Supporting Information for

Synthesis of hydroxy-thiazoline substituted pyridine derivatives *via* [3 + 2] cycloaddition of 1,4-dithiane-2,5-diol with cyanopyridine

Mengcheng Zhang*, Yuying Chen, Xiaoyu Yan, Yonggang Zhang, Xiantao Ma*

[†]College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China

Contents

1. General information	2
2. Optimization of reaction conditions.	3
3. General procedure for the synthesis of pyridine hydroxy thiazoline compounds	3
4. The state of compounds and color change	4
5. The X-ray crystallographic data of 5aa	4
6. The analytical and spectral characterization data for the products	7
7. Copies of NMR spectra.	20

1. General information.

All reagents were reagent grade quality and purchased from commercial sources unless otherwise indicated. 1H and 13C NMR spectra were measured on a JNM-ECZ600R/S3 (Jeol, Japan) (600 and 150 MHz for 1H and 13C NMR, respectively) using CDCl₃ or DMSO-*D6* as the solvent. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet; t = triplet; q = quartet; m = multiplet, etc.), coupling constants (Hz), integration. Enantiomer excesses were determined by chiral HPLC analysis on in comparison with the authentic racemates. Singlecrystal X-ray diffraction was performed on the title crystals. The diffractometer is a Bruker D8 Venture (IµS3.0). And it is equipped with graphite-monochromated MoK α radiation, at 296 K. High resolution mass spectra (HRMS (ESI)) were obtained via ESI mode by using a MicrOTOF mass spectrometer.

2. Optimization of reaction conditions.

OH S OH 1a	+ N CN 2a	TBD (20 mol%) Solvent, RT	Saa OH
Entry	Solvent	T (°C)	Yield $(\%)^b$
1	DCM	50	$82(78)^{c}$
2	CHCl ₃	50	60
3	PhCl	50	47
4	CH ₃ OH	50	22
5	THF	50	16
6	EtOH	50	37
7	CH ₃ CN	60	19
8	DMSO	70	21

^{*a*}Unless otherwise noted, the reaction conditions were as follows: **1a** (0.12 mmol), **2a** (0.2 mmol), and in solvent (1 mL) for 12 h, TBD = 1,5,7-Triazabicyclo[4.4.0]dec-5-ene. ^{*b*}The yield was determined by ¹H NMR spectra of the crude product using 1,3,5-trimethylbenzene as an internal standard. ^{*c*}Isolated yields.

3. General procedure for the synthesis of pyridine hydroxy thiazoline compounds.

To the dry mortar, add **1a** or **1a'** (0.12 mmol), **2/3/4** (0.2 mmol), and grind the compound to mix well. Then 20 mol% **TBD** is added to the mixture and grinding continues for 10-15 min. After grinding, the mixture was dissolved in methanol or dichloromethane, and petroleum ether was gradually added to the mixture, so that the solid was recrystallized and purified. After crystallization, the mother liquor mixture was purified by silica gel column chromatography, and the product was separated in the ethyl acetate petroleum ether system (EA / PE = 3/1 to 1/1).

Gram-scale experiment:

To a Schlenk tube equipped with a magnetic stir bar, **1a** or **1a'** (12.0 mmol), **2a/2b/2k/4i** (20.0 mmol), DCM (10.0 mL) was added to the reaction mixture, TBD (20 mol%) were added, and stir the mixture at room temperature. The reaction process was analyzed by TLC. After the reaction is completed, the solid solvent is heated and petroleum ether is slowly dropped into the solution to recrystallize the target product. The remaining mixture was purified by silica gel column chromatography in an ethyl acetate petroleum ether system (EA / PE = 3/1-1/1).

4. The state of compounds and color change

5. The X-ray crystallographic data of 5aa.

X-Ray crystal structure of **5aa** (The crystal was obtained by slow evaporation of **5aa** in a mixture of CH₂Cl₂/petroleum ether/ethyl acetate) (CCDC 2371473):

Table

Identification code	5aa
Empirical formula	C ₈ H ₈ N ₂ OS
Formula weight	180.22
Temperature/K	296.15
Crystal system	monoclinic
Space group	P21/c
a/Å	5.0399(3)
b/Å	15.0255(11)
c/Å	11.3318(9)
α/°	90
β/°	93.975(2)
γ/°	90
Volume/Å3	856.06(11)
Z	4
pcalcg/cm3	1.398
μ/mm-1	0.327
F(000)	376.0
Crystal size/mm3	$0.13\times 0.11\times 0.09$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	4.51 to 56.658
Index ranges	$\textbf{-6} \hspace{0.1cm} \leqslant \hspace{0.1cm} h \hspace{0.1cm} \leqslant \hspace{0.1cm} 6, \textbf{-20} \hspace{0.1cm} \leqslant \hspace{0.1cm} k \hspace{0.1cm} \leqslant \hspace{0.1cm} 20, \textbf{-15} \hspace{0.1cm} \leqslant \hspace{0.1cm} l \hspace{0.1cm} \leqslant \hspace{0.1cm} 15$
Reflections collected	12362
Independent reflections	2110 [Rint = 0.0192, Rsigma = 0.0145]
Data/restraints/parameters	2110/0/110
Goodness-of-fit on F2	1.069
Final R indexes [I>= 2σ (I)]	R1 = 0.0337, wR2 = 0.0922

Final R indexes [all data] R1 = 0.0400, wR2 = 0.0969 Largest diff. peak/hole / e Å-3 0.22/-0.18

6. The analytical and spectral characterization data for the products.

2-(pyridin-2-yl)-4,5-dihydrothiazol-4-ol

5aa, White solid, m.p. = 122.9-125.2 °C. 158.4 mg, 88% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 2:1) [UV].

