Supplementary Information

Carbonyldiimidazole (CDI) Promoted Direct and Instantaneous Thio-esterification of Carboxylic Acid and Thiol at Ambient Temperature

Biman Bera,^a Upasi Goswami,^a Sujan Seikh,^b Mrinal K. Bera*^a

^a Department of Chemistry, Indian Institute of Engineering Science and Technology (IIEST), Shibpur, P.O- Botanic Garden, Howrah- 711103 (WB), India.

^b Department of Chemistry, University of Kalyani, Kalyani- 741235 (WB), India

E-mail: mrinalkbera26@gmail.com

Table of Content

1.	General methods
2.	General method for synthesizing carboxylic acids 1a-1m, 3a-3i, 9a-9f S2
3.	General procedure for the synthesis of thioester 2aS3
4.	Characterization data of thioester 2b-2n, 4a-4h, 6a-6gS4-S10
5.	General Procedure for the synthesis of thioester 8S10
6.	General Procedure for the synthesis of thioester 10aS11
7.	Characterization data of thioester 10b-10f S11-S12
8.	Copies of ¹ H & ¹³ C NMRS13-S48
9.	Single crystal XRD study of thioester 2j

Experimental Section:

1. General methods:

All the reactions were performed under nitrogen atmosphere in oven dried flasks. TLC was performed using 100-200 mesh silica gel plates. The column chromatography was performed using silica gel 100-200 mesh. TLC plates were visualized under UV light at 254 nm and molecular iodine vapour. ¹H NMR spectra were recorded on Bruker 400 MHz spectrometer and ¹³C NMR Spectra were recorded on Bruker 100 MHz spectrometer using CDCl₃ as a solvent with TMS as the internal standard. The chemical shift values at 7.28 and 77 ppm are referenced for CDCl₃ solvent. The data of HRMS was carried out on a high-resolution mass spectrometer instrument. Melting points were measured with a Lab X India digital melting point apparatus. All the commercial reagents were used from a different commercial source. CH₂Cl₂ and CH₃CN were purified by using the traditional drying procedure.

2. General method for synthesizing carboxylic acids 1a-1m.

a. Typical procedure for the synthesis of carboxylic acid 1a.

Into a mixture of Benzaldehyde **1x** (150mg, 3.2 mmol), NaH₂PO₄.H₂O (115mg, 1.90 mmol) and H₂O₂ (0.12 ml) in CH₃CN (1.5 ml) was added dropwise NaClO₂ (438 mg, 11 mmol) in H₂O (1.5 ml) at 25^oC for 15 min. After adding Na₂SO₃ (28 mg, 0.50 mmol), the mixture was evaporated under reduced pressure. The mixture was acidified by adding 2N HCl and extracted with ethyl acetate. The extract was washed with H₂O, dried with Na₂SO₄. Solvent was removed under reduced pressure to dryness to produce Benzoic Acid **1a** (152 mg, 88%) as white solid.

Carboxylic acids **1b-1m** were synthesized from their corresponding aryl aldehydes as per the procedure mentioned above. **1n** is our available carboxylic acid.

b. Typical procedure for the synthesis of aliphatic acids (3a-3i).

3a- 3i are the available aliphatic acids.

c. Typical procedure for the synthesis of alpha beta unsaturated acids (9a-9f).

9a-9f are the available alpha beta unsaturated acids.

3. General procedure for the synthesis of thioester 2a.

Dry CH₃CN (3ml) solution of Benzoic acid 1a (0.8 mmol, 100mg) and CDI (0.8 mmol) was taken in a 50 ml dry round bottom flask fitted with magnetic stir bar under N_2 atmosphere. Then PhSH (0.8 mmol) was added into this mixture. The mixture was stirred at room temperature for 5 min. After the total consumption of the starting material 1a as shown by TLC, the mixture was evaporated under reduced pressure & then the reaction mixture was quenched by ethyl acetate followed by water. The combined organic layer was separated, washed with brine solution (twice) and collected over anhydrous sodium sulphate.

The concentrated organic solution was then loaded on a 100-200 mesh column of silica gel & eluted with hexane: ethyl acetate (98:2) to get purified thioester 2a (163 mg, 95%) as yellowish solid.

S-phenyl benzothioate(2a)

mp- 99°C; ¹**H NMR** (400 MHz, CDCl₃) δ = 8.14-8.09 (m, 2H), 7.68-7.63 (m, 1H), 7.60 (dd, J= 6.6, 3.1Hz,2H), 7.56-7.49 (m, 5H); ¹³C NMR $(100 \text{ MHz}, \text{ CDCl}_3) \delta = 190.2, 136.7, 135.2, 133.8, 129.6, 129.3, 128.9,$ 127.6,127.4; **IR** (neat, cm⁻¹) =1664; **HRMS** (ESI) m/z (M+Na)⁺ calculated

for C₁₃H₁₀NaOS: 237.0350; found 237.0353.

