Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

### **Supporting Information**

# Transition metal-free iterative two-fold reductive coupling and 1,3 borotropic shift to form 1,4-skipped dienes

Kasarla Varalaxmi, ab Kangkan Pradhan, ab Hasina Mamataj Begam, Arghya Polley, ab Deepak Kumar and Ranjan Jana\*

<sup>a</sup>Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4
Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India E-mail:

rjana@iicb.res.in

<sup>b</sup>Medicinal Chemistry Division, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata-700054, West Bengal, India.

<sup>c</sup>Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.

### **Table of Contents**

| Table-1 Optimization of reaction condition for skipped diene       | S3        |
|--------------------------------------------------------------------|-----------|
| Crystal structure                                                  | S3-S4     |
| Structural elucidation of cinnamaldehyde skipped diene             | S4        |
| Representative procedure for monoprenylation                       | S5        |
| Spectral data for monoprenylation                                  | S5-S6     |
| Representative procedure for diprenylation                         | S6-S37    |
| Representative procedure for unsymmetrical skipped diene compounds | S37       |
| Spectral data for unsymmetrical skipped diene compounds            | S38       |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra                     | S39 -S108 |

<u>Table -1</u>: Optimization of reaction condition for skipped diene<sup>a,b</sup>

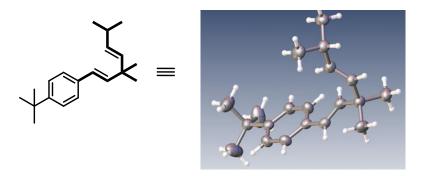
| B(OH)          | 2a                              | solvent, N <sub>2</sub> , 24 n MeO | + MeO     | 4a          |
|----------------|---------------------------------|------------------------------------|-----------|-------------|
| Entry          | Base                            | Solvent                            | Temp.(°C) | Yield 3a/4a |
| 1              | Li <sub>2</sub> CO <sub>3</sub> | 1,4 dioxane                        | 120       | 0/23        |
| 2              | KF                              | 1,4 dioxane                        | 120       | 0/38        |
| 3              | CsF                             | 1,4 dioxane                        | 120       | 16/3        |
| $4^c$          | $K_2CO_3$                       | MeCN                               | 90        | 11/6        |
| 5 <sup>c</sup> | K <sub>2</sub> CO <sub>3</sub>  | THF                                | 90        | 15/8        |
| $6^c$          | K <sub>2</sub> CO <sub>3</sub>  | DCE                                | 90        | -           |
| $7^d$          | Na <sub>2</sub> CO <sub>3</sub> | 1,4 dioxane                        | 120       | 0/68        |
| 8              | Na <sub>2</sub> CO <sub>3</sub> | 1,4 dioxane                        | 90        | 0/56        |
| 9              | Na <sub>2</sub> CO <sub>3</sub> | 1,4 dioxane                        | 110       | 0/78        |

<sup>&</sup>lt;sup>a</sup>All reactions were carried out in 0.5 mmol scale in presence of 4 Å <sup>b</sup>Yields refer to here are overall isolated yields. <sup>a</sup>All reactions were carried out in 0.5 mmol scale in presence of 4 Å <sup>b</sup>Yields referred to here are overall isolated yields. <sup>c</sup>Reaction was performed in absence of molecular sieves (MS). <sup>d</sup>Reaction was performed in a sealed tube.

### Crystal data for compound 4c

| Identification code                           | kvl_0m_a                                             |  |  |
|-----------------------------------------------|------------------------------------------------------|--|--|
| Empirical formula                             | $C_{20}H_{30}$                                       |  |  |
| Formula weight                                | 270.461                                              |  |  |
| Temperature/K                                 | 115.0                                                |  |  |
| Crystal system                                | monoclinic                                           |  |  |
| Space group                                   | $P2_1/n$                                             |  |  |
| a/Å                                           | 6.2632(6)                                            |  |  |
| b/Å                                           | 24.832(3)                                            |  |  |
| c/Å                                           | 11.5592(12)                                          |  |  |
| α/°                                           | 90                                                   |  |  |
| β/°                                           | 97.293(4)                                            |  |  |
| γ/°                                           | 90                                                   |  |  |
| Volume/Å <sup>3</sup>                         | 1783.2(3)                                            |  |  |
| Z                                             | 4                                                    |  |  |
| $\rho_{calc}g/cm^3$                           | 1.007                                                |  |  |
| $\mu$ /mm <sup>-1</sup>                       | 0.408                                                |  |  |
| F(000)                                        | 601.5                                                |  |  |
| Crystal size/mm <sup>3</sup>                  | $0.2 \times 0.2 \times 0.2$                          |  |  |
| Radiation                                     | Cu K $\alpha$ ( $\lambda = 1.54178$ )                |  |  |
| 2Θ range for data collection/° 7.12 to 129.94 |                                                      |  |  |
| Index ranges                                  | $-7 \le h \le 5, -29 \le k \le 29, -13 \le l \le 13$ |  |  |
|                                               |                                                      |  |  |