¹**H NMR** (600 MHz, CDCl₃) δ 8.74 – 8.62 (dd, *J* = 4.8, 0.6 Hz, 1H), 8.11 (d, *J* = 7.8 Hz, 1H), 7.81 (td, *J* = 7.8, 1.2 Hz, 1H), 7.41 (ddd, *J* = 7.8, 4.8, 1.2 Hz, 1H), 6.38 (dd, *J* = 6.6, 5.4 Hz, 1H), 5.34 (s, 1H), 3.60 (dd, *J* = 12.0, 7.2 Hz, 1H), 3.35 (dd, *J* = 12.0, 7.2 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 173.8, 150.4, 149.6, 137.0, 126.2, 121.9, 99.7, 38.4.

HRMS (ESI): calcd for C₈H₉N₂OS⁺ [M+H]⁺ requires m/z 181.0431, found m/z 181.0439

4-methyl-2-(pyridin-2-yl)-4,5-dihydrothiazol-4-ol

5a'a, White solid, m.p. = 127.7-129.4 °C. 166.8 mg, 86% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 2:1) [UV].

¹**H NMR** (600 MHz, DMSO- *D*₆) δ 8.61 (d, *J* = 4.2 Hz, 1H), 8.01 (d, *J* = 7.8 Hz, 1H), 7.89 (t, *J* = 7.8 Hz, 1H), 7.56 – 7.44 (m, 1H), 6.28 (s, 1H), 3.27 (d, *J* = 11.4 Hz, 1H), 3.18 (d, *J* = 11.4 Hz, 1H), 1.48 (s, 3H). ¹³**C NMR** (150 MHz, DMSO- *D*₆) δ 166.3, 150.3, 149.3, 137.1, 126.1, 121.2, 107.2, 42.7, 27.6. **HRMS** (ESI): calcd for C₉H₁₁N₂OS⁺ [M+N]⁺ requires m/z 195.0587, found m/z 195.0595.

2-(3-hydroxypyridin-2-yl)-4,5-dihydrothiazol-4-ol

5ab, White solid, m.p. = 101.7-103.5 °C. 139.1 mg, 71% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 2:1) [UV].

¹**H NMR** (600 MHz, DMSO-*D6*) δ 12.53 (s, 1H), 8.17 (dd, *J* = 3.6, 1.8 Hz, 1H), 7.50 – 7.36 (m, 2H), 6.68 (d, *J* = 6.4 Hz, 1H), 6.30 – 6.14 (m, 1H), 3.52 (dd, *J* = 12.0, 7.2 Hz, 1H), 3.06 (dd, *J* = 12.0, 4.2 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*6) δ 175.1, 155.8, 141.5, 133.9, 128.5, 125.3, 98.6, 37.5.

HRMS (ESI): calcd for $C_8H_9N_2O_2S^+$ [M+H]⁺ requires m/z 197.0379, found m/z 197.0386.

 $\label{eq:2-(3-hydroxypyridin-2-yl)-4-methyl-4,5-dihydrothiazol-4-ol} 2-(3-hydroxypyridin-2-yl)-4-methyl-4,5-dihydrothiazol-4-ol$

5a'b, White solid, m.p. = 129.7-131.5 °C. 186.9 mg, 89% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO-*D*₆) δ 12.47 (s, 1H), 8.25 – 8.15 (m, 1H), 7.58 – 7.30 (m, 2H), 6.57 (s, 1H), 3.36 (s, 1H), 3.24 (d, *J* = 11.4 Hz, 1H), 1.59 (s, 1H). ¹³**C NMR** (150 MHz, DMSO-*D*₆) δ 172.2, 155.6, 141.4, 134.0, 128.3, 125.1, 106.6, 41.9, 28.4. **HRMS** (ESI): calcd for C₉H₁₁N₂O₂S⁺ [M+H]⁺ requires m/z 211.0536, found m/z 211.0537.

2-(3-bromopyridin-2-yl)-4,5-dihydrothiazol-4-ol

5ac, Pale yellow solid, m.p. = 112.2-114.5 °C. 234.7 mg, 91% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO-*D*₆) δ 8.66 (dd, *J* = 4.2, 1.2 Hz, 1H), 8.24 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.47 (dd, *J* = 7.2, 4.2 Hz, 1H), 6.64 (s, 1H), 6.20 (t, *J* = 6.6 Hz, 1H), 3.53 (dd, *J* = 11.4, 7.2 Hz, 1H), 3.05 (dd, *J* = 11.4, 7.2 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 166.7, 148.4, 143.4, 127.1, 118.5, 101.6, 38.9.

HRMS (ESI): calcd for C₈H₈BrN₂OS⁺ [M+H]⁺ requires m/z 258.9536, found m/z 258.9535.

2-(3-chloropyridin-2-yl)-4,5-dihydrothiazol-4-ol

5ad, Yellow solid, m.p. = 126.2-128.9 °C. 196.8 mg, 92% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.64 (d, J = 5.4 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.58 (dd, J = 8.4, 4.8 Hz, 1H), 6.65 (d, J = 5.4 Hz, 1H), 6.28 – 6.16 (m, 1H), 3.51 (dd, J = 11.4, 7.2 Hz, 1H), 3.03 (dd, J = 11.4, 7.2 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 166.3, 148.0, 147.1, 140.2, 130.0, 127.1, 101.8, 38.5. HRMS (ESI): calcd for C₈H₈ClN₂OS⁺ [M+H]⁺ requires m/z 215.0041, found m/z 215.0047.

ethyl 2-(4-hydroxy-4,5-dihydrothiazol-2-yl)nicotinate

5ae, Pale yellow solid, m.p. = 115.4-118.2 °C. 183.9 mg, 73% yield.

TLC: $R_f = 0.25$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.75 (dd, J = 4.8, 1.2 Hz, 1H), 8.00 (dd, J = 7.8, 1.8 Hz, 1H), 7.65 (dd, J = 7.8, 4.8 Hz, 1H), 6.11 (t, J = 7.2 Hz, 1H), 4.40 – 4.15 (m, 2H), 3.56 (dd, J = 11.4, 7.2 Hz, 1H), 3.07 (dd, J = 11.4, 7.2 Hz, 1H), 1.25 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 167.6, 166.9, 150.8, 147.6, 136.6, 129.4, 126.1, 100.7, 62.0, 38.8, 14.2.

