Phenylthio)methylene)indolin-2-one (3f)

Yield: 22 mg (87%) as Yellow solid; MP: 136–138 °C.

¹H NMR (CDCl₃, 500 MHz): δ 8.06 (s, 1H), 7.97 (s, 1H), 7.65 (d, 1H, *J* = 7.5 Hz), 7.59–7.57 (m, 2H), 7.42 (ddd, 3H, *J* = 8.9, 4.5, 2.9 Hz), 7.23 (td, 1H, *J* = 7.7, 1.1 Hz), 7.10 (td, 1H, *J* = 7.6, 0.9 Hz), 6.89 (d, 1H, *J* = 7.7 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 167.5, 140.5, 140.0, 133.3, 131.1, 129.7, 128.9, 128.6, 124.0, 123.0, 122.7, 122.2, 109.7 ppm.

HRMS (ESI): *m/z* calcd for C₁₅H₁₂NOS [M + H]⁺: 254.0640; found: 254.0647.

(Z)-3-(((4-Chlorophenyl)thio)methylene)indolin-2-one (3g)

Yield: 27 mg (94%) as Yellow solid; MP: 179–181 °C.

¹H NMR (CDCl₃, 500 MHz): δ 8.44 (s, 1H), 7.87 (s, 1H), 7.63–7.60 (m, 1H), 7.53–7.49 (m, 2H), 7.40 (dt, 2H, J = 2.2, 1.6 Hz), 7.23 (dd, m, 1H, J = 7.8, 1.3 Hz), 7.09 (td, 1H, J = 7.7, 1.1 Hz), 6.91–6.89 (m, 1H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 167.6, 140.2, 139.2, 135.3, 132.4, 132.4, 132.4, 132.4, 132.4, 131.7, 130.0, 129.9, 129.9, 129.9, 129.9, 128.9, 124.0, 123.7, 122.5, 122.3, 109.8 ppm.

HRMS (ESI): *m/z* calcd for C₁₅H₁₁NOClS [M + H]⁺: 288.0250; found: 288.0234.

(Z)-3-(((2-Chlorophenyl)thio)methylene)indolin-2-one (3h)

Yield: 27 mg (94%) as Yellow solid; MP: 197–199 °C.

¹H NMR (CDCl₃, 500 MHz): δ 8.15 (s, 1H), 7.87 (s, 1H), 7.71 (d, 1H, *J* = 8.1 Hz), 7.66–7.63 (m, 1H), 7.53–7.48 (m, 1H), 7.38–7.33 (m, 2H), 7.24 (dd, 1H, *J* = 7.8, 1.1 Hz), 7.14–7.08 (m, 1H), 6.90 (d, 1H, *J* = 8.1 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 167.5, 140.1, 138.1, 135.5, 132.5, 132.4, 130.4, 130.1, 128.9, 128.1, 128.0, 124.3, 124.2, 122.5, 122.4, 109.8 ppm.

HRMS (ESI): m/z calcd for C₁₅H₁₁ClNOS [M + H]⁺: 288.0250; found: 288.0250.

(Z)-3-((Naphthalen-2-ylthio)methylene)indolin-2-one (3i)

Yield: 27 mg (89%) as Yellow solid; MP: 196–198 °C.

¹H NMR (CDCl₃, 500 MHz): δ 8.09 (s, 1H), 8.08–8.07 (m, 1H), 7.99–7.98 (m, 1H), 7.90 (d, J = 8.8 Hz, 1H), 7.86 (m, 1H), 7.80–7.77 (m, 1H), 7.74–7.69 (m, 1H), 7.63–7.60 (m, 1H), 7.57–7.54 (m, 2H), 7.46 (ddd, J = 6.8, 2.9, 1.3 Hz, 1H), 7.13 (td, J = 7.6, 1.1 Hz, 1H), 6.91–6.88 (m, 1H) ppm.

¹³C NMR (CDCl₃, 125 MHz): 167.5, 140.2, 140.0, 133.6, 132.9, 130.2, 129.6, 128.7, 127.9, 127.8, 127.7, 127.2, 127.2, 124.0, 123.2, 122.7, 122.3, 109.7 ppm.

HRMS (ESI): m/z calcd for C₁₉H₁₃NO SK [M + K]⁺: 342.0349; found: 342.0342.

(Z)-1-Benzyl-3-(((4-chlorophenyl)thio)methylene)indolin-2-one (3j)

Yield: 37 mg (98%) as Yellow solid; MP: 98–100 °C.

¹H NMR (CDCl₃, 500 MHz): δ 7.98 (s, 1H), 7.76 (d, 1H, J = 7.2 Hz), 7.72–7.67 (m, 1H), 7.56–7.51 (m, 1H), 7.38 (m, 3H), 7.34 (d, 3H, J = 4.4 Hz), 7.28 (dd, 1H, J = 7.6, 5.0 Hz), 7.12 (ddd, 1H, J = 81.1, 58.0, 7.6, 0.8 Hz), 7.07 (m, 1H), 6.77 (t, 1H, J = 7.1 Hz), 5.02 (d, 2H, J = 16.9 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 166.7, 166.1, 142.0, 139.1, 137.7, 136.1, 135.4, 132.3, 130.3, 129.9, 128.7, 128.0, 127.6, 127.5, 127.2, 124.0, 123.9, 122.3, 121.9, 121.8, 118.8, 109.1, 108.9, 43.7 ppm.

HRMS (ESI): *m*/*z* calcd for C₂₂H₁₇ClNOS [M + H]⁺: 378.0719; found: 378.0688.

(Z)-1-Benzyl-3-(((2-chlorophenyl)thio)methylene)indolin-2-one (3k)

Yield: 36 mg (95%) as Yellow solid; MP: 100–102 °C.

¹H NMR (CDCl₃, 500 MHz): δ 7.95 (s, 1H), 7.74–7.72 (m, 1H), 7.67–7.65 (m, 1H), 7.52–7.49 (m, 1H), 7.36 (ddd, 3H, *J* = 7.2, 4.6, 1.9 Hz), 7.31 (d, 4H, *J* = 4.4 Hz), 7.19 (td, 1H, *J* = 7.8, 1.1 Hz), 7.11–7.07 (m, 1H), 6.74 (d, 1H, *J* = 7.8), 4.95 (s, 2H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ 166.2, 142.1, 137.8, 136.1, 133.6, 132.6, 132.4, 130.5, 130.3, 130.0, 129.0, 128.8, 128.0, 127.7, 127.6, 127.3, 124.0, 122.3, 122.0, 121.9, 118.8, 109.2, 109.0, 43.8 ppm. HRMS (ESI): *m*/*z* calcd for C₂₂H₁₇ ClNOS [M + H]⁺: 378.0719; found: 378.0686.

(Z)-1-Benzyl-3-((naphthalen-2-ylthio)methylene)indolin-2-one (3l)

Yield: 36 mg (92%) as Yellow solid; MP: 150–152 °C.

¹H NMR (CDCl₃, 500 MHz): δ 8.16 (s, 1H), 8.09 (d, 1H, J = 1.7 Hz), 7.92–7.85 (m, 4H), 7.72 (dd, 1H, J = 7.4, 0.5 Hz), 7.63 (dd, 1H, J = 8.6, 1.9 Hz), 7.55 (dd, 2H, J = 6.5, 3.0 Hz), 7.32–7.31 (m, 4H), 7.18 (dd, 1H, J = 7.8, 1.2 Hz), 7.10 (td, 1H, J = 7.6, 1.0 Hz), 6.74 (s, 1H), 4.99 (s, 2H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 166.3, 142.0, 139.8, 136.2, 133.6, 133.0, 130.5, 130.1, 129.6, 128.8, 128.5, 128.0, 127.9, 127.7, 127.7, 127.5, 127.3, 127.2, 127.1, 123.8, 123.0, 122.3, 122.2, 108.9, 43.7, 29.7 ppm.