4. Characterization data of thioester 2b-2n, 4a-4h, 6a-6g

S-phenyl 2-methylbenzothioate(2b)

According to the above-mentioned procedure, carboxylic acid 1b (0.7 mmol, 100 mg) upon reaction with CDI (0.7 mmol) & PhSH (0.7 mmol) to afford thioester **2b** (144 mg, 90%) as orange solid. **mp**-123°C; ¹H NMR (400 MHz, CDCl₃) δ = 8.00 (dd, J = 7.7, 1.4 Hz, 1H), 7.59-7.57 (m, 2H), 7.53-7.45 (m, 4H), 7.35-7.30 (m, 2H), 2.55 (s, 3H); ¹³C NMR (100MHz, CDCl₃) δ =192.2,

137.5, 136.7, 134.9, 132.1, 131.8, 129.5, 129.3, 128.7, 128.2, 125.9, 20.8; **IR** (neat, cm⁻¹) = 1674; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₄H₁₂NaOS: 251.0507; found 251.0509.

S-phenyl 3-methylbenzothioate(2c)

According to the above-mentioned procedure, carboxylic acid 1c (0.7 mmol,100 mg) upon reaction with CDI (0.7 mmol) & PhSH (0.7 mmol) to afford thioester 2c (142 mg, 89%) as white solid. mp-122°C; ¹H NMR (400 MHz, CDCl₃) δ = 7.91-7.88 (m, 2H), 7.58 (dt, J= 5.7, 1.7 Hz, 2H),

7.51 (dd, J= 5.0, 1.9 Hz, 3H), 7.47-7.39 (m, 2H), 2.4 (s, 3H); ¹³C NMR (100MHz, CDCl₃) δ = 190.3, 136.7, 135.1, 134.5, 129.5, 129.3, 128.6, 127.9, 127.5, 124.7, 21.4; **IR** (neat, cm⁻¹) = 1673; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₄H₁₂NaOS: 251.0507; found 251.0510.

S-phenyl 4-methylbenzothioate(2d)

According to the above-mentioned procedure, carboxylic acid 1d (0.7 mmol, 100 mg) upon reaction with CDI (0.7 mmol) & PhSH (0.7 mmol) to afford thioester 2d (146 mg, 91%) as yellow solid. mp-121°C; ¹H NMR (400 MHz, CDCl₃) δ = 7.99 (d, *J*= 8.3 Hz, 2H), 7.57 (dd, *J*=4.7,1.6 Hz,

2H), 7.50 (dt, J= 4.6, 2.9 Hz, 3H), 7.32 (d, J=8.0 Hz, 2H), 2.47(s, 3H); ¹³C NMR (100MHz,CDCl₃) δ = 189.7, 144.6, 135.2, 134.1, 130.7, 129.5, 129.2, 127.6, 21.8; **IR** (neat, cm⁻¹) = 1675; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₄H₁₂NaOS: 251.0507; found 251.0512.

S-phenyl 4-ethylbenzothioate(2e)

According to the above-mentioned procedure, carboxylic acid **1e** (0.6 mmol, 100 mg) upon reaction with CDI (0.6 mmol) & PhSH (0.6 mmol) to afford thioester **2e** (132 mg, 91%) as white solid **mp**-135°C; ¹**H NMR** (400 MHz, CDCl₃) δ = 7.99-7.97 (m, 2H), 7.54-7.53 (m, 2H), 7.47 (d,

J=2.6 Hz, 3H), 7.34 (d, *J*= 8.3 Hz, 2H), 2.75 (q, *J*=7.6 Hz, 2H), 1.30 (t, *J*= 7.6Hz, 2H); ¹³C **NMR** (100MHz,CDCl₃) δ = 189.8, 150.8, 135.2, 134.3, 129.5, 129.2, 128.3, 127.7, 127.5, 29.0, 15.2; **IR** (neat, cm⁻¹) = 1678; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₅H₁₄NaOS: 265.0663; found 265.0667.

S-phenyl 4-isopropylbenzothioate(2f)

According to the above-mentioned procedure, carboxylic acid **1f** (0.6 mmol, 100 mg) upon reaction with CDI (0.6 mmol) & PhSH (0.6 mmol) to afford thioester **2f** (141 mg, 92%) as orange solid. **mp**-131°C; ¹**H NMR** (400 MHz, CDCl₃) δ = 8.04 (d, *J*= 8.2 Hz, 2H), 7.58 (dd, *J*= 6.6,

3.2Hz, 2H), 7.50 (dd, J=5.1, 2.0 Hz, 3H), 7.41-7.37 (m, 2H), 3.03 (hept, J= 6.9 Hz, 1H), 1.34 (d, J= 6.9 Hz, 6H); ¹³CNMR(100MHz,CDCl₃) δ = 189.7, 135.2, 134.5, 129.5, 129.3, 127.8, 127.5, 126.9, 34.4, 23.7; **IR** (neat, cm⁻¹) = 1677; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₆H₁₆NaOS: 279.0820; found 279.0824.

S-phenyl 4-(tert-butyl)benzothioate(2g)

According to the above-mentioned procedure, carboxylic acid **1g** (0.5 mmol, 100 mg) upon reaction with CDI (0.5 mmol) & PhSH (0.5 mmol) to afford thioester **2g** (126 mg, 93%) as yellowish liquid.¹H NMR (400 MHz, CDCl₃) δ = 8.04-8.01 (m, 2H), 7.57-7.53 (m, 4H), 7.50 (dd, *J*=

5.1, 1.9 Hz, 3H), 1.40 (s, 9H); ¹³C NMR (100MHz, CDCl₃) δ = 189.6, 157.6, 135.2, 134.1, 129.5, 129.3,127.5, 127.5, 125.8, 35.3, 31.1; **IR** (neat, cm⁻¹) = 1675; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₇H₁₈NaOS: 293.0976; found 293.0979.