HRMS (ESI): calcd for $C_{11}H_{13}N_2O_3S^+$ [M+H]⁺ requires m/z 253.0642, found m/z 253.0649.

2-(4-bromopyridin-2-yl)-4,5-dihydrothiazol-4-ol

5af, White solid, m.p. = 131.4-133.7 °C. 224.4 mg, 87% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- *D*₆) δ 8.57 (d, *J* = 5.4 Hz, 1H), 8.20 (s, 1H), 7.87 (d, *J* = 5.4 Hz, 1H), 6.55 (d, *J* = 6.0 Hz, 1H), 6.17 (q, *J* = 6.0 Hz, 1H), 3.57 (dd, *J* = 12.0, 7.8 Hz, 1H), 3.09 (dd, *J* = 11.4, 7.2 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 168.3, 151.9, 151.3, 133.4, 129.7, 124.6, 100.3, 38.9. HRMS (ESI): calcd for C₈H₈BrN₂OS⁺ [M+H]⁺ requires m/z 258.9536, found m/z 258.9530.

2-(4-phenylpyridin-2-yl)-4,5-dihydrothiazol-4-ol

5ag, White solid, m.p. = 127.9-129.6 °C. 225.2 mg, 88% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 3:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.78 – 8.68 (m, 1H), 8.30 (d, J = 1.2 Hz, 1H), 7.90 (dd, J = 4.8, 1.8 Hz, 1H), 7.85 – 7.82 (m, 2H), 7.58 – 7.54 (m, 2H), 7.53 – 7.50 (m, 1H), 6.54 (d, J = 6.6 Hz, 1H), 6.25 – 6.14 (m, 1H), 3.57 (dd, J = 12.0, 7.2 Hz, 1H), 3.09 (dd, J = 12.0, 6.0 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 169.5, 151.5, 150.7, 148.6, 137.1, 130.2, 129.9, 127.5, 124.2, 118.9, 100.5, 38.9.

HRMS (ESI): calcd for $C_{14}H_{13}N_2OS^+$ [M+H]⁺ requires m/z 257.0477, found m/z 257.0472.

2-(5-bromopyridin-2-yl)-4,5-dihydrothiazol-4-ol

5ah, White solid, m.p. = 128.6-130.5 °C. 229.6 mg, 89% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.82 (s, 1H), 8.21 (dd, J = 8.4, 2.4 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 6.54 (d, J = 6.0 Hz, 1H), 6.16 (q, J = 6.0 Hz, 1H), 3.56 (dd, J = 11.4, 7.2 Hz, 1H), 3.08 (dd, J = 11.4, 5.4 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 168.4, 150.8, 149.5, 140.5, 123.4, 100.5, 39.0.

HRMS (ESI): calcd for $C_8H_8BrN_2OS^+$ [M+H]⁺ requires m/z 258.9536, found m/z 258.9531.

2-(6-(hydroxymethyl)pyridin-2-yl)-4,5-dihydrothiazol-4-ol

5ai, Pale yellow solid, m.p. = 134.4-135.9 °C. 96.6 mg, 46% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 7.97 – 7.90 (m, 2H), 7.63 (d, J = 7.2 Hz, 1H), 6.48 (d, J = 6.0 Hz, 1H), 6.15 (q, J = 6.0 Hz, 1H), 5.52 (t, J = 5.4 Hz, 1H), 4.60 (d, J = 5.4 Hz, 2H), 3.52 (dd, J = 11.4, 7.2 Hz, 1H), 3.04 (dd, J = 11.4, 5.4 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 169.4, 162.7, 149.8, 138.1, 123.2, 120.1, 100.4, 64.5, 38.7. HRMS (ESI): calcd for C₉H₁₁N₂O₂S⁺ [M+H]⁺ requires m/z 211.0536, found m/z 211.0532.

2-(6-chloropyridin-2-yl)-4,5-dihydrothiazol-4-ol

5aj, White solid, m.p. = 130.2-132.5 °C. 181.9 mg, 85% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.08 – 7.98 (m, 2H), 7.71 (d, J = 7.2 Hz, 1H), 6.57 (d, J = 6.0 Hz, 1H), 6.17 (q, J = 6.6 Hz, 1H), 3.58 (dd, J = 11.4, 7.2 Hz, 1H), 3.10 (dd, J = 11.4, 5.4 Hz, 1H). ¹³**C NMR** (150 MHz, DMSO- D_6) δ 167.7, 151.3, 150.2, 141.4, 127.5, 121.1, 100.4, 39.0. **HRMS** (ESI): calcd for C₈H₈ClN₂OS⁺ [M+H]⁺ requires m/z 215.0041, found m/z 215.0048.

6-(4-hydroxy-4,5-dihydrothiazol-2-yl)picolinonitrile

5ak, White solid, m.p. = 109.8-111.2 °C. 147.6 mg, 72% yield.

HPLC CHIRALPAK OD-3, n-hexane/2-propanol = 80/20, flow rate 1.2 mL/min, $\lambda = 254$ nm, retention time: 6.078 min, 8.294 min.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 4:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.43 – 8.29 (m, 1H), 8.21 (d, J = 4.8 Hz, 2H), 6.63 (d, J = 6.6 Hz, 1H), 6.19 (q, J = 6.0 Hz, 1H), 3.61 (dd, J = 12.0, 7.2 Hz, 1H), 3.13 (dd, J = 12.0, 7.2 Hz, 1H), 2.55 – 2.43 (m, 2H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 167.7, 152.1, 139.9, 132.8, 131.9, 125.8, 117.4, 100.4, 39.1. HRMS (ESI): calcd for C₉H₈N₃OS⁺ [M+H]⁺ requires m/z 206.0383, found m/z 206.0388.

2-(quinolin-2-yl)-4,5-dihydrothiazol-4-ol

5al, White solid, m.p. = 121.0-123.2 °C. 181.7 mg, 79% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 9.38 (s, 1H), 8.58 (s, 1H), 8.18 (dd, J = 19.8, 6.8 Hz, 2H), 7.86 (t, J = 7.2 Hz, 1H), 7.79 (t, J = 7.2 Hz, 1H), 6.49 (s, 1H), 6.22 (s, 1H), 3.58 (dd, J = 12.0, 7.8 Hz, 1H), 3.11 (dd, J = 11.4, 7.2 Hz, 1H).