HRMS (ESI): *m*/*z* calcd for C₂₆H₂₀NOS [M + H]⁺: 394.1260; found: 394.1257.

(Z)-3-(((4-Chlorophenyl)thio)methylene)-1-methylindolin-2-one (3m)

Yield: 29 mg (96%) as Yellow solid; MP: 140-142 °C.

¹H NMR (CDCl₃, 500 MHz): δ 7.87 (s, 1H), 7.63 (ddd, 1H, *J* = 7.6, 1.2, 0.6 Hz), 7.50 (d, 2H, *J* = 8.8 Hz), 7.40 (d, 2H, *J* = 8.9 Hz), 7.30 (td, 1H, *J* = 7.7,1.3 Hz), 7.11 (td, 1H, *J* = 7.6, 1.1 Hz), 6.86–6.83 (m, 1H), 3.26 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ 166.1, 143.0, 138.5, 132.37, 132.36, 132.3, 131.8, 129.9, 128.8, 123.7, 123.5, 122.2, 121.8, 108.0, 77.3, 77.1, 76.8, 26.2 ppm.

HRMS (ESI): m/z calcd for C₁₆H₁₃NOSCl [M + H]⁺: 302.0406; found: 302.0408.

(Z)-3-(((2-Chlorophenyl)thio)methylene)-1-methylindolin-2-one (3n)

Yield: 29 mg (96%) as Yellow solid; MP: 148–150 °C.

¹H NMR (CDCl₃, 500 MHz): δ 7.85 (s, 1H), 7.61 (ddd, 1H, *J* = 7.6, 1.2, 0.6 Hz), 7.50–7.47 (m, 2H), 7.40–7.37 (m, 2H), 7.28 (td, 1H, *J* = 7.7, 1.3 Hz), 7.09 (td, 1H, *J* = 7.6, 1.1 Hz), 6.84–6.81 (m, 1H), 3.24 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ 166.1, 141.8, 140.2, 136.3, 136.23, 129.1, 129.0, 128.7, 128.1, 127.5, 127.3, 123.7, 122.1, 108.7, 43.6, 40.1 ppm.

HRMS (ESI): m/z calcd for C₁₆H₁₃NO ClS [M + H]: 302.0406; found: 302.0408.

(Z)-1-Benzyl-3-((cyclohexylthio)methylene)indolin-2-one (30)

Yield: 32 mg (92%) as Yellow solid; MP: 126–128 °C.

¹H NMR (CDCl₃, 500 MHz): δ 8.01 (s, 1H), 7.60–7.56 (m, 1H), 7.39–7.37 (m, 4H), 7.24–7.21 (m, 1H), 7.12 (ddd, 1H, *J* = 7.9, 5.3, 1.40 Hz), 7.05–6.95 (m, 1H), 6.74–6.68 (m, 1H), 4.96 (s, 2H), 3.25–3.02 (m, 1H), 2.21–2.10 (m, 1H), 1.86 (ddd, 2H, *J* = 13.6, 7.9, 3.8 Hz), 1.71–1.55 (m, 3H), 1.48–1.24 (m, 3H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ 166.3, 141.6, 140.4, 140.2, 136.4, 128.8, 128.8, 128.8, 128.8, 128.7, 128.7, 127.8, 127.6, 127.5, 127.3, 123.5, 122.7, 122.0, 121.7, 121.6, 118.1, 108.9, 108.6, 48.7, 48.5, 43.6, 33.8, 33.7, 25.8, 25.3 ppm.

HRMS (ESI): *m*/*z* calcd for C₂₂H₂₄NSO [M + H]⁺: 350.1579; found: 350.1611.

(Z)-1-Benzyl-3-((benzylthio)methylene)indolin-2-one (3p)

Yield: 33 mg (92%) as Yellow solid; MP: 180–182 °C.

¹H NMR (CDCl₃, 500 MHz): δ 7.92 (s, 1H), 7.55 (dd, 1H, *J* = 7.5, 0.6 Hz), 7.42–7.36 (m, 5H), 7.33–7.30 (m, 2H), 7.29–7.27 (m, 3H), 7.12 (m, 1H), 7.01 (td, 1H, *J* = 7.6, 1.0 Hz), 6.69 (d, 1H, *J* = 7.7 Hz), 4.94 (s, 2H), 4.26 (s, 2H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ 166.1, 141.8, 140.2, 136.29, 136.23, 129.2, 129.1, 129.05, 129.02, 128.8, 128.78, 128.74, 128.1, 127.5, 127.3, 123.7, 122.5, 122.4, 122.1, 108.7, 44.3, 40.1 ppm.

HRMS (ESI): *m/z* calcd for C₂₃H₂₀NOS [M + H]⁺: 358.1266; found: 358.1270.

(E)-2-((Phenylamino)methylene)acenaphthylen-1(2H)-one (5a)

Yield: 24 mg (89%) as Yellow solid; MP: 120-122 °C

¹H NMR (CDCl₃, 500 MHz) δ : 11.14 (d, *J* = 13.4 Hz, 1H), 8.03–7.99 (m, 3H), 7.72–7.66 (m, 2H), 7.54 (dd, *J* = 8.3, 7.0 Hz, 1H), 7.44 (d, *J* = 5.6 Hz, 1H), 7.42–7.38 (m, 2H), 7.21 (dd, *J* = 8.8, 1.0 Hz, 2H), 7.11 (tt, *J* = 7.6, 1.1 Hz, 1H) ppm.

¹³C NMR, (CDCl₃, 125 MHz): *δ* 193.8, 140.1, 136.1, 135.3, 134.6, 134.5, 131.1, 130.2, 130.0, 129.9, 129.9, 129.9, 128.4, 127.8, 123.7, 122.5, 121.5, 116.1, 113.4, 109.2 ppm.

HRMS (ESI): *m*/*z* calcd for C₁₉H₁₄NO [M + H]⁺: 272.1075; found: 272.1073.

(E)-2-((p-Tolylamino)methylene)acenaphthylen-1(2H)-one (5b)

Yield: 28 mg (98%) as Yellow solid; MP: 134-136 °C.

¹H NMR (CDCl₃, 500 MHz): δ : 11.15 (d, 1H, *J* =12.2 Hz), 8.04 (d, 1H, *J* = 3.2 Hz), 8.03 (d, 1H, *J* = 2.0 Hz), 8.00 (d, 1H, *J* = 12.5 Hz), 7.73–7.67 (m, 2H), 7.56 (dd, 1H, *J* = 8.3, 7.0 Hz), 7.45 (d, 1H, *J* = 6.8 Hz), 7.22 (d, 2H, *J* = 8.1 Hz), 7.13 (d, 2H, *J* = 8.4 Hz), 2.38 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125 MHz) *δ*: 193.6, 137.6, 136.4, 135.4, 134.5, 134.3, 133.4, 130.9, 130.3, 130.1, 128.3, 127.7, 122.3, 121.3, 116.1, 114.9, 113.2, 108.7 ppm.