S-phenyl 3-methoxybenzothioate(2h)

According to the above-mentioned procedure, carboxylic acid **1h** (0.6 mmol, 100 mg) upon reaction with CDI (0.6 mmol) & PhSH (0.6 mmol) to afford thioester **2h** (144 mg, 98%) as yellowish liquid.¹**H** NMR (400 MHz, CDCl₃) δ = 7.74-7.67 (m, 1H), 7.57 (dt, *J*= 4.0, 3.0 Hz, 3H), 7.50 (dd, *J*= 5.0,1.9 Hz, 3H), 7.43 (t, *J*= 8.0Hz, 1H), 7.19 (ddd, *J*= 8.4, 2.7, 1.0

Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100MHz, CDCl₃) δ = 190.1, 159.9, 137.9, 135.1, 129.7, 129.5, 129.2, 127.3, 120.1, 111.7, 55.5; **IR** (neat, cm⁻¹) = 1679; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₄H₁₂NaO₂S: 267.0456; found 267.0459.

S-phenyl 2-bromobenzothioate(2i)

According to the above-mentioned procedure, carboxylic acid **1i** (0.4 mmol, 100 mg) upon reaction with CDI (0.4 mmol) & PhSH (0.4 mmol) to afford thioester **2i** (116 mg, 80%) as white solid. **mp**-172°C; ¹**H NMR** (400 MHz, CDCl₃) δ = 7.75 (dd, *J*= 7.6, 1.8 Hz, 1H), 7.69 (dd, *J*= 7.9, 1.3 Hz, 1H),

7.59-7.54 (m, 2H), 7.49 (dd, J= 5.0, 2.0 Hz, 3H), 7.41 (dd, J= 24.0, 1.6 Hz, 2H); ¹³C NMR (100MHz,CDCl₃) δ = 191.2, 139.2, 135.2, 134.5, 134.1, 132.3, 129.8, 129.4, 129.1, 127.2, 119.1; **IR** (neat, cm⁻¹) = 1670; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₃H₉BrNaOS: 314.9455; found 314.9458.

S-phenyl 2-iodobenzothioate(2j)

According to the above-mentioned procedure, carboxylic acid **1j** (0.4 mmol, 100 mg) upon reaction with CDI (0.4 mmol) & PhSH (0.4 mmol) to afford thioester **2j** (116 mg, 85%) as white solid. **mp**-170°C; ¹**H NMR** (400 MHz, CDCl₃) δ = 7.99 (dd, *J*= 7.9, 1.1 Hz,1H), 7.74 (dd, *J*= 7.7, 1.6 Hz, 1H), 7.62-

7.56 (m, 2H), 7.53-7.43 (m, 4H), 7.21 (td, J= 7.7, 1.6 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ = 192.4, 142.4, 140.7, 134.5, 132.5, 129.8, 129.4, 128.5, 128.1, 127.5, 91.5; **IR** (neat, cm⁻¹) = 1671; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₃H₉INaOS: 362.9317; found 362.9320.

S-phenyl thiophene-2-carbothioate(2k)

According to the above-mentioned procedure, carboxylic acid **1k** (0.7mmol, 100 mg) upon reaction with CDI (0.7 mmol) & PhSH (0.7 mmol) to afford thioester **2k** (140 mg, 82%) as orange solid. **mp**-163°C;¹**H NMR** (400 MHz, CDCl₃) δ = 7.94 (dd, *J*= 3.9, 1.2Hz,1H), 7.69 (dd, *J*= 5.0, 1.2 Hz, 1H), 7.59-

7.54 (m, 2H), 7.48 (dt, J= 4.9, 1.8 Hz, 3H), 7.19 (dd, J= 5.0, 3.8 Hz, 1H); ¹³C NMR (100MHz,CDCl₃) δ = 182.1, 141.4, 135.1, 133.3, 131.6, 129.7, 129.3, 128.1, 126.9; **IR** (neat, cm⁻¹) = 1640; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₁H₈NaOS₂: 242.9914; found 242.9918.

S-phenyl naphthalene-1-carbothioate(2l)

According to the above-mentioned procedure, carboxylic acid **11** (0.5 mmol, 100 mg) upon reaction with CDI (0.5 mmol) & PhSH (0.5 mmol) to afford thioester **21** (138 mg, 90%) as brownish solid. **mp**-190°C; ¹**H NMR** (400 MHz, CDCl₃) δ = 8.61-8.59 (m, 1H), 8.27 (dd, *J*= 7.3, 1.2 Hz, 1H), 8.08 (dt,

J= 8.3, 1.1 Hz, 1H), 7.93 (dd, *J*= 7.8, 1.7 Hz, 1H), 7.66-7.53 (m, 8H); ¹³C NMR (100MHz, CDCl₃) δ = 192.3, 135.2, 134.9, 134.7, 133.8, 133.4, 129.6, 129.4, 128.4, 128.2, 128.1, 126.8, 125.3, 124.5; **IR** (neat, cm⁻¹) = 1672; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₇H₁₂NaOS: 287.0507; found 287.0510.