¹³**C NMR** (150 MHz, DMSO-*D*₆) δ 169.6, 152.8, 144.5, 135.5, 131.9, 129.7, 128.4, 128.3, 119.2, 100.4, 38.9.

HRMS (ESI): calcd for C₁₂H₁₁N₂OS⁺ [M+H]⁺ requires m/z 231.0587, found m/z 231.0582.

2-(8-hydroxyquinolin-2-yl)-4,5-dihydrothiazol-4-ol

5am, White solid, m.p. = 127.4-130.5 °C. 186.9 mg, 76% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 9.77 (s, 1H), 8.41 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.20 (d, J = 7.8 Hz, 1H), 6.55 (d, J = 6.6 Hz, 1H), 6.22 (q, J = 6.6 Hz, 1H), 3.59 (dd, J = 11.4, 7.2 Hz, 1H), 3.11 (dd, J = 11.4, 6.0 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 169.8, 154.1, 149.2, 138.4, 137.5, 130.3, 129.6, 119.4, 118.5, 113.1, 100.5, 38.9.

HRMS (ESI): calcd for $C_{12}H_{11}N_2O_2S^+$ [M+H]⁺ requires m/z 247.0536, found m/z 247.0539.

2-fluoro-4-(7-(6-(4-hydroxy-4,5-dihydrothiazol-2-yl)-5-(trifluoromethyl)pyridin-3-yl)-8-oxo-6-thioxo-5,7-diazaspiro[3.4]octan-5-yl)-N-methylbenzamide

5an, White solid, m.p. = 139.4-142.2 °C. 331.8 mg, 60% yield. **TLC**: $R_f = 0.35$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 9.06 (s, 1H), 8.61 (s, 1H), 8.48 – 8.41 (m, 1H), 7.85 (t, J = 7.8 Hz, 1H), 7.49 (d, J = 12.6 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 6.74 (d, J = 6.0 Hz, 1H), 6.21 (q, J = 6.6 Hz, 1H), 4.02 (q, J = 7.2 Hz, 1H), 3.64 (dd, J = 11.4, 7.2 Hz, 1H), 3.18 (dd, J = 11.4, 7.2 Hz, 1H), 2.82 (d, J = 4.2 Hz, 3H), 2.27 – 2.61 (m, 2H), 2.02 – 1.95 (m, 2H), 1.16 (t, J = 7.2 Hz, 1H).

¹³**C NMR** (150 MHz, DMSO- D_6) δ 180.8, 175.2, 170.8, 165.0, 164.0, 160.5, 158.8, 152.1, 149.2, 138.9 (d, J = 39.5 Hz), 136.8 (d, $J_{C-F} = 16.9$ Hz), 131.9, 131.6 (d, $J_{C-F} = 11.3$ Hz), 126.9 (d, $J_{C-F} = 11.3$ Hz), 125.9, 125.8 (d, $J_{C-F} = 56.5$ Hz), 125.7, 124.3, 124.1, 123.8, 123.6, 122.0, 120.2, 118.9, 118.7, 101.4, 68.2, 60.3, 39.5, 31.7, 26.8, 21.2, 14.6, 13.9.

¹⁹**F NMR** (565 MHz, DMSO-*D*₆) δ -57.91, -112.11, -112.12, -112.14.

HRMS (ESI): calcd for C₂₃H₂₀F₄N₅O₃S₂⁺ [M+H]⁺ requires m/z 554.0938, found m/z 554..0946.

2-(pyridin-3-yl)-4,5-dihydrothiazol-4-ol

6aa, White solid, m.p. = 116.3-118.9 °C. 167.4 mg, 93% yield.

TLC: $R_f = 0.35$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.96 (s, 1H), 8.73 (d, J = 4.8 Hz, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.68 – 7.43 (m, 1H), 6.53 (d, J = 6.0 Hz, 1H), 6.14 (q, J = 6.0 Hz, 1H), 3.67 (dd, J = 11.4, 7.2 Hz, 1H), 3.21 (dd, J = 11.4, 6.6 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 164.6, 152.9, 148.9, 136.0, 129.1, 124.6, 99.9.

HRMS (ESI): calcd for C₈H₉N₂OS⁺ [M+H]⁺ requires m/z 181.0431, found m/z 181.0436.

2-(4-(trifluoromethyl)pyridin-3-yl)-4,5-dihydrothiazol-4-ol

6ab, White solid, m.p. = 120.9-123.7 °C. 186.0 mg, 75% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H** NMR (600 MHz, DMSO-*d*₆) δ 8.97 (d, J = 5.4 Hz, 1H), 8.90 (s, 1H), 7.89 (d, J = 5.4 Hz, 1H), 6.70 – 6.65 (m, 1H), 6.13 (q, J = 6.0 Hz, 1H), 3.75 (dd, J = 12.0, 7.8 Hz, 1H), 3.30 (dd, J = 11.4, 6.0 Hz, 1H). ¹³C NMR (150 MHz, DMSO-*D*₆) δ 161.9, 153.1, 150.7, 135.1, 134.7 (d, $J_{C\cdot F} = 124.3$ Hz), 134.4, 127.9, 123.8, 121.9, 120.9 (d, $J_{C\cdot F} = 16.9$ Hz), 100.8, 41.6. ¹⁹F NMR (565 MHz, DMSO-*D*₆) δ -59.16.

HRMS (ESI): calcd for $C_9H_8F_3N_2OS^+$ [M+H]⁺ requires m/z 249.0304, found m/z 249.0309.

2-(5-bromopyridin-3-yl)-4,5-dihydrothiazol-4-ol

6ac, White solid, m.p. = 131.2-133.9 °C. 245.1 mg, 95% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 4:1) [UV].