Reflections collected 23023


Independent reflections  $3022 [R_{int} = 0.1617, R_{sigma} = 0.0708]$ 

Data/restraints/parameters 3022/0/188

Goodness-of-fit on  $F^2$  1.038

Final R indexes [I>= $2\sigma$  (I)]  $R_1 = 0.0757$ ,  $wR_2 = 0.2079$ Final R indexes [all data]  $R_1 = 0.0819$ ,  $wR_2 = 0.2146$ 

Largest diff. peak/hole / e Å-3 0.44/-0.36



### Structural elucidation of cinnamaldehyde skipped diene

### ((2E,5E)-6-(o-tolyl)hexa-2,5-diene-1,4-diyl)dibenzene (5r):

The assignments and position of the aromatic rings were ascertained by the combined use of HSQC/HMBC and DQF-COSY (  $\leftarrow$  correlations starting from the  $\delta c$  39.42/ $\delta_H$  3.47 (- $CH_2$ ) displaying a cross peak with  $\delta_H$  5.82 /  $\delta c$  130.28 in COSY. Subsequent cross-peaks between  $\delta_H$  5.82/ $\delta c$  130.28 -  $\delta_H$  5.86/ $\delta c$  133.62 -  $\delta_H$  4.36/ $\delta c$  51.73 -  $\delta_H$  6.37/ $\delta c$  133.87 -  $\delta_H$  6.72/ $\delta c$  128.34 in COSY confirmed the positions and assignments as displayed in Fig. 1. The position of aromatic ring bearing an ortho-substituted methyl was ascertained by the HMBC correlations between  $\delta_H$  6.72 -  $\delta c$  135.34 -  $\delta c$  136.69 -  $\delta_H$  2.38/ $\delta c$  19.68.

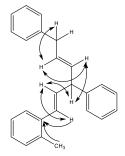



Figure 1

COSY -

HMBC ----

### **Representative procedure for monoprenylation:**

To an oven dried round bottom flask containing a stir bar added with corresponding boronic acid (0.5 mmol) and corresponding tosyl hydrazone (1.5 equivalent). Dry 1,4 Dioxane (2mL) was then added followed by Cs<sub>2</sub>CO<sub>3</sub> (1.5 equivalent, measured in glove box). Then the reaction mixture was purged with N<sub>2</sub> gas for 2 minutes. The mixture allowed to reflux for 120 °C for 24 hours. After allotted time the reaction mixture was cooled to room temperature. The mixture was diluted with EtOAc (15 mL) and washed with water (25 mL) followed by brine solution (25 mL) and dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated in *vacuo*. The crude mixture was loaded on a silica gel column chromatography and purified using (Hexane/EtOAc) to give the desired monoprenylation product.

#### **Spectral data for monoprenylation:**

### 1-methoxy-4-(3-methylbut-2-en-1-yl)benzene (3a)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as a pale-yellow solid (69.1 mg, 78% yield).

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 1.73 (s, 3H), δ 1.76 (s, 3H), 3.30 (d, 2H, J = 7.3 Hz), 3.80 (s, 3H), 5.31-5.34 (m, 1H), 6.84 (d, 2H, J = 8.5 Hz), 7.11 (d, 2H, J = 8.5 Hz); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): 17.3, 25.3, 32.9, 54.8, 113.3, 123.1, 128.7, 131.7, 133.4, 157.2; HRMS (EI, m/z) calcd. For C<sub>12</sub>H<sub>16</sub>O [M]<sup>+</sup>:176.1201; found: 176.1206.

### 1-(3-methylbut-2-en-1-yl)-4-nitrobenzene (3b)

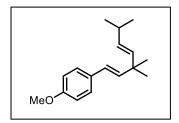
The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as a white solid (75.5 mg, 79% yield).

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 1.73 (s, 3H), 1.78 (s, 3H), 3.44 (d, 2H, J = 7.3 Hz), 5.28-5.31 (m, 1H), 7.32 (d, 2H, J = 8.7 Hz), 8.13 (d, 2H, J = 8.7 Hz); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 17.8, 25.6, 34.1, 121.1, 123.5, 129.0, 134.4, 146.2, 149.6; HRMS (EI, m/z) calcd. For  $C_{11}H_{13}NO_2$  [M]<sup>+</sup>: 191.0946; found: 191.0926.

### 4-(3-methylbut-2-en-1-yl)benzonitrile (3c)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as a white solid (36.0 mg, 42% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.69 (s, 3H), δ 1.74 (s, 3H), 3.37 (d, 2H, J = 7.3 Hz), 5.23-5.28 (m, 1H), 7.25 (d, 2H, J = 8.2 Hz), 7.53 (dd, 2H,  $J_1 = 6.4$  Hz,  $J_2 = 1.5$  Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 17.9, 25.7, 34.5, 109.6, 119.2, 121.3, 129.1, 132.2, 134.3, 147.5; HRMS (EI, m/z) calcd. For C<sub>12</sub>H<sub>13</sub>N [M]<sup>+</sup>: 171.1048; found: 171.1039.