S-phenyl [1,1'-biphenyl]-4-carbothioate(2m)

According to the above-mentioned procedure, carboxylic acid **1m** (0.5mmol, 100 mg) upon reaction with CDI (0.5 mmol) & PhSH (0.5 mmol) to afford thioester **2m** (133 mg, 91%) as white solid. **mp**-206°C; ¹**H** NMR (400 MHz, CDCl₃) δ = 8.16-8.13 (m, 2H), 7.76-7.74

(m, 2H), 7.69-7.67 (m, 2H), 7.60-7.58 (m, 2H), 7.54-7.50 (m, 5H), 7.47 (d, J= 7.3 Hz, 1H); ¹³C **NMR** (100MHz, CDCl₃) δ = 189.7, 140.4, 139.7, 135.3, 135.2, 129.5, 129.3, 129.1, 128.4, 128.1, 127.4, 127.3; **IR** (neat, cm⁻¹) = 1673; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₉H₁₄NaOS: 313.0663; found 313.0667.

S-phenyl 2-oxo-2-phenylethanethioate(2n)

According to the above-mentioned procedure, carboxylic acid **1n** (0.6mmol, 100 mg) upon reaction with CDI (0.6 mmol) & PhSH (0.6 mmol) to afford thioester **2n** (148 mg, 92%) as yellowish liquid.¹**H NMR** (400 MHz, CDCl₃) δ = 7.59-7.53 (m, 4H), 7.45 (dddd, *J*= 7.1, 6.1, 4.9, 1.7

Hz, 6H); ¹³C NMR (100MHz, CDCl₃) δ = 188.4, 135.2, 130.1, 129.4, 127.1; **IR** (neat, cm⁻¹) = 1709, 1650; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₄H₁₀NaO₂S: 265.0299; found 265.0303.

S-phenyl ethanethioate(4a)

According to the above-mentioned procedure, carboxylic acid 3a (1.66 mmol, 100 mg) upon reaction with CDI (1.66 mmol) & PhSH (1.66 mmol) to afford thioester 4a (192 mg, 76%) as white liquid. ¹H NMR (400 MHz,

CDCl₃) δ = 7.48-7.41 (m, 5H), 2.45 (s, 1H); ¹³C NMR (100MHz, CDCl₃) δ = 194.2, 134.5, 129.5, 129.2, 127.9, 30.2; **IR** (neat, cm⁻¹) = 1703; **HRMS** (ESI) m/z (M+H)⁺ calculated for C₈H₉OS: 153.0374; found 153.0377.

S-phenyl propanethioate(4b)

According to the above-mentioned procedure, carboxylic acid 3b (1.34 mmol, 100 mg) upon reaction with CDI (1.34 mmol) & PhSH (1.34 mmol) to afford thioester 4b (175mg, 78%) as white liquid.¹H NMR (400 MHz, CDCl₃) δ = 7.47-7.42 (m, 5H), 2.72 (q, J= 7.5 Hz, 2H), 1.26 (t, J= 7.5 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ = 198.3, 134.6, 129.3, 129.2, 127.8, 37.1, 9.6; **IR** (neat, cm⁻¹) = 1704; **HRMS** (ESI) m/z (M+H)⁺ calculated for C₉H₁₁OS: 167.0531; found 167.0534.

S-phenyl 2,2-dimethylpropanethioate(4c)

According to the above-mentioned procedure, carboxylic acid 3c (0.9 mmol, 100 mg) upon reaction with CDI (0.9 mmol) & PhSH (0.9 mmol) to afford thioester 4c (161mg, 85%) as yellowish liquid. ¹H NMR (400 MHz, CDCl₃) δ = 7.46-7.38 (m, 5H), 1.35 (s, 9H); ¹³C NMR (100MHz, CDCl₃) δ = 204.7, 135.0, 129.1, 129.1,

128.1, 46.9, 27.4; **IR** (neat, cm⁻¹) = 1706; **HRMS** (ESI) m/z (M+H)⁺ calculated for $C_{11}H_{15}OS$: 195.0844; found 195.0848.

S-phenyl octanethioate(4d)

According to the above-mentioned procedure, carboxylic acid 3d (0.6 mmol, 100 mg) upon reaction with CDI (0.6 mmol) & PhSH (0.6 mmol) to afford thioester 4d (127mg, 78%) as white liquid. ¹H NMR (400 MHz, CDCl₃) δ =

7.46-7.42 (m, 5H), 2.69 (t, J= 7.5 Hz, 2H), 1.75 (p, J= 7.4 Hz, 2H), 1.47-1.27 (m, 8H), .94-.91 (m, 3H); ¹³C NMR (100MHz, CDCl₃) δ = 197.5, 134.5, 129.3, 129.2, 128.0, 43.7, 31.6, 28.9, 25.6, 22.6, 14.1; **IR** (neat, cm⁻¹) = 1709; **HRMS** (ESI) m/z (M+H)⁺ calculated for $C_{14}H_{21}OS$: 237.1313; found 237.1317.