¹**H NMR** (600 MHz, DMSO- *D*₆) δ 8.92 (s, 1H), 8.89 (s, 1H), 8.31 (s, 1H), 6.60 – 6.55 (m, 1H), 6.14 (s, 1H), 3.70 (dd, *J* = 10.8, 7.2 Hz, 1H), 3.24 (dd, *J* = 12.0, 7.2 Hz, 1H). ¹³**C NMR** (150 MHz, DMSO-*D*₆) δ 163.4, 153.6, 147.5, 137.8, 130.7, 120.9, 99.7.

HRMS (ESI): calcd for C₈H₈BrN₂OS⁺ [M+H]⁺ requires m/z 258.9536, found m/z 258.9539.

2-(5-methylpyridin-3-yl)-4,5-dihydrothiazol-4-ol

6ad, White solid, m.p. = 119.1-121.5 °C. 131.9 mg, 68% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- *D*₆) δ 8.76 (s, 1H), 8.57 (s, 1H), 7.95 (s, 1H), 6.51 (d, *J* = 6.0 Hz, 1H), 6.13 (q, *J* = 6.6 Hz, 1H), 3.66 (dd, *J* = 12.0, 7.2 Hz, 1H), 3.20 (dd, *J* = 11.4, 5.4 Hz, 1H), 2.37 (s, 3H). ¹³**C NMR** (150 MHz, DMSO-*D*₆) δ 164.6, 153.3, 146.2, 136.1, 134.0, 128.7, 99.8, 18.2. **HRMS** (ESI): calcd for C₉H₁₁N₂OS⁺ [M+H]⁺ requires m/z 195.0587, found m/z 195.0580.

2-(6-chloropyridin-3-yl)-4,5-dihydrothiazol-4-ol

6ae, White solid, m.p. = 139.7-141.5 °C. 194.7 mg, 91% yield.

TLC: $R_f = 0.40$ (petroleum ether/ethyl acetate = 2:1) [UV].

¹**H NMR** (600 MHz, DMSO- *D*₆) δ 8.78 (s, 1H), 8.25 – 8.15 (m, 1H), 7.66 (d, *J* = 7.8 Hz, 1H), 6.57 (s, 1H), 6.14 (s, 1H), 3.69 (dd, *J* = 12.0, 7.2 Hz, 1H), 3.23 (dd, *J* = 12.0, 5.4 Hz, 1H). ¹³**C NMR** (150 MHz, DMSO-*D*₆) δ 163.5, 153.5, 149.3, 139.3, 128.5, 125.3, 99.8. **HRMS** (ESI): calcd for C₈H₈ClN₂OS⁺ [M+H]⁺ requires m/z 215.0041, found m/z 215.0048.

2-(6-bromopyridin-3-yl)-4,5-dihydrothiazol-4-ol

6af, White solid, m.p. = 135.5-137.2 °C. 242.5 mg, 94% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.74 (d, J = 1.8 Hz, 1H), 8.06 (dd, J = 8.4, 2.4 Hz, 1H), 7.79 (dd, J = 8.4, 0.6 Hz, 1H), 6.57 (d, J = 6.0 Hz, 1H), 6.16 – 6.10 (m, 1H), 3.68 (dd, J = 11.4, 6.6 Hz, 1H), 3.23 (dd, J = 11.4, 6.0 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 163.7, 149.6, 144.8, 138.9, 129.0, 128.8, 99.9.

HRMS (ESI): calcd for $C_8H_8BrN_2OS^+$ [M+H]⁺ requires m/z 258.9536, found m/z 258.9530.

2-(6-(trifluoromethyl)pyridin-3-yl)-4,5-dihydrothiazol-4-ol

6ag, White solid, m.p. = 137.1-139.4 °C. 190.9 mg, 77% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- *D*₆) δ 9.13 (s, 1H), 8.40 (d, *J* = 9.6 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 6.65 (d, *J* = 6.0 Hz, 1H), 6.18 (q, *J* = 6.0 Hz, 1H), 3.73 (dd, *J* = 11.4, 7.2 Hz, 1H), 3.27 (dd, *J* = 11.4, 5.6 Hz, 1H).

¹³**C NMR** (150 MHz, DMSO-*D*₆) δ 163.6, 149.3, 148.8 (d, *J*_{C-F} = 124.3 Hz), 148.6, 138.4, 132.0, 124.6, 122.7, 121.7, 120.9, 119.1, 99.9.

HRMS (ESI): calcd for C₉H₈F₃N₂OS⁺ [M+H]⁺ requires m/z 249.0304, found m/z 249.0307.

2-(6-methylpyridin-3-yl)-4,5-dihydrothiazol-4-ol

6ah, White solid, m.p. = 121.0-123.2 °C. 139.68 mg, 72% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.79 (d, J = 1.8 Hz, 1H), 7.99 (dd, J = 7.8, 2.4 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 6.45 (s, 1H), 6.09 (t, J = 6.0 Hz, 1H), 3.61 (dd, J = 11.4, 7.2 Hz, 1H), 3.15 (dd, J = 11.4, 5.4 Hz, 1H), 2.53 (s, 3H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 164.5, 162.0, 148.4, 136.2, 126.5, 123.8, 99.8, 24.6. HRMS (ESI): calcd for C₉H₁₁N₂OS⁺ [M+H]⁺ requires m/z 195.0587, found m/z 195.0588.

$\label{eq:2-chloro-6-(trifluoromethyl)} pyridin - 3-yl) - 4, 5-dihydrothiazol - 4-ol$

6ai, White solid, m.p. = 125.7-128.3 °C, 211.5 mg, 75% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- *D*₆) δ 8.38 (d, *J* = 8.4 Hz, 1H), 8.07 (d, *J* = 7.8 Hz, 1H), 6.70 (d, *J* = 6.0 Hz, 1H), 6.16 (q, *J* = 6.0 Hz, 1H), 3.75 (dd, *J* = 11.4, 7.2 Hz, 1H), 3.29 (dd, *J* = 11.4, 6.0 Hz, 2H). ¹³**C NMR** (150 MHz, DMSO-*D*₆) δ 162.6, 148.5, 147.6 (d, *J*_{C-F} = 129.9 Hz), 142.7, 133.5, 121.9, 121.1 (d, *J*_{C-F} = 5.6 Hz), 120.1, 99.9, 41.3.