HRMS (ESI): m/z calcd for C₂₀H₁₆NO [M + H]⁺ : 286.1232; found: 286.1208.

(E)-2-(((4-Methoxyphenyl)amino)methylene)acenaphthylen-1(2H)-one (5c)

Yield: 29 mg (96%) as Yellow solid; MP: 112–114 °C.

¹H NMR (CDCl₃, 500 MHz): δ 11.12 (s, 1H), 8.01 (d, 1H, *J* = 1.6 Hz), 8.00 (s, 1H), 7.91 (d, 1H, *J* = 12.5 Hz), 7.68 (d, 1H, *J* = 7.7 Hz), 7.64 (d, 1H, *J* = 8.3 Hz), 7.54–7.50 (m, 1H), 7.40 (d, 1H, *J* = 6.9 Hz), 7.16–7.13 (m, 2H), 6.96–6.92 (m, 2H), 3.83 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ 193.5, 156.5, 137.2, 135.6, 134.6, 134.2, 133.7, 130.9, 130.1, 128.3, 127.8, 122.3, 121.4, 121.4, 121.3, 117.8, 117.8, 117.8, 117.7, 117.7, 115.3, 115.2, 115.

HRMS (ESI): m/z calcd for C₂₀H₁₆NO₂ [M + H]⁺: 302.1181; found: 302.1186.

(E)-2-(((4-Chlorophenyl)amino)methylene)acenaphthylen-1(2H)-one (5d)

Yield: 29 mg (95%) as Yellow solid; MP: 155–157 °C.

¹H NMR (CDCl₃, 500 MHz): δ 11.13 (d, 1H, J = 12.1 Hz), 8.05–8.01 (m, 2H), 7.93 (d, 1H, J = 12.3 Hz), 7.73–7.68 (m, 2H), 7.55 (dd, 1H, J = 8.3, 6.9 Hz), 7.45 (dd, 1H, J = 6.9, 0.5 Hz), 7.37–7.34 (m, 2H), 7.15–7.12 (m, 2H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 194.0, 138.8, 135.5, 134.9, 134.8, 134.3, 131.2, 130.2, 129.9, 128.6, 128.4, 127.9, 122.8, 121.6, 117.2, 113.6, 109.8 ppm.

HRMS (ESI): *m*/*z* calcd for C₁₉H₁₃NOCl [M + H]⁺: 306.0686; found: 306.0651.

(*E*)-2-(((4-Bromophenyl)amino)methylene)acenaphthylen-1(2*H*)-one (5e)

Yield: 33 mg (95%) as Yellow solid; MP: 135–137 °C.

¹H NMR (CDCl₃, 500 MHz): δ 11.11 (d, 1H, J = 12.1 Hz), 8.16 (dd, 1H, J = 34.7, 8.3 Hz), 8.04–8.00 (m, 1H), 7.93–7.80 (m, 2H), 7.71–7.67 (m, 1H), 7.56–7.43 (m, 4H), 7.07 (d, 2H, J = 8.9 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 194.0, 139.3, 135.3, 135.0, 134.9, 134.3, 132.9, 132.8, 132.4, 131.2, 130.2, 130.1, 129.0, 128.41, 128.40, 128.3, 127.9, 127.8, 123.0, 122.8, 121.6, 117.5, 116.0, 113.7, 113.6, 109.9 ppm.

HRMS (ESI): m/z calcd for C₁₉H₁₃BrNO [M + H]⁺: 350.0181; found: 350.0142.

(E)-2-(((4-Iodophenyl)amino)methylene)acenaphthylen-1(2H)-one (5f)

Yield: 38 mg (96%) as Yellow solid; MP: 198–200 °C.

¹H NMR (CDCl₃, 500 MHz): δ 11.06 (d, 1H, J = 11.6 Hz), 7.99 (dd, 2H, J = 11.7, 7.5 Hz), 7.86 (d, 1H, J = 12.2 Hz), 7.70–7.62 (m, 4H), 7.55–7.51 (m, 1H), 7.42 (s, 1H), 6.95–6.90 (m, 2H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ 194.0, 139.8, 138.6, 134.9, 134.87, 134.80, 134.2, 131.1, 130.1, 128.3, 127.8, 122.7, 121.5, 117.7, 113.6, 109.9, 86.0 ppm.

HRMS (ESI): *m*/*z* calcd for C₁₉H₁₂INO [M] ⁺: 396.9964; found: 396.9929.

(E)-2-(((3,5-Bis(trifluoromethyl)phenyl)amino)methylene)acenaphthylen-1(2H)-one (5g)

Yield: 34 mg (84%) as Yellow solid; MP: 232–234 °C.

¹H NMR (CDCl₃, 500 MHz): δ 11.28 (d, 1H, J = 11.7 Hz), 8.04 (dd, 2H, J = 9.0, 7.7 Hz), 7.89 (d, 1H, J = 11.8 Hz), 7.74–7.68 (m, 2H), 7.61–7.57 (m, 1H), 7.55 (s, 1H), 7.53 (d, 3H, J = 4.0 Hz) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 194.4, 141.6, 135.6, 133.8, 133.7, 133.4, 133.2, 131.5, 130.2, 128.3, 127.9,

124.1, 123.4, 121.9, 121.8, 116.0, 115.2, 114.3, 111.7 ppm.

HRMS (ESI): *m*/*z* calcd for C₂₁H₁₂NOF₆ [M + H]⁺: 408.0823; found: 408.0782.

(E)-2-(((3-Chloro-4-methoxyphenyl)amino)methylene)acenaphthylen-1(2H)-one (5h)

Yield: 31 mg (93%) as Yellow solid; MP: 182–184 °C.

¹H NMR (CDCl₃, 500 MHz): δ 11.09 (d, 1H, J = 12.2 Hz), 8.03 (t, 2H, J = 7.0 Hz), 7.87 (d, 1H, J = 12.3 Hz), 7.74–7.67 (m, 2H), 7.58–7.54 (m, 1H), 7.45 (d, 1H, J = 6.9 Hz), 7.29 (s, 1H), 7.06 (dd, 1H, J = 8.8, 2.7 Hz), 6.96 (d, 1H, J = 8.8 Hz), 3.93 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 193.7, 151.6, 136.2, 135.0, 134.5, 134.3, 134.2, 131.0, 130.1, 128.3, 127.7, 123.8, 122.5, 121.4, 118.1, 115.8, 113.4, 113.3, 109.2, 56.5 ppm.

HRMS (ESI): m/z calcd for C₂₀H₁₅NO₂Cl [M + H]⁺: 336.0791; found: 336.0781.

(Z)-3-((p-Tolylamino)methylene)indolin-2-one (5i)

Yield: 24 mg (96%) as Yellow solid; MP: 117–119 °C.

¹H NMR (CDCl₃ + DMSO, 500 MHz): δ 10.30 (d, 1H, J = 12.5 Hz), 9.63 (s, 1H), 7.71 (d, 1H, J = 12.5 Hz), 6.99–6.97 (m, 1H), 6.74 (d, 2H, J = 8.1 Hz), 6.69–6.66 (m, 2H), 6.59 (dt, 1H, J = 7.6, 3.8 Hz), 6.52 (dd, 1H, J = 7.5, 1.1 Hz), 6.49 (dd, 1H, J = 8.2, 4.4 Hz), 1.90 (s, 3H) ppm.