### Representative procedure for diprenylation:

To an oven dried round bottom flask containing a stir bar added with corresponding boronic acid (0.5 mmol) and corresponding tosyl hydrazone (1.5 equivalent). Dry 1,4 Dioxane (2mL) was then added followed by Na<sub>2</sub>CO<sub>3</sub>(1.5 equivalent) and molecular sieves. Then the reaction mixture was purged with N<sub>2</sub> gas for 2 minutes. The mixture allowed to reflux for 120 °C for 24 hours. After allotted time the reaction mixture was cooled to room temperature. The mixture was diluted with EtOAc (15 mL) and washed with water (25 mL) followed by brine solution (25 mL) and dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated in *vacuo*. The crude mixture was loaded on a silica gel column chromatography and purified using (Hexane/EtOAc) to give the desired diprenylation product.

### **Spectral data for 1,4-Skipped dienes:**

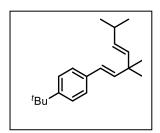
### 1-methoxy-4-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4a)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as a pale brown liquid (104 mg, 85% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.97 (d, 6H, J = 6.7 Hz), 1.16 (s, 6H), 2.20-2.32 (m, 1H), 3.79 (s, 3H), 5.34 (dd, 1H,  $J_I$  = 15.7 Hz,  $J_2$  = 6.2 Hz), 5.42 (d, 1H, J = 16.0 Hz), 6.06 (d, 1H, J = 16.1 Hz), 6.23 (d, 1H, J = 16.2 Hz), 6.83 (dd, 1H,  $J_I$  = 6.7 Hz,  $J_2$  = 2.0 Hz), 7.29 (dd, 1H,  $J_I$  = 6.7 Hz,  $J_2$  = 1.9 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.9, 27.8, 31.2, 38.3, 55.3, 114.0, 125.1, 127.2, 130.9, 134.0, 135.9, 138.0, 158.7; HRMS (EI, m/z) calcd. For C<sub>17</sub>H<sub>24</sub>O [M]<sup>+</sup>: 244.1827; found: 244.1823.

### 4-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)-1,1'-biphenyl (4b)


The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a white solid (142.6 mg, 98% yield).

<sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>): δ 0.92 (d, 6H, J = 6.7 Hz), 1.13 (s, 6H), 2.18-2.27 (m, 1H), 5.33 (dd, 1H,  $J_1 = 15.7$  Hz,  $J_2 = 6.3$  Hz), 5.43

(dd, 1H,  $J_1$  = 1.0 Hz,  $J_2$  = 6.3 Hz), 6.29 (s, 1H), 7.30 (tt, 1H,  $J_1$  = 7.3 Hz,  $J_2$  = 1.2 Hz), 7.39-7.43 (m, 2H), 7.45 (dd, 2H,  $J_1$  = 6.6 Hz,  $J_2$  = 2.0 Hz), 7.57 (dd, 2H,  $J_1$  = 6.5 Hz,  $J_2$  = 1.8 Hz), 7.60-7.63 (m, 2H); <sup>13</sup>C NMR (100 MHz, DMSO-d<sub>6</sub>):  $\delta$  23.1, 27.9, 31.0, 38.6, 125.4, 126.9, 127.1, 127.2, 127.8, 129.4, 134.0, 135.9, 137.0, 139.0, 140.1, 140.2; HRMS (EI, m/z) calcd. For  $C_{22}H_{26}$  [M]<sup>+</sup>: 290.2035; found: 290.2029.

### 1-(tert-butyl)-4-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4c)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as brownish yellow liquid (95.8 mg, 70% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.04 (d, 6H, J = 6.7 Hz), 1.23 (s, 6H), 1.36 (s, 9H), 2.26-2.38 (m, 1H), 5.38-5.51 (m, 2H), 6.29 (q, 2H, J = 26.7 Hz), 7.37 (s, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.9, 27.8, 31.2, 31.4, 34.6, 38.4, 125.5, 125.9, 134.1, 135.3, 135.9, 139.3, 149.9; HRMS (EI, m/z) calcd. For C<sub>20</sub>H<sub>30</sub> [M]<sup>+</sup>: 270.2348; found: 270.2355.

### 1-fluoro-4-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4d)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as white liquid (75.6 mg, 65% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.99 (d, 6H, J = 6.7 Hz), 1.18 (s, 6H), 2.22-2.33 (m, 1H), 5.33-5.44 (m, 2H), 6.19 (q, 2H, J = 38.4 Hz), 6.97 (t, 2