S-phenyl decanethioate(4e)

According to the above-mentioned procedure, carboxylic acid 3e (0.5 mmol, 100 mg) upon reaction with CDI (0.5 mmol) & PhSH (0.5 mmol) to afford thioester 4e (123mg, 80%) as yellowish liquid. ¹H NMR (400 MHz, CDCl₃)

 δ = 7.46-.7.41 (m, 5H), 2.68 (t, J= 7.5 Hz, 2H), 1.74 (p, J=7.4 Hz, 2H). 1.44-1.26 (m, 12H), .92 (t, J= 6.7 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) $\delta = 197.6, 134.5, 129.3, 129.2, 127.9, 43.7,$ 31.8, 29.4, 29.3, 28.9, 25.6, 22.7, 14.2; **IR** (neat, cm⁻¹) = 1707; **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₆H₂₅OS: 265.1626; found 265.1630.

S-phenyl dodecanethioate(4f)

According to the above-mentioned procedure, carboxylic acid 3f (0.4 mmol, 100 mg) upon reaction with CDI (0.4 mmol) & PhSH (0.4 mmol) to afford thioester 4f (119mg, 81%) as white liquid. ¹H NMR (400 MHz, CDCl₃) δ =

7.47-7.39 (m, 5H), 2.68 (t, J= 7.5 Hz, 2H), 1.74 (p, J= 7.4 Hz, 2H), 1.41-1.29 (m, 16H), .92 (t, J= 6.8 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) $\delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 134.5, 129.3, 129.2, 128.0, 43.7, 31.9, \delta = 197.6, 129.2, 128.0, 129.2, 128.0, 129.2, 128.0, 129.2, 128.0, 129.2, 128.0, 129.2, 1$ 29.6, 29.5, 29.4, 29.3, 29.0, 25.6, 22.7, 14.2; **IR** (neat, cm⁻¹) = 1705; **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₈H₂₉OS: 293.1939; found 293.1942.

S-phenyl 2-phenylethanethioate(4g)

According to the above-mentioned procedure, carboxylic acid **3g** (0.7 mmol, 100 mg) upon reaction with CDI (0.7 mmol) & PhSH (0.7 mmol) to afford thioester **4g** (132 mg, 79%) as white liquid. ¹H NMR (400 MHz, CDCl₃) δ = 7.42-7.32 (m, 10H), 3.96 (s, 2H); ¹³C NMR (100MHz, CDCl₃) δ = 195.4, 134.5, 133.3, 129.7, 129.5, 129.21, 128.7, 127.7, 127.6, 50.2; IR

(neat, cm⁻¹) = 1710; **HRMS** (ESI) m/z (M+Na)⁺ calculated for $C_{14}H_{12}NaOS$: 251.0507; found 251.0510.

S-phenyl 2,2-diphenylethanethioate(4h)

According to the above-mentioned procedure, carboxylic acid **3h** (0.4 mmol, 100 mg) upon reaction with CDI (0.4 mmol) & PhSH (0.4 mmol) to afford thioester **4h** (115mg, 80%) as white solid. **mp**-190°C; ¹**H NMR** (400 MHz, CDCl₃) δ = 7.51-7.35 (m, 15H), 5.41 (s, 1H); ¹³C NMR (100MHz, CDCl₃) δ = 196.7, 138.1, 134.5, 129.6, 129.3, 128.9, 128.8,

127.9, 127.7, 64.9; **IR** (neat, cm⁻¹) = 1712; **HRMS** (ESI) m/z (M+Na)⁺ calculated for $C_{20}H_{16}NaOS$: 327.0820; found 327.0824.

S-butyl benzothioate(6a)

According to the above-mentioned procedure, benzoic acid **1a** (1 equiv, 100 mg) upon reaction with CDI & 1 butane thiol to afford thioester **6a** (138mg, 87%) as white liquid.¹**H NMR** (400 MHz, CDCl₃) δ = 7.88-7.85(m,2H), 7.46-7.41(m,1H), 7.33(dd, *J*= 8.5, 7.1Hz, 2H), 2.97(t, *J*= 7.3Hz, 2H). 1.57-1.51(m,

2H), 1.35(h, J= 7.3Hz,2H), .85(t, J= 7.4Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ = 192.1, 137.2, 133.2, 128.6, 127.2, 31.6, 28.7, 22.1, 13.7; **IR** (neat, cm⁻¹) = 1656; **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₁H₁₅OS: 195.0844; found 195.0847.

S-decyl benzothioate(6b)

According to the above-mentioned procedure, benzoic acid **1a** (0.8 mmol, 100 mg) upon reaction with CDI (0.8 mmol) & 1 decane thiol (0.8 mmol) to afford thioester **6b** (202mg, 89%) as white liquid. ¹H NMR (400 MHz, CDCl₃) δ = 8.00-7.98 (m, 2H), 7.59-7.54 (m, 1H), 7.45 (dd, *J*= 8.4, 7.1 Hz,

1H), 3.09 (t, J= 7.4 Hz, 2H), 1.68 (q, J= 7.5 Hz, 2H), 1.34-1.28 (m, 14H), .90 (t, J= 6.8 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ = 192.1, 137.3, 133.2, 128.5, 127.2, 31.9, 29.7, 29.7, 29.6, 29.5, 29.5, 29.3, 29.2, 29.1, 29.0, 22.7, 14.2; **IR** (neat, cm⁻¹) = 1658; **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₇H₂₇OS: 279.1783; found 279.1787.