¹³C NMR (CDCl₃ + DMSO, 125 MHz): *δ* 170.7, 137.6, 137.3, 137.0, 132.9, 130.3, 124.3, 124.0, 120.7, 116.3, 115.9, 109.7, 99.6, 20.8 ppm.

HRMS (ESI): m/z calcd for C₁₆H₁₅N₂O [M + H]⁺: 251.1184; found: 251.1201.

(Z)-3-(((4-Chlorophenyl)amino)methylene)indolin-2-one (5j)

Yield: 26 mg (96%) as Yellow solid; MP: 282–284 °C.

¹H NMR (CDCl₃, 500 MHz): δ 10.66 (dd, 1H, J = 13.6, 6.05 Hz), 7.95 (dd, 1H, J = 22.8, 13.2 Hz), 7.60–7.65 (m, 1H), 7.37 (dd, 1H, J = 1.4, 0.7 Hz), 7.36–7.35 (m, 1H), 7.35 (s, 1H), 7.33 (d, 1H, J = 2.4 Hz), 7.12 (dd, 1H, J = 6.6, 1.0 Hz), 7.10–7.09 (m, 1H), 7.09–7.07 (m, 1H), 7.05–7.01 (m, 1H) ppm.

¹³C NMR (CDCl₃ + DMSO, 125 MHz): δ 171.0, 140.5, 138.3, 138.2, 133.3, 125.3, 125.1, 121.4, 118.8, 118.2, 115.5, 110.2, 101.5, 80.2, 80.0, 79.7, 41.0, 40.8, 40.6, 40.5, 40.3 ppm.

HRMS (ESI): m/z calcd for $C_{15}H_{12}ClN_2O [M + H]^+$: 271.0638; found : 271.0635.

(Z)-3-(((3,5-Dimethylphenyl)amino)methylene)indolin-2-one (5k)

Yield: 26 mg (98%) as Yellow solid; MP: 238–240 °C.

¹H NMR (CDCl₃ + DMSO, 500 MHz): δ 10.52 (s, 1H), 9.23 (s, 1H), 7.94–7.88 (m, 1H), 7.29 (s, 1H), 7.25 (d, 1H, J = 9.1 Hz), 6.94 (ddd, 1H, J = 12.8, 7.6, 6.4 Hz), 6.86 (ddd, 1H, J = 7.5, 4.2, 1.1 Hz), 6.84–6.80 (m, 1H), 6.67 (d, 1H, J = 14.7 Hz), 6.63–6.58 (m, 1H), 2.23 (s, 3H), 2.20 (s, 3H) ppm.

¹³C NMR (CDCl₃ + DMSO, 125 MHz): *δ* 170.7, 170.66, 139.8, 139.7, 139.6, 139.6, 137.0, 136.9, 136.7, 136.6, 125.4, 125.3, 124.3, 124.3, 124.1, 124.1, 120.9, 120.8, 116.1, 116.0, 113.8, 113.7, 109.7, 109.7, 99.6, 21.4 ppm.

HRMS (ESI): m/z calcd for C₁₇H₁₇N₂O [M + H]⁺: 265.1341; found: 265.1351.

(Z)-3-(((4-Bromophenyl)amino)methylene)indolin-2-one (5l)

Yield: 30 mg (95%) as Yellow solid; MP: 289–291 °C.

¹H NMR (CDCl₃ + DMSO, 500 MHz): δ 10.68 (d, J = 12.4 Hz, 1H), 10.42 (s, 1H), 8.47 (d, J = 12.3 Hz, 1H), 7.52–7.49 (m, 1H), 7.46–7.44 (m, 2H), 7.31–7.29 (m, 2H), 6.95 (td, J = 7.6, 1.2 Hz, 1H), 6.86 (td, J = 7.5, 1.1 Hz, 1H), 6.79 (dd, J = 4.6, 4.0 Hz, 1H) ppm.

¹³C NMR (CDCl₃ + DMSO, 125 MHz): *δ* 170.4, 139.9, 137.7, 137.6, 132.6, 132.5, 124.6, 124.5, 120.8, 119.1, 118.3, 118.2, 118.2, 117.6, 114.9, 109.6, 100.9 ppm.

HRMS (ESI): m/z calcd for C₁₅H₁₂BrN₂O [M + H]⁺: 315.0133; found: 315.0115.

(Z)-3-(((3,5-Bis(trifluoromethyl)phenyl)amino)methylene)indolin-2-one (5m)

Yield: 31 mg (83%) as Yellow solid; MP: 270–272 °C.

¹H NMR (CDCl₃ + DMSO, 500 MHz: δ 10.16 (s, 1H), 8.43 (s, 1H), 8.00 (dd, 1H, J = 21.3, 7.5 Hz), 7.80 (s, 1H), 7.65–7.59 (m, 2H), 7.21 (t, 1H, J = 7.6 Hz), 7.12–7.04 (m, 3H) ppm.

¹³C NMR (CDCl₃ + DMSO, 125 MHz): *δ* 175.6, 157.7, 146.7, 142.7, 137.8, 137.5, 130.2, 128.3, 125.8, 122.3, 120.2, 116.0, 114.7, 108.1, 34.3 ppm.

HRMS (ESI): m/z calcd for C₁₇H₁₁N₂OF₆ [M + H]⁺: 373.0770; found: 373.0772.

(Z)-3-(((4-Methoxyphenyl)amino)methylene)indolin-2-one (5n)

Yield: 25 mg (94%) as Yellow solid; MP: 124–126 °C.

¹H NMR (CDCl₃, 500 MHz): δ 10.62 (d, 1H, 12.6 Hz), 8.19 (s, 1H, *J* =12.6 Hz), 7.92 (d, 1H, *J* =12.7 Hz), 7.35 (d, 1H, *J* = 7.4 Hz), 7.13–7.09 (m, 2H), 7.07 (dd, 1H, *J* = 7.6, 1.1 Hz), 7.02 (td, 1H, *J* = 7.5, 0.9 Hz), 6.96–6.91 (m, 3H), 3.78 (s, 3H) ppm.

¹³C NMR (CDCl₃ + DMSO, 125 MHz): *δ* 170.7, 137.6, 137.3, 137.0, 132.9, 130.3, 124.3, 124.0, 120.7,

116.3, 115.9, 109.7, 99.6, 41.8 ppm.

HRMS (ESI): m/z calcd for C₁₆H₁₅N₂O₂ [M + H]⁺: 267.1128; found: 267.1128.

(Z)-3-(((3,4-Dimethoxyphenyl)amino)methylene)-1-methylindolin-2-one (50)

Yield: 29 mg (93%) as Yellow solid; MP: 157–159 °C.

¹H NMR (CDCl₃, 500 MHz): δ 10.86 (d, 1H, J = 12.9), 7.96 (d, 1H, J = 12.9 Hz), 7.38–7.35 (m, 1H), 7.13 (ddd, 2H, J = 8.8,9.0, 3.2 Hz), 7.03 (dt, 1H, J = 7.5, 3.8 Hz), 6.89 (d, 1H, J = 7.7 Hz), 6.55–6.50 (m, 2H), 3.94 (s, 3H), 3.81 (s, 3H), 3.36 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 168.9, 156.6, 149.7, 138.5, 136.2, 123.8, 123.4, 121.1, 115.6, 113.7, 107.8, 104.4, 99.4, 98.8, 56.0, 55.7, 25.6 ppm.

HRMS (ESI): m/z calcd for C₁₈H₁₉N₂O₃ [M + H]⁺: 311.1396; found: 311.1306.