¹⁹**F NMR** (565 MHz, DMSO-*D*₆) δ -66.79.

HRMS (ESI): calcd for C₉H₇ClF₃N₂OS⁺ [M+H]⁺ requires m/z 282.9915, found m/z 282.9917.

2-(5-bromo-2-methoxypyridin-3-yl)-4,5-dihydrothiazol-4-ol

6aj, White solid, m.p. = 119.1-121.4 °C. 184.3 mg, 64% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.47 (d, J = 1.8 Hz, 1H), 8.31 (d, J = 2.4 Hz, 1H), 6.38 (d, J = 6.0 Hz, 1H), 6.02 (q, J = 6.0 Hz, 1H), 3.96 (s, 3H), 3.53 (dd, J = 11.4, 7.2 Hz, 1H), 3.10 (dd, J = 12.0, 5.4 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 162.2, 160.2, 150.5, 141.1, 118.2, 111.8, 97.9, 54.8. HRMS (ESI): calcd for C₉H₁₀BrN₂O₂S⁺ [M+H]⁺ requires m/z 288.9641, found m/z 288.9648.

HKINS (ESI): calcd for $C_9H_{10}Brin_2O_2S^{-1}[M+H]^{+}$ requires m/z 288.9641, found m/z 288

2-(pyridin-4-yl)-4,5-dihydrothiazol-4-ol

7aa, White solid, m.p. = 109.3-111.5 °C. 165.6 mg, 92% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.81 – 8.64 (m, 2H), 7.79 – 7.59 (m, 2H), 6.59 (d, J = 6.0 Hz, 1H), 6.16 (q, J = 6.0 Hz, 1H), 3.69 (dd, J = 11.4, 7.2 Hz, 1H), 3.23 (dd, J = 12.0, 5.4 Hz, 1H). ¹³**C NMR** (150 MHz, DMSO- D_6) δ 165.5, 151.1, 140.1, 122.2, 100.1. **HRMS** (ESI): calcd for C₈H₉N₂OS⁺ [M+H]⁺ requires m/z 181.0431, found m/z 181.0439.

2-(2-fluoropyridin-4-yl)-4,5-dihydrothiazol-4-ol

7ab, Pale yellow solid, m.p. = 131.5-133.7 °C. 176.2 mg, 89% yield.

TLC: $R_f = 0.35$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- *D*₆) δ 8.41 (d, *J* = 5.4 Hz, 1H), 7.73 – 7.65 (m, 1H), 7.45 (s, 1H), 6.65 (d, *J* = 5.4 Hz, 1H), 6.16 (d, *J* = 6.6 Hz, 1H), 3.72 (dd, *J* = 11.4, 7.2 Hz, 1H), 3.26 (dd, *J* = 12.0, 5.4 Hz, 1H). ¹³**C NMR** (150 MHz, DMSO-*D*₆) δ 164.8, 164.4 (d, *J*_{C-F} = 16.9 Hz), 163.2, 149.5, 149.4, 145.9, 145.9, 120.9, 108.4 (d, *J*_{C-F} = 146.9 Hz), 99.9.

HRMS (ESI): calcd for $C_8H_8FN_2OS^+$ [M+H]⁺ requires m/z 199.0336, found m/z 199.0331.

2-(2-chloropyridin-4-yl)-4,5-dihydrothiazol-4-ol

7ac, White solid, m.p. = 128.4-130.8 °C. 168.8 mg, 92% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹H NMR (600 MHz, DMSO- D₆) δ 8.58 (d, J = 4.8 Hz, 1H), 7.82 – 7.66 (m, 2H), 6.64 (d, J = 6.0 Hz, 1H), 6.22 – 6.09 (m, 1H), 3.72 (dd, J = 12.0, 7.2 Hz, 1H), 3.25 (dd, J = 12.0, 6.0 Hz, 1H).
¹³C NMR (150 MHz, DMSO-D₆) δ 164.4, 151.6, 143.5, 122.5, 121.9, 99.9.
HRMS (ESI): calcd for C₈H₈ClN₂OS⁺ [M+H]⁺ requires m/z 215.0041, found m/z 215.0047.

2-(2-bromopyridin-4-yl)-4,5-dihydrothiazol-4-ol

7ad, White solid, m.p. = 116.1-118.3 °C. 234.7 mg, 91% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 2:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.56 (dd, J = 4.8, 0.6 Hz, 1H), 8.08 – 8.05 (m, 1H), 7.76 (dd, J = 5.4, 1.2 Hz, 1H), 6.64 (d, J = 6.0 Hz, 1H), 6.26 – 6.04 (m, 1H), 3.72 (dd, J = 11.4, 7.2 Hz, 1H), 3.25 (dd, J = 11.4, 5.4 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 164.2, 152.1, 143.1, 142.5, 126.0, 122.1, 99.9.

HRMS (ESI): calcd for C₈H₈BrN₂OS⁺ [M+H]⁺ requires m/z 258.9536, found m/z 258.9537.

2-(2-iodopyridin-4-yl)-4,5-dihydrothiazol-4-ol

7ae, Tawny solid, m.p. = 141.7-143.5 °C. 275.4 mg, 90% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO-*D*₆) δ 8.55 – 8.46 (m, 1H), 7.84 – 7.82 (m, 1H), 7.72 (dd, *J* = 4.8, 1.2 Hz, 1H), 6.61 (d, *J* = 6.0 Hz, 1H), 6.14 (q, *J* = 6.0 Hz, 1H), 3.70 (dd, *J* = 12.0, 7.2 Hz, 1H), 3.24 (dd, *J* = 11.4, 5.4 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 164.2, 152.6, 141.7, 132.4, 122.1, 119. 7, 99.9.

HRMS (ESI): calcd for C₈H₈IN₂OS⁺ [M+H]⁺ requires m/z 306.9397, found m/z 306.9391.