S-cyclohexyl benzothioate(6c)

According to the above-mentioned procedure, benzoic acid **1a** (0.8 mmol, 100 mg) upon reaction with CDI (0.8 mmol) & cyclohexane thiol (0.8 mmol) to afford thioester **6c** (154mg, 86%) as white liquid. ¹H NMR (400 MHz, CDCl₃) δ = 7.98-7.96 (m, 2H), 7.57-7.53 (m, 1H), 7.44 (dd, *J*= 8.4,

7.0 Hz, 2H), 3.75 (tt, J= 10.1, 3.9 Hz, 1H), 2.06-2.02 (m, 2H), 1.79-1.74 (m, 2H), 1.65-1.62 (m, 1H), 1.55-1.45 (m, 4H), 1.38-1.28 (m, 1H); ¹³C NMR (100MHz, CDCl₃) δ = 191.8, 137.4, 133.2, 128.5, 127.2, 42.5, 33.2, 26.1, 25.6; **IR** (neat, cm⁻¹) = 1660; **HRMS** (ESI) m/z (M+H)⁺ calculated for C₁₃H₁₇OS: 221.1000; found 221.1004.

S-(o-tolyl) benzothioate(6d)

According to the above-mentioned procedure, benzoic acid **1a** (0.8 mmol, 100 mg) upon reaction with CDI (0.8 mmol) & 2-methyl thiol (0.8 mmol) to afford thioester 6d (175mg, 94%) as white liquid. ¹H NMR (400 MHz, CDCl₃) δ = 8.16-8.14 (m, 2H), 7.69-7.65 (m, 1H), 7.60-7.53 (m, 3H), 7.46-

7.43 (m, 2H), 7.37-7.33 (m, 1H), 2.50 (s, 3H); ¹³C NMR (100MHz, CDCl₃) δ = 189.7, 142.7, 136.8, 136.5, 133.7, 130.9, 130.4, 128.8, 127.6, 126.8, 126.7, 20.9; **IR** (neat, cm⁻¹) = 1662; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₄H₁₂NaOS: 251.0507; found 251.0510.

S-(4-chlorophenyl) benzothioate(6e)

According to the above-mentioned procedure, benzoic acid **1a** (0.8 mmol, 100 mg) upon reaction with CDI (0.8 mmol) & 4-chloro thiol (0.8 mmol) to afford thioester **6e** (194 mg, 96%) as white solid. **mp**-142°C; **¹H NMR** (400 MHz, CDCl₃) δ = 8.07-8.04 (m, 2H), 7.68-7.60 (m, 1H),

7.53-7.46 (m, 6H); ¹³C NMR (100MHz, CDCl₃) δ = 189.5, 136.4, 136.3, 136.0, 133.9, 129.5, 128.9, 127.6, 125.9; **IR** (neat, cm⁻¹)= 1661; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₃H₉ClNaOS: 270.9960; found 270.9963.

S-benzyl benzothioate(6f)

According to the above-mentioned procedure, benzoic acid **1a** (0.8 mmol, 100 mg) upon reaction with CDI (0.8 mmol) & benzyl thiol (0.8 mmol) to afford thioester **6f** (175 mg, 92%) as white liquid. ¹**H NMR** (400 MHz, CDCl₃) δ = 8.03-8.01 (m, 2H), 7.62-7.58 (m, 1H), 7.50-7.34 (m, 7H), 4.37 (s, 2H); ¹³**C**

NMR (100MHz, CDCl₃) δ = 191.4, 137.5, 136.7, 133.5, 129.0, 128.6, 128.7, 127.4, 127.4, 33.4; **IR** (neat, cm⁻¹) = 1654; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₄H₁₂NaOS: 251.0507; found 251.0511.

S-(naphthalen-2-yl) benzothioate(6g)

According to the above-mentioned procedure, benzoic acid **1a** (0.8 mmol, 100 mg) upon reaction with CDI (0.8 mmol) & 2-napthiol (0.8 mmol) to afford thioester **6g** (200 mg, 93%) as white solid. **mp**-191°C; **¹H NMR** (400 MHz, CDCl₃) δ = 8.10 (dt, *J*= 7.1Hz, 1.4 Hz, 3H), 7.96-

7.87 (m, 3H), 7.65 (d, J= 7.4 Hz, 1H), 7.60-7.51 (m, 5H); ¹³C NMR (100MHz, CDCl₃) δ = 190.4, 136.6, 135.0, 133.7, 133.6, 133.5, 131.4, 128.9, 128.8, 128.0, 127.8, 127.5, 127.2, 126.5, 124.7; **IR** (neat, cm⁻¹) = 1663; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₇H₁₂NaOS: 287.0507; found 287.0511.