(Z)-3-(((3,5-Bis(trifluoromethyl)phenyl)amino)methylene)-1-methylindolin-2-one (5p)

Yield: 33 mg (85%) as Yellow solid; MP: 217–219 °C.

¹H NMR (CDCl₃, 500 MHz): δ 11.01 (s, 1H), 7.93 (d, 1H, *J* = 11.9 Hz), 7.52 (d, 3H, *J* = 5.0 Hz), 7.46–7.44 (m, 1H), 7.23–7.20 (m, 1H), 7.10–7.06 (m, 1H), 6.91 (d, 1H, *J* = 7.8 Hz), 3.35 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ 169.0, 141.5, 139.6, 133.9, 133.5, 133.2, 125.8, 124.1, 122.4, 122.0, 121.8, 117.0, 116.0, 116.0, 115.3, 115.2, 108.3, 102.8, 25.8 ppm.

HRMS (ESI): *m*/*z* calcd for C₁₈H₁₃N₂OF₆ [M + H]⁺: 387.0929; found: 387.0929.

(Z)-1-Benzyl-3-(((4-methoxyphenyl)amino)methylene)indolin-2-one (5q)

Yield: 34 mg (95%) as Yellow solid; MP: 127–129 °C.

¹H NMR (CDCl₃, 500 MHz): δ 10.73 (d, 1H, J = 12.7 Hz), 7.98 (d, 1H, J = 12.7 Hz), 7.42–7.38 (m, 1H), 7.34 (s, 2H), 7.33 (d, 2H, J = 2.2 Hz), 7.27 (dd, 1H, J = 3.4, 2.5 Hz), 7.15–7.12 (m, 2H), 7.05 (td, 2H, J = 7.3, 1.3 Hz), 6.97–6.94 (m, 2H), 6.84 (dd, 1H, J = 6.9, 1.5 Hz), 5.09 (s, 2H), 3.84 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 168.9, 156.4, 137.8, 137.6, 136.8, 133.5, 128.6, 127.3, 127.2, 123.9, 123.7, 121.2, 117.7, 115.7, 115.1, 108.7, 98.3, 55.6, 43.2 ppm.

HRMS (ESI): m/z calcd for C₂₃H₂₁N₂O₂ [M + H]⁺: 357.1603; found: 357.1607.

(Z)-1-Benzyl-3-(((4-chlorophenyl)amino)methylene)indolin-2-one (5r)

Yield: 35 mg (97%) as Yellow solid; MP: 184–186 °C.

¹H NMR (CDCl₃, 500 MHz): δ 10.76 (d, 1H, J = 12.4 Hz), 7.95 (d, 1H, J = 12.4 Hz), 7.39 (m, 1H), 7.34 (d, 1H, J = 2.1 Hz), 7.32 (s, 1H), 7.30 (s, 3H), 7.25 (m, 1H), 7.09 (d, 1H, J = 2.4 Hz), 7.07 (dd, 2H, J = 3.1, 1.8 Hz), 7.03 (ddd, 2H, J = 14.8, 7.6, 1.3 Hz), 6.81 (m, 1H), 5.01 (s, 2H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 169.0, 138.6, 138.1, 136.6, 136.2, 130.0, 130.1, 129.9, 128.8, 128.8, 128.8, 128.6, 128.6, 127.5, 127.3, 127.3, 127.2, 124.7, 121.6, 117.1, 116.3, 109.0, 100.0, 43.3 ppm.

HRMS (ESI): *m*/*z* calcd for C₂₂H₁₈ClN₂O [M + H]⁺: 361.1102; found: 361.1105.

(Z)-1-Benzyl-3-(((3,5-dimethylphenyl)amino)methylene)indolin-2-one (5s)

Yield: 34 mg (96%) as Yellow solid; MP: 176–178 °C.

¹H NMR (CDCl₃, 500 MHz): δ 10.62 (d, 1H, J = 12.6 Hz), 7.97 (d, 1H, J = 12.6 Hz), 7.36–7.34 (m, 1H), 7.27 (s, 1H), 7.25 (d, 2H, J = 3.6 Hz), 7.20–7.17 (m, 1H), 7.01-6.94 (m, 3H), 6.76–6.73 (m, 3H), 6.69 (s, 1H), 5.00 (s, 2H), 2.28 (s, 6H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 168.9, 139.8, 139.6, 137.8, 136.9, 136.8, 128.7, 127.3, 127.2, 125.5, 124.1, 123.7, 121.3, 115.9, 113.9, 108.7, 98.9, 43.2, 21.4 ppm.

HRMS (ESI): m/z calcd for C₂₄H₂₃N₂O [M + H]⁺: 355.1805; found: 355.1805.

(Z)-1-Benzyl-3-(((3,4-dimethoxyphenyl)amino)methylene)indolin-2-one (5t)

Yield: 37 mg (96%) as Yellow solid; MP: 138–140 °C.

¹H NMR (CDCl₃, 500 MHz): δ 10.89 (d, 1H, J = 12.9 Hz), 8.03 (d, 1H, J = 13.0 Hz), 7.41 (dd, 1H, J = 5.9, 2.5 Hz), 7.34–7.30 (m, 4H), 7.27–7.23 (m, 1H), 7.20 (d, 1H, J = 8.6 Hz), 7.06–7.00 (m, 2H), 6.80 (dd, 1H, J = 6.1, 2.4 Hz), 6.59–6.53 (m, 2H), 5.12 (s, 2H), 3.97 (s, 3H), 3.85 (s, 3H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 168.8, 156.7, 149.7, 137.6, 136.9, 136.4, 128.6, 127.2, 127.1, 123.9, 123.7, 123.4, 121.1, 115.6, 113.8, 108.7, 104.4, 99.4, 98.6, 55.9, 55.6, 43.1 ppm.

HRMS (ESI): m/z calcd for C₂₄H₂₃N₂O₃ [M + H]⁺: 387.1709; found: 387.1730.

(Z)-1-Benzyl-3-((naphthalen-2-ylamino)methylene)indolin-2-one (5u)

Yield: 35 mg (93%) as Yellow solid; MP: 185-187 °C.

¹H NMR (CDCl₃, 500 MHz): δ 11.70 (s, 1H), 8.25 (d, 2H, J = 2.1 Hz), 7.89 (d, 1H, J = 8.1 Hz), 7.66–7.59 (m, 3H), 7.58–7.54 (m, 1H), 7.52–7.54 (m, 1H), 7.47–7.44 (m, 1H), 7.37 (dd, 2H, J = 9.2, 4.6 Hz), 7.35–7.31 (m, 2H), 7.28–7.27 (m, 1H), 7.10–7.04 (m, 2H), 6.85–6.83 (m, 1H), 5.14 (s, 2H) ppm.

¹³C NMR (CDCl₃, 125 MHz): δ 169.4, 138.0, 137.8, 136.7, 136.0, 134.4, 128.9, 128.8, 128.6, 127.5, 127.2, 126.8, 126.7, 125.8, 124.8, 124.5, 124.1, 123.5, 121.5, 120.8, 116.3, 110.4, 109.0, 100.4, 43.3 ppm.

HRMS (ESI): m/z calcd for C₂₆H₂₁N₂O [M + H]⁺: 377.1654; found: 377.1627.

(Z)-1-Benzyl-3-(((3,5-bis(trifluoromethyl)phenyl)amino)methylene)indolin-2-one (5v)

Yield: 40 mg (87%) as Yellow solid; MP: 170–172 °C.