2-(3-bromopyridin-4-yl)-4,5-dihydrothiazol-4-ol

7af, Pale yellow oil, m.p. = 139.1-141.5 °C. 219.3 mg, 85% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO-*D*₆) δ 8.87 (s, 1H), 8.65 (d, *J* = 4.8 Hz, 1H), 7.59 (d, *J* = 4.8 Hz, 1H), 6.14 (t, *J* = 6.0 Hz, 1H), 3.72 (dd, *J* = 11.4, 7.2 Hz, 1H), 3.27 (dd, *J* = 11.4, 5.4 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 163.9, 153.2, 149.4, 142.3, 124.8, 118.7, 100.1, 41.2.

HRMS (ESI): calcd for C₈H₈BrN₂OS⁺ [M+H]⁺ requires m/z 258.9536, found m/z 258.9532.

2-(2,6-dichloropyridin-4-yl)-4,5-dihydrothiazol-4-ol

7ag, White solid, m.p. = 139.4-141.5 °C. 183.5 mg, 74% yield.

TLC: $R_f = 0.40$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- *D*₆) δ 7.79 (s, 2H), 6.69 (s, 1H), 6.16 (s, 1H), 3.74 (dd, *J* = 12.0, 7.2 Hz, 1H), 3.27 (dd, *J* = 12.0, 5.4 Hz, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 163.4, 150.7, 146.1, 122.1, 99.8.

HRMS (ESI): calcd for C₈H₇Cl₂N₂OS⁺ [M+H]⁺ requires m/z 248.9651, found m/z 248.9652.

2-(2,6-dimethylpyridin-4-yl)-4,5-dihydrothiazol-4-ol

7ah, White solid, m.p. = 125.7-127.7 °C. 145.6 mg, 70% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H** NMR (600 MHz, DMSO- D_6) δ 7.37 (s, 2H), 6.55 (d, J = 5.4 Hz, 1H), 6.14 (q, J = 6.0 Hz, 1H), 3.67 (dd, J = 11.4, 7.2 Hz, 1H), 3.20 (dd, J = 11.4, 5.4 Hz, 1H), 2.49 (s, 6H).

¹³C NMR (150 MHz, DMSO- D_6) δ 165.8, 158.9, 140.8, 118.7, 99.9, 24.4.

HRMS (ESI): calcd for $C_{10}H_{13}N_2OS^+$ [M+H]⁺ requires m/z 209.0744, found m/z 209.0747.

2-phenyl-4,5-dihydrothiazol-4-ol

7ai, White solid, m.p. = 102.2-105.7 °C. 111.6 mg, 62% yield. **TLC**: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV]. ¹**H NMR** (600 MHz, DMSO- D6) δ 7.87 – 7.76 (m, 2H), 7.59 – 7.53 (m, 1H), 7.52 – 7.45 (m, 2H), 6.44 (d, J = 6.0 Hz, 1H), 6.14 – 6.08 (m, 1H), 3.62 (dd, J = 12.0, 7.2 Hz, 1H), 3.16 (dd, J = 12.0, 6.0 Hz, 1H). ¹³**C NMR** (150 MHz, DMSO-D6) δ 166.6, 133.3, 132.3, 129.3, 128.5, 100.0. **HRMS** (ESI): calcd for C₉H₁₀NOS⁺ [M+H]⁺ requires m/z 180.0478, found m/z 180.0471.

2-(2-fluoro-3-methylphenyl)-4,5-dihydrothiazol-4-ol

7aj, White solid, m.p. = 114.2-116.8 °C. 93.3 mg, 44% yield. TLC: $R_f = 0.40$ (petroleum ether/ethyl acetate = 2:1) [UV].

¹**H NMR** (600 MHz, DMSO-*D*₆) δ 7.68 (td, *J* = 7.8, 1.8 Hz, 1H), 7.51 – 7.40 (m, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 6.45 (s, 1H), 6.07 (t, *J* = 6.0 Hz, 1H), 3.59 (dd, *J* = 11.4, 7.2 Hz, 1H), 3.14 (dd, *J* = 11.4, 5.4 Hz, 1H), 2.28 (d, *J* = 2.4 Hz, 3H).

¹³**C NMR** (150 MHz, DMSO- D_6) δ 161.9 (d, $J_{C-F} = 6.0$ Hz), 159.8, 158.1, 135.0 (d, $J_{C-F} = 6.0$ Hz), 128.3 (d, $J_{C-F} = 3.0$ Hz), 126.2, 126.1, 124.7 (d, $J_{C-F} = 3.0$ Hz), 121.0 (d, $J_{C-F} = 12.0$ Hz), 98.9, 14.7.

¹⁹**F NMR** (565 MHz, DMSO-*D*₆) δ -115.86.

HRMS (ESI): calcd for $C_9H_{11}FNOS^+$ [M+H]⁺ requires m/z 212.0540, found m/z 212.0543.

2-(4-hydroxy-4,5-dihydrothiazol-2-yl)-2-methylpropanenitrile

7ak, Yellow oil. 158.1 mg, 93% yield.

TLC: $R_f = 0.33$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 6.51 (d, J = 5.4 Hz, 1H), 5.96 (q, J = 5.4 Hz, 1H), 3.60 (dd, J = 11.4, 7.2 Hz, 1H), 3.13 (dd, J = 12.0, 6.0 Hz, 1H), 1.60 (s, 3 H), 1.59 (s, 3 H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 170.4, 122.4, 99.5, 40.7, 38.3, 26.5, 26.4.

HRMS (ESI): calcd for $C_7H_{11}N_2OS^+$ [M+H]⁺ requires m/z 171.0587, found m/z 171.0580.

methyl 2-(4-hydroxy-4,5-dihydrothiazol-2-yl)-2-methylpropanoate

7al, Colorless oil. 143.6 mg, 84% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 1:1) [UV].

¹**H NMR** (600 MHz, DMSO- d_6) δ 6.34 (d, J = 6.0 Hz, 1H), 5.87 – 5.81 (m, 1H), 3.60 (s, 3H), 3.43 (dd, 3.43) (dd,

J = 11.4, 7.2 Hz, 1H), 2.95 (dd, *J* = 12.0, 6.0 Hz, 1H), 1.37 (s, 6H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 173.7, 172.6, 99.5, 52.9, 48.7, 24.5.