5. General Procedure for the synthesis of thioester 8:

Dry CH₃CN (3ml) solution of Terephthalic acid 7(0.6 mmol, 100mg) and CDI (1.2 mmol) was taken in a 50 ml dry round bottom flask fitted with magnetic stir bar under N_2 atmosphere. Then PhSH (1.2 mmol) was added into this mixture. The mixture was stirred at room temperature for 30min. After the total consumption of the starting material 7 as shown by TLC, the mixture was evaporated under reduced pressure & then the reaction mixture was quenched by ethyl acetate followed by water. The combined organic layer was separated, washed with brine solution (twice) and collected over anhydrous sodium sulphate.

The concentrated organic solution was then loaded on a 100-200 mesh column of silica gel & eluted with hexane: ethyl acetate (95:5) to get purified thioester 8(183 mg, 87%) as white solid.

S,S-diphenyl benzene-1,4-bis(carbothioate)(8)

mp-302°C; 1H NMR (400 MHz, CDCl₃) δ = 8.16 (s, 4H), 7.57-7.53 (m, 4H), 7.52-7.50 (m, 6H); 13C NMR (100MHz, CDCl₃) δ = 189.5, 140.4, 135.0, 129.8, 129.4, 127.8, 126.6; IR (neat, cm⁻¹) = 1665; HRMS (ESI) m/z (M+Na)⁺ calculated for C₂₀H₁₄NaO₂S₂: 373.0333; found 373.0336.

6. General Procedure for the synthesis of thioester 10a:

Dry CH₃CN (3ml) solution of Cinnamic acid **9a** (0.6 mmol, 100mg) and CDI (0.6 mmol) was taken in a 50 ml dry round bottom flask fitted with magnetic stir bar under N₂ atmosphere. Then PhSH (1.34 mmol) was added into this mixture. The mixture was stirred at room temperature for 4 hr. After the total consumption of the starting material **9a** as shown by TLC, the mixture was evaporated under reduced pressure & then the reaction mixture was quenched by ethyl acetate followed by water. The combined organic layer was separated, washed with brine solution (twice) and collected over anhydrous sodium sulphate.

The concentrated organic solution was then loaded on a 100-200 mesh column of silica gel & eluted with hexane: ethyl acetate (98:2) to get purified thioester **10a** (204 mg, 86%) as white solid.

S-phenyl 3-phenyl-3-(phenylthio)propanethioate(10a)

mp-235°C; ¹**H NMR** (400 MHz, CDCl₃) δ = 7.42-7.36 (m, 5H), 7.34-7.25 (m, 10H), 4.79 (t, *J*= 7.6 Hz, 1H), 3.30 (d, *J*= 7.6 Hz, 2H); ¹³**C NMR** (100MHz, CDCl₃) δ = 194.7, 139.9, 134.4, 133.6, 133.2, 129.5,129.2, 128.9, 128.6, 127.8, 127.8, 127.7, 127.3, 49.4, 49.2; **IR** (neat, cm⁻¹) = 1710; **HRMS** (ESI) m/z (M+Na)⁺ calculated for

C₂₁H₁₈NaOS₂: 373.0697; found 373.0699.

7. Characterization data of thioester 10b-10f

S-phenyl 3-(furan-2-yl)-3-(phenylthio)propanethioate(10b)

According to the above-mentioned procedure, alpha beta unsaturated acid **9b** (0.7 mmol, 100 mg) upon reaction with CDI (0.7 mmol) & thiophenol (1.44 mmol) to afford thioester **10b** (201 mg, 82%) as yellowish liquid. ¹H NMR (400 MHz, CDCl₃) δ = 7.42 (tt, *J*= 5.2, 2.6 Hz, 6H), 7.38-7.35(m,2H), 7.31(dd, *J*=5.3,1.9 Hz, 3H), 6.29(dd, *J*=

3.3, 1.9 Hz, 1H), 6.06 (d, J= 3.3 Hz, 1H), 4.81 (t, J= 7.5 Hz, 1H), 3.36-3.20 (m, 2H); ¹³C NMR (100MHz, CDCl₃) δ = 194.3, 152.3, 142.3, 134.4, 134.2, 132.5, 129.6, 129.3, 128.9, 128.3, 127.2, 110.3, 107.7, 46.8, 42.5; **IR** (neat, cm⁻¹) = 1701; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₉H₁₆NaO₂S₂: 363.0489; found 363.0493.

S-phenyl 3-(phenylthio)-3-(thiophen-2-yl)propanethioate(10c)

According to the above-mentioned procedure, alpha beta unsaturated acid **9c** (0.6 mmol, 100 mg) upon reaction with CDI (0.6 mmol) & thiophenol (1.29 mmol) to afford thioester **10c** (195 mg, 84%) as brownish liquid. ¹H NMR (400 MHz, CDCl₃) δ = 7.44 (ddt, *J*= 8.2, 5.4, 2.7 Hz, 7H), 7.35-7.32 (m, 3H), 7.26 (dd, *J*= 5.0, 1.3 Hz, 1H), 6.93-6.89

(m, 2H), 5.12 (t, J= 7.4 Hz, 1H), 3.36 (d, J= 7.4 Hz, 2H); ¹³C NMR (100MHz, CDCl₃) δ = 194.3, 144.1, 134.5, 133.5, 133.3, 129.7, 129.3, 129.1, 128.3, 127.3, 126.7, 125.8, 125.1, 50.4, 44.6; **IR** (neat, cm⁻¹) = 1700; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₉H₁₆NaOS₃: 379.0261; found 379.0265.