¹H NMR (CDCl₃, 500 MHz): δ 11.03 (d, 1H, J = 11.9 Hz), 7.93 (d, 1H, J = 11.9 Hz), 7.48 (s, 3H), 7.41 (d, 1H, J = 7.3 Hz), 7.27 (s, 2H), 7.23 (m, 1H), 7.21 (s, 2H), 7.07 (td, 1H, J = 7.7, 1.1 Hz), 7.01 (dt, 1H, J = 7.5, 3.8 Hz), 6.78 (d, 1H, J = 7.7 Hz), 4.99 (s, 2H) ppm.

¹³C NMR (CDCl₃, 125 MHz): *δ* 169.0, 141.4, 138.7, 136.2, 134.2, 133.5, 133.2, 128.8, 128.7, 127.6, 127.5, 127.2, 127.0, 125.7, 122.5, 121.8, 117.0, 116.1, 115.2, 115.0, 109.2, 109.1, 102.5, 43.4 ppm.

HRMS (ESI): m/z calcd for C₂₄H₁₇N₂OF₆ [M + H]⁺: 463.1245; found: 463.1309.

110 100 fl (ppm) 200 190 180 170 130 120

S22

S24

S25

S28

S30

S37

120 110 f1 (ppm)

S41

Formula	C ₁₉ H ₁₁ ClOS
Formula Wt.	322.79
Crystal color	yellow
Crystal system	Needle shape
Space group	P 1 21/n 1
a(Å)	3.8430(2)
b(Å)	14.0193(7)
c(Å)	26.2392(12)
a(deg)	90
β(deg)	92.820(1)
c(deg)	90
$V(\text{\AA}^3)$	1411.96(12)

Figure S1: ORTEP plot of the crystal structure of 3d.

Figure S2: ORTEP plot of the crystal structure of 3j.

90

1498.0 (2)

Figure S3: ORTEP plot of the crystal structure of 5h.

c(deg)

 $V(Å^3)$

Figure S4: ORTEP plot of the crystal structure of 5i.

Computational Studies:

All the computational studies were done using density functional theory (DFT) method in ORCA program. Density functional theory has been performed to study the optimized energies of the molecule. The molecular properties of the compounds had been computed by DFT using the standard def2-SVP basis sets. The geometry optimization was performed at the B3LYP hybrid density functional with the same basis set with a dispersion correction D3BJ at 298 K temperature.

The structures and energies of configurations of arylthio/arylamino methylene derivatives were calculated on this basis set in ORCA program. Gibbs free energy for each *E* and *Z* structure, as well as optimized structures with single-point energies and relative frequencies, are provided by the DFT calculation. In order to investigate the effect of solvent on the isomeric composition, the structures were optimized in the solvent phase at B3LYP/def2-SVP level of theory using solvation model Conductor-like Polarizable Continuum Model (CPCM) with methanol solvent. Also, we have computed the solvent effect on energies by optimizing the structures and were used CPCM for the calculation of single point energies of methanol solvent.

In this investigation, theoretical calculation of molecules had been performed to have an idea about the lowest energy structures of the species *i.e.*, more stable structure. From the theoretical values obtained in this work, we can find that the optimized bond lengths and angles for molecule are in good agreement with the experimental values from single crystal XRD analysis.

2 011526000

Coordinates of 3d (*E*-Isomer)

C	0.937047000	0.720334000	-3.911330000
С	-0.224548000	0.421695000	-3.227324000
С	2.155183000	0.747302000	-3.180749000
С	-1.653927000	0.304626000	-3.655202000
Η	3.082983000	0.984225000	-3.707659000
С	-0.176888000	0.153123000	-1.841637000
С	2.203059000	0.481413000	-1.817268000
Η	3.161422000	0.511030000	-1.291410000
С	1.017510000	0.169697000	-1.092174000

Η	0.918837000	0.930914000	-4.983392000
С	-1.461498000	-0.134797000	-1.291918000
С	-2.426345000	-0.055916000	-2.396648000
С	-1.542393000	-0.414482000	0.061325000
С	0.896463000	-0.127062000	0.297472000
Н	-2.495091000	-0.640477000	0.543195000
Н	1.786396000	-0.130746000	0.932214000
С	-0.347677000	-0.408075000	0.838460000
Н	-0.423429000	-0.632186000	1.905604000
0	-2.118671000	0.451160000	-4.766832000
S	-4.790782000	-0.581816000	-1.099115000
С	-3.761752000	-0.253749000	-2.463197000
Н	-4.239693000	-0.138665000	-3.442129000
С	-7.387825000	-2.443925000	-3.658203000
С	-8.615746000	-2.253669000	-3.018901000
С	-6.215628000	-1.947847000	-3.087209000
Η	-9.535659000	-2.645264000	-3.458715000
Η	-5.256753000	-2.128361000	-3.575559000
С	-8.668431000	-1.566587000	-1.805218000
С	-6.254315000	-1.230042000	-1.881050000
Н	-9.615016000	-1.411279000	-1.285165000
С	-7.496447000	-1.058076000	-1.240939000

Cl	-7.591981000	-0.205842000	0.279677000
Н	-7.335592000	-2.993516000	-4.60068500

Coordinates of 3d (Z-Isomer)

С	0.692812000	1.492260000	-2.059514000
С	-0.321542000	0.655181000	-1.638956000
С	1.802087000	1.685525000	-1.192652000
С	-1.611561000	0.220386000	-2.260625000
Η	2.612708000	2.345862000	-1.511342000
С	-0.233267000	0.021975000	-0.378772000
С	1.888110000	1.063199000	0.047513000
Η	2.759124000	1.240359000	0.684559000
С	0.853930000	0.195917000	0.502244000
Η	0.643794000	1.991711000	-3.029883000
С	-1.361829000	-0.803065000	-0.102148000
С	-2.259269000	-0.702971000	-1.264625000
С	-1.395900000	-1.474531000	1.105437000
С	0.786206000	-0.512434000	1.738145000
Η	-2.234133000	-2.120888000	1.377969000
Η	1.597420000	-0.418853000	2.464761000
С	-0.309307000	-1.315414000	2.014012000
Н	-0.347390000	-1.850492000	2.966518000

0	-2.071126000	0.526530000	-3.345878000
S	-4.428013000	-1.076948000	-2.905959000
С	-3.458052000	-1.296696000	-1.467505000
Н	-3.883969000	-1.958953000	-0.709837000
С	-7.310890000	-3.924419000	-3.124946000
С	-8.148486000	-3.643207000	-2.042485000
С	-6.169297000	-3.150284000	-3.336259000
Η	-9.041713000	-4.246267000	-1.863288000
Н	-5.498985000	-3.367979000	-4.170688000
С	-7.849040000	-2.585417000	-1.182624000
С	-5.848165000	-2.083172000	-2.482962000
Н	-8.496353000	-2.348141000	-0.336858000
С	-6.714306000	-1.800511000	-1.409172000
Cl	-6.399631000	-0.470777000	-0.322539000
Н	-7.540272000	-4.750673000	-3.801506000

For both the isomers of 3d, we have performed theoretical calculations. Optimizing the coordinates revealed that *E*-isomer possesses less optimized energy and less Gibbs free energy, so is more stable than *Z*-isomer as data shown in below table:

S.No.	Isomer	Compound (3d)	E(a.u.)	GFE(a.u.)	Esolvent(a.u.)
1	Ε	CI S S	-1662.913655744	-1662.71579355	-1662.9256569453
2	Z	CI	-1662.911814293	-1662.71349097	-1662.9253050682

Coordinates of 3j (E-Isomer)

С	-0.895682000	-0.480389000	-7.118570000
С	-0.453305000	-0.534044000	-5.796046000
С	-1.027512000	0.331923000	-4.828404000
С	-2.029473000	1.237270000	-5.160384000
С	-2.457435000	1.277848000	-6.497104000
С	-1.900524000	0.435172000	-7.464604000
С	0.550721000	-1.334215000	-5.102742000
С	0.533645000	-0.898806000	-3.665008000
N	-0.429543000	0.107389000	-3.583831000
Η	-0.467747000	-1.138818000	-7.876592000
Η	-2.478361000	1.884820000	-4.406626000
Η	-3.245577000	1.979615000	-6.781185000
Н	-2.253937000	0.485588000	-8.496861000
0	1.204865000	-1.307584000	-2.737090000
С	1.415558000	-2.294234000	-5.502965000
S	1.530057000	-2.934425000	-7.117319000
С	-2.161929000	0.526237000	-1.864021000
С	-2.963080000	1.569220000	-1.384022000
С	-2.678221000	-0.777171000	-1.873164000
Н	-2.572002000	2.591178000	-1.380755000
Н	-2.061520000	-1.596483000	-2.251064000

С	-4.256046000	1.317756000	-0.914367000
С	-3.969597000	-1.030893000	-1.408218000
Η	-4.870314000	2.142728000	-0.544569000
Η	-4.360101000	-2.051678000	-1.421357000
С	-4.762960000	0.016230000	-0.926793000
Η	-5.775032000	-0.182751000	-0.565528000
С	-0.753377000	0.797640000	-2.355224000
Η	-0.013899000	0.446067000	-1.618029000
Η	-0.604612000	1.883040000	-2.486871000
С	3.042491000	-3.876268000	-7.031990000
С	4.249043000	-5.888998000	-7.648231000
Н	4.192031000	-2.382561000	-5.958775000
С	5.367893000	-4.133634000	-6.393776000
Н	2.174402000	-5.532353000	-8.121642000
С	3.075409000	-5.134568000	-7.649304000
Н	4.280221000	-6.870572000	-8.123550000
С	4.198678000	-3.373475000	-6.416981000
С	5.388550000	-5.387432000	-7.012641000
Η	6.268341000	-3.752179000	-5.909857000
Cl	6.853172000	-6.335173000	-6.992567000
Н	2.080833000	-2.728102000	-4.748893000

Coordinates of 3j (Z-Isomer)

С	-1.473767000	0.340430000	-7.370436000
С	-0.942654000	-0.096317000	-6.157935000
С	-1.251805000	0.602856000	-4.963044000
С	-2.085053000	1.717391000	-4.963120000
С	-2.608525000	2.141776000	-6.194207000
С	-2.308749000	1.466322000	-7.383288000
С	-0.060954000	-1.201202000	-5.785683000
С	0.126995000	-1.118156000	-4.308377000
N	-0.603250000	-0.009367000	-3.883713000
Н	-1.244887000	-0.187680000	-8.299813000
Η	-2.334358000	2.236508000	-4.036990000
Н	-3.266310000	3.014057000	-6.219721000
Н	-2.731123000	1.816908000	-8.327653000
0	0.777887000	-1.859612000	-3.592665000
С	0.511329000	-2.156885000	-6.556603000
S	1.527468000	-3.438323000	-5.946446000
С	-2.067891000	0.269282000	-1.904168000
С	-2.592343000	1.276549000	-1.085090000
С	-2.838578000	-0.875777000	-2.149466000
Н	-2.001912000	2.177960000	-0.894957000
Н	-2.440468000	-1.664516000	-2.792823000

С	-3.861019000	1.142604000	-0.512702000
С	-4.106909000	-1.010695000	-1.582308000
Η	-4.257182000	1.938037000	0.123736000
Н	-4.697885000	-1.908350000	-1.781481000
С	-4.622148000	-0.002029000	-0.761081000
Η	-5.616059000	-0.107646000	-0.319070000
С	-0.680923000	0.406953000	-2.501646000
Η	0.034803000	-0.233702000	-1.961686000
Η	-0.333714000	1.449854000	-2.405655000
С	2.030490000	-4.206792000	-7.481675000
С	2.393587000	-6.258882000	-8.729384000
Η	2.668429000	-2.385789000	-8.469549000
С	2.994712000	-4.117278000	-9.708374000
Η	1.528222000	-6.180038000	-6.753986000
С	1.950708000	-5.603149000	-7.579811000
Η	2.329518000	-7.345031000	-8.811071000
С	2.568712000	-3.470584000	-8.548113000
С	2.909017000	-5.510731000	-9.791378000
Η	3.410469000	-3.549233000	-10.542107000
Cl	3.457115000	-6.323809000	-11.235408000
Н	0.334396000	-2.169695000	-7.635883000

Structure optimization of both E and Z isomers of **3j** compound concluded that E-isomer of **3j** is more favorable which was also confirmed by its crystal structure.

S.No.	Isomer	Compound (3j)	E (a.u.)	GFE (a.u.)	Esolvent (a.u.)
1	E	CI S S S	-1834.798960279	-1834.52584765	-1834.8140728130
2	Z	CI	-1834.796965032	-1834.52496011	-1834.8132684436

Coordinates of 5h (E-Isomer)

С	1.215155000	0.284250000	-2.457349000
С	-0.070408000	0.054769000	-2.009221000
С	2.236951000	0.475753000	-1.488893000
С	-1.368638000	-0.187170000	-2.721163000
Η	3.259948000	0.658339000	-1.827886000
С	-0.335665000	0.013493000	-0.623730000
С	1.975079000	0.439501000	-0.124387000
Η	2.788785000	0.594660000	0.589565000
С	0.656290000	0.203811000	0.359147000
Η	1.438811000	0.318071000	-3.526203000
С	-1.714553000	-0.237179000	-0.341098000
С	-2.391903000	-0.373036000	-1.636508000
С	-2.091206000	-0.285977000	0.991235000
С	0.226577000	0.138820000	1.718322000
Η	-3.124322000	-0.455752000	1.306262000
Η	0.948989000	0.278471000	2.526509000
С	-1.106596000	-0.097395000	2.005503000
Η	-1.426031000	-0.140569000	3.050018000
0	-1.561754000	-0.227934000	-3.922416000
С	-7.919361000	-1.133596000	-2.983043000
С	-8.800241000	-1.535526000	-1.972223000

С	-6.569613000	-0.895830000	-2.731955000
Н	-5.927003000	-0.561030000	-3.545911000
С	-8.278528000	-1.702713000	-0.676558000
С	-6.057914000	-1.076199000	-1.435457000
Cl	-9.335261000	-2.180846000	0.626328000
С	-6.929186000	-1.479732000	-0.410023000
Η	-6.560685000	-1.624348000	0.607704000
Н	-8.329022000	-0.990065000	-3.985182000
0	-10.122616000	-1.709590000	-2.247524000
С	-10.543032000	-3.053281000	-2.442254000
Н	-10.018142000	-3.513975000	-3.298925000
Н	-10.370231000	-3.666677000	-1.541874000
Н	-11.620725000	-3.022330000	-2.653773000
N	-4.712740000	-0.861708000	-1.113182000
С	-3.686535000	-0.627263000	-1.970803000
Н	-3.918353000	-0.660873000	-3.038634000
Н	-4.484857000	-0.918721000	-0.127761000

Coordinates of 5h (Z-Isomer)

С	0.447093000	0.637860000	-2.515159000
С	-0.569644000	0.200442000	-1.688583000
С	1.721608000	0.878205000	-1.934869000
С	-2.003649000	-0.148519000	-1.926795000
Η	2.537000000	1.224175000	-2.575245000
С	-0.320253000	0.006779000	-0.311229000
С	1.964289000	0.687740000	-0.578893000
Η	2.960538000	0.885299000	-0.173296000
С	0.931151000	0.238152000	0.292227000
Н	0.277184000	0.794768000	-3.582877000
С	-1.478800000	-0.444871000	0.387542000
С	-2.553665000	-0.554158000	-0.605969000
С	-1.364078000	-0.668407000	1.747444000
С	1.013072000	-0.003844000	1.696384000
Η	-2.211216000	-1.013010000	2.346235000
Η	1.956519000	0.157134000	2.224108000
С	-0.107511000	-0.441390000	2.383290000
Η	-0.032206000	-0.622251000	3.458864000
0	-2.618779000	-0.112073000	-2.992972000
С	-8.157683000	-1.623805000	-2.671592000
С	-8.811237000	-2.087279000	-1.523217000

С	-6.814623000	-1.260862000	-2.645569000
Н	-6.327998000	-0.894125000	-3.552510000
С	-8.062037000	-2.181507000	-0.336561000
С	-6.073067000	-1.362476000	-1.454298000
Cl	-8.836429000	-2.742600000	1.124539000
С	-6.713714000	-1.828460000	-0.293901000
Н	-6.186786000	-1.924900000	0.654245000
Н	-8.739773000	-1.542964000	-3.592032000
0	-10.138312000	-2.391751000	-1.568345000
С	-10.453650000	-3.772597000	-1.684985000
Н	-10.030714000	-4.200023000	-2.612408000
Н	-10.081069000	-4.348014000	-0.820786000
Н	-11.549298000	-3.847242000	-1.719977000
N	-4.729826000	-0.988943000	-1.475968000
С	-3.856599000	-0.947136000	-0.444561000
Н	-4.231082000	-1.240734000	0.539455000
Н	-4.316874000	-0.692794000	-2.370557000

By optimizing both the E and Z isomers of **5h** compound, Z-isomer of **5h** was found to be more favorable according to optimized energy, Gibb's free energy and also by crystal structure analysis.

S.No.	Isomer	Compound (5h)	E (a.u.)	GFE (a.u.)	Esolvent (a.u.)
1	E	OMe Cl NH	-1434.5680019	-1434.3246832	-1434.5874193
2	Ζ	OCH3 -CI HN	-1434.5769975	-1434.3331589	-1434.5920011

The DFT calculations and single crystal XRD studies reveal hydrogen bonding between carbonyl oxygen and N–H of enamine leading to *Z*-isomer predominantly.
Coordinates of 5i (E-isomer)

С	-0.770457000	-0.872742000	-7.167731000
С	-0.233653000	-0.672754000	-5.892915000
С	-0.916678000	0.191187000	-4.989189000
С	-2.101602000	0.829949000	-5.338413000
С	-2.621794000	0.606793000	-6.622619000
С	-1.965358000	-0.232438000	-7.528045000
С	0.952463000	-1.152668000	-5.192353000
С	0.952015000	-0.532524000	-3.837343000
Ν	-0.202438000	0.252085000	-3.797455000
Η	-0.276093000	-1.514415000	-7.902037000
Η	-2.612949000	1.489288000	-4.633173000
Η	-3.551924000	1.099559000	-6.916145000
Η	-2.383119000	-0.389797000	-8.524970000
0	1.756656000	-0.655059000	-2.932392000
С	1.960704000	-2.005538000	-5.531465000
Ν	2.094596000	-2.677103000	-6.699577000
С	3.138950000	-3.532108000	-7.079868000
С	4.047187000	-5.075734000	-8.723394000
Η	4.410238000	-3.211074000	-5.343180000
С	5.286805000	-4.597724000	-6.728865000
Η	2.146152000	-4.073743000	-8.924682000
С	3.034024000	-4.215657000	-8.301295000
Η	3.938101000	-5.595956000	-9.678944000
С	4.286630000	-3.731419000	-6.293278000
С	5.195694000	-5.287703000	-7.948615000

Η	6.170122000	-4.737690000	-6.099052000
Η	2.734016000	-2.167888000	-4.776484000
Η	-0.457854000	0.795470000	-2.982909000
Η	1.349387000	-2.574843000	-7.378416000
С	6.301368000	-6.207195000	-8.401812000
Η	6.546330000	-6.953591000	-7.628117000
Η	6.025386000	-6.749538000	-9.318315000
Η	7.228152000	-5.646242000	-8.612455000

Coordinates of 5i (Z- isomer)

С	0.822874000	0.774364000	-3.474313000
С	1.840526000	-0.181155000	-3.506607000
С	2.799252000	-0.209533000	-2.457147000
С	2.753681000	0.689405000	-1.397053000
С	1.723085000	1.641326000	-1.384851000
С	0.769476000	1.683757000	-2.409449000
С	2.198027000	-1.250763000	-4.428190000
С	3.401382000	-1.911894000	-3.885295000
N	3.705947000	-1.241862000	-2.710411000
Η	0.074054000	0.815384000	-4.269906000
Η	3.497651000	0.656921000	-0.597494000 aw2
Η	1.666952000	2.357835000	-0.561789000
Η	-0.024636000	2.433460000	-2.378664000
0	4.029847000	-2.861469000	-4.355032000
С	1.619762000	-1.658487000	-5.603636000
N	2.111569000	-2.682148000	-6.331985000

С	1.625119000	-3.192683000	-7.538712000
С	0.007047000	-3.309495000	-9.342690000
Η	3.306385000	-4.539536000	-7.736231000
С	1.937090000	-4.730446000	-9.394376000
Η	-0.189773000	-1.998983000	-7.651803000
С	0.428121000	-2.759714000	-8.130776000
Η	-0.929556000	-2.956830000	-9.783796000
С	2.373530000	-4.191741000	-8.188121000
С	0.745934000	-4.300668000	-10.002852000
Η	2.539145000	-5.505286000	-9.877835000
Η	0.734359000	-1.148752000	-5.990806000
Η	4.494670000	-1.493850000	-2.128313000
Η	2.955346000	-3.107061000	-5.923445000
С	0.294165000	-4.882164000	-11.318431000
Η	0.263508000	-5.983823000	-11.282608000
Η	-0.709481000	-4.525228000	-11.593445000
Η	0.982353000	-4.606117000	-12.136083000

By optimizing both the E and Z isomers of **5i** compound, Z-isomer of **5i** was found to be more favorable according to optimized energy, Gibb's free energy and also by crystal structure analysis.

S.No.	Isomer	Compound 5i	E (a.u.)	GFE (a.u.)	Esolvent (a.u.)
1	Ε	HN HN HN HN	-801.9040699	-801.6810268	-801.92397833
2	Z	CH ₃ NH H H	-801.9126937	-801.6881056	-801.9282757

The DFT calculations and single crystal XRD studies reveal hydrogen bonding between carbonyl oxygen and N–H of enamine leading to *Z*-isomer predominantly.