HRMS (ESI): calcd for $C_8H_{14}NO_3S^+$ [M+H]⁺ requires m/z 204.0689, found m/z 204.0684.

4-((tert-butyldimethylsilyl)oxy)-2-(pyridin-2-yl)-4,5-dihydrothiazole

8aa, White solid, m.p. = 101.5-103.8 °C. 56.4 mg, 96% yield.

TLC: $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.64 -8.61 (m, 1H), 8.04 – 8.0 (m, 1H), 7.91 (td, J = 7.2, 1.2 Hz, 1H), 7.52 (ddd, J = 7.8, 4.8, 1.2 Hz, 1H), 6.28 (dd, J = 7.2, 5.4 Hz, 1H), 3.55 (dd, J = 11.4, 7.2 Hz, 1H), 3.06 (dd, J = 12.0, 4.8 Hz, 1H), 0.84 (s, 10H), 0.13 (s, 3H), 0.07 (s, 3H).

¹³**C NMR** (150 MHz, DMSO-*D*₆) δ 170.9, 150.6, 149.98, 137.7, 126.9, 121.9, 101.1, 39.6, 26.3, 18.3, - 3.5, -4.1.

HRMS (ESI): calcd for C₁₄H₂₃N₂OSSi⁺ [M+H]⁺ requires m/z 295.1295, found m/z 295.1299.

2-(pyridin-2-yl)-4,5-dihydrothiazol-4-yl 4-methylbenzenesulfonate

OTs

9aa, White solid, m.p. = 98.2-100.7 °C. 58.1 mg, 87% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.70 – 8.54 (m, 1H), 8.02 – 7.93 (m, 2H), 7.79 (d, J = 7.8 Hz, 2H), 7.60 (q, J = 4.8 Hz, 1H), 7.44 (d, J = 8.4 Hz, 2H), 6.34 (dd, J = 10.2, 6.0 Hz, 1H), 3.87 – 3.72 (m, 2H), 2.39 (s, 3H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 177.3, 150.1, 149.8, 145.6, 138.0, 134.3, 130.2, 129.8, 127.5, 122.1, 96.3, 66.9, 31.1, 21.7.

HRMS (ESI): calcd for C₈H₇N₂OS⁺ [M+H]⁺ requires m/z 335.0519, found m/z 335.0525.

2-(pyridin-2-yl)thiazole

$$\underset{N}{\overset{S}{\longrightarrow}}$$

10aa, White solid, m.p. = 97.1-99.5 °C. 31.7 mg, 98% yield.

TLC: $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1) [UV].

¹**H NMR** (600 MHz, DMSO- D_6) δ 8.63 (d, J = 4.8 Hz, 1H), 8.14 (d, J = 7.8 Hz, 1H), 8.03 – 7.91 (m, 2H), 7.86 (d, J = 3.0 Hz, 1H), 7.55 – 7.44 (m, 1H).

¹³C NMR (150 MHz, DMSO-*D*₆) δ 168.9, 151.1, 150.2, 144.8, 138.3, 125.6, 123.2, 119.7. HRMS (ESI): calcd for C₈H₇N₂S⁺ [M+H]⁺ requires m/z 163.0324, found m/z 163.0233.

7. Copies of NMR spectra.

¹H NMR Spectrum of **5aa** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **5aa** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **5a'a** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **5ab** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **5a'b** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **5ac** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **5ac** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **5ad** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **5ad** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **5ae** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **5af** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **5af** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **5ag** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **5ah** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **5ah** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **5ai** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **5aj** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **5aj** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **5ak** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **5ak** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **5al** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **5al** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **5am** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **5an** (150 MHz, DMSO-D6)

¹⁹F NMR Spectrum of 5an (565 MHz, DMSO-D₆)

¹H NMR Spectrum of 6aa (600 MHz, DMSO-D6)

¹³C NMR Spectrum of 6aa (150 MHz, DMSO-D6)

¹H NMR Spectrum of **6ab** (600 MHz, DMSO-D6)

¹⁹F NMR Spectrum of 6ab (565 MHz, DMSO-D₆)

¹H NMR Spectrum of **6ac** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of 6ac (150 MHz, DMSO-D6)

¹H NMR Spectrum of **6ad** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of 6ad (150 MHz, DMSO-D6)

¹H NMR Spectrum of **6ae** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **6ae** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **6af** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **6ag** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of 6ag (150 MHz, DMSO-D6)

¹⁹F NMR Spectrum of 6ag (565 MHz, DMSO-D₆)

¹H NMR Spectrum of **6ah** (600 MHz, DMSO-D6)

¹H NMR Spectrum of **6ai** (600 MHz, DMSO-D6)

¹⁹F NMR Spectrum of 6ai (565 MHz, DMSO-D₆)

¹H NMR Spectrum of **6aj** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **6aj** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **7aa** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **7ab** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **7ab** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **7ac** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of 7ad (150 MHz, DMSO-D6)

¹H NMR Spectrum of **7ae** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **7ae** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **7af** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **7af** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **7ag** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **7ag** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **7ah** (150 MHz, DMSO-D6)

¹³C NMR Spectrum of **7ai** (150 MHz, DMSO-D6)

¹H NMR Spectrum of **7aj** (600 MHz, DMSO-D6)

¹⁹F NMR Spectrum of 7aj (565 MHz, DMSO-D₆)

¹H NMR Spectrum of **7ak** (600 MHz, DMSO-D6)

¹H NMR Spectrum of **7al** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **7ak** (150 MHz, DMSO-D6)

¹H NMR Spectrum of 8aa (600 MHz, DMSO-D6)

¹³C NMR Spectrum of 8aa (150 MHz, DMSO-D6)

¹H NMR Spectrum of **9aa** (600 MHz, DMSO-D6)

¹H NMR Spectrum of **10aa** (600 MHz, DMSO-D6)

¹³C NMR Spectrum of **10aa** (150 MHz, DMSO-D6)