S-phenyl 3-(phenylthio)propanethioate(10d)

According to the above-mentioned procedure, alpha beta unsaturated acid **9d** (1.38 mmol, 100 mg) upon reaction with CDI (1.38 mmol) & thiophenol (2.77 mmol) to afford thioester **10d** (295 mg, 78%) as white liquid. ¹H NMR (400 MHz, CDCl₃) δ = 7.45-7.39 (m, 7H), 7.34 (t, *J*=

7.5 Hz, 2H), 7.26 (td, J= 6.5, 2.9 Hz, 1H), 3.25 (dd, J= 8.1, 6.8 Hz, 2H), 2.98 (dd, J= 8.1, 6.8 Hz, 2H); ¹³C NMR (100MHz, CDCl₃) δ = 195.8, 134.9, 134.5, 130.2, 129.5, 129.2, 129.1, 127.2, 126.7, 43.2, 29.2; **IR** (neat, cm⁻¹) = 1701; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₅H₁₄NaOS₂: 297.0384; found 297.0388.

S-phenyl 3-(phenylthio)butanethioate(10e)

According to the above-mentioned procedure, alpha beta unsaturated acid **9e** (1.16 mmol, 100 mg) upon reaction with CDI (1.16 mmol) & thiophenol (2.32 mmol) to afford thioester **10e** (267 mg, 80%) as white liquid. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.50-7.47 (m, 2H), 7.46-7.40 (m,

5H), 7.38-7.31 (m, 3H), 3.76 (ddd, J= 8.8, 6.8, 5.3 Hz, 1H), 3.03-2.76 (m, 2H), 1.41 (d, J= 6.8 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ = 195.5, 134.5, 133.6, 132.7, 129.5, 129.3, 129.1, 127.5, 127.4, 50.3, 39.7, 20.6; **IR** (neat, cm⁻¹) = 1703; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₆H₁₆NaOS₂: 311.0540; found 311.0544.

S-phenyl 3-(phenylthio)hexanethioate(10f)

According to the above-mentioned procedure, alpha beta unsaturated acid **9f** (0.8 mmol, 100 mg) upon reaction with CDI (0.8 mmol) & thiophenol (1.75 mmol) to afford thioester **10f** (224 mg, 81%) as white liquid. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.47 (dt, *J*= 7.3, 1.4 Hz, 2H),

7.44-7.39 (m, 5H), 7.39-7.28 (m, 3H), 2.99-2.84 (m, 2H), 1.69-1.50 (m, 5H), .95 (t, J= 7.0 Hz, 3H); ¹³C NMR (100MHz, CDCl₃) δ = 195.6, 135.1, 134.4, 133.9, 132.6, 129.5, 129.3, 129.0, 127.4, 49.1, 44.8, 36.5, 20.1, 13.7; **IR** (neat, cm⁻¹) = 1705; **HRMS** (ESI) m/z (M+Na)⁺ calculated for C₁₈H₂₀NaOS₂: 339.0853; found 339.0857.

8. Copies of ¹H & ¹³C NMR:

2a - ¹H & ¹³C NMR

2e - ¹H & ¹³C NMR

60 50 40 30 20 10 0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 f1 (ppm)

2f - ¹H & ¹³C NMR

Aug26-2023.10.fid — MKN-THIOESTER-7-1H

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S20

2i - ¹H & ¹³C NMR

2l - ¹H & ¹³C NMR

S24

2m - ¹H & ¹³C NMR

S28

4d - ¹H & ¹³C NMR

S33

4h - ¹H & ¹³C NMR

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S40

10a - ¹H & ¹³C NMR

10b - ¹H & ¹³C NMR

10c - ¹H & ¹³C NMR

10d - ¹H & ¹³C NMR

10f - ¹H & ¹³C NMR

9. Single crystal XRD study of thioester 2j

ORTEP diagram of 2j drawn with 50% contour space probability for all non-H atoms.

Refined crystal data of 2j (CCDC no – 2339403)		
Empirical formula	C ₁₃ H ₉ IOS	
Formula weight	340.1785	
Temperature/K	298	
Crystal system	Monoclinic	
Space group	P 21/C	
a/Å	18.834(3)	
b/Å	7.9364(13)	
c/Å	17.557(3)	
α/ο	90	
β/°	103.605(6)	
γ/ο	90	
Volume/Å ³	2550.7(7)	
Z	27	
ρ/g.cm ⁻³	1.772	
μ/mm ⁻¹	2.650	
F (000)	1312	
Radiation	MoKα ($\lambda = 0.71073$)	
2Θ range for data collection/°	2.225 to 24.854	
Index ranges	$-22 \le h \le 22, -9 \le k \le 9, -20 \le l \le 20$	
Reflections collected	57729	
Independent reflections	4423	
Goodness-of-fit on F ²	1.160	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0494, wR_2 = 0.1512$	
Final R indexes (all data)	$R_1 = 0.0723, wR_2 = 0.1699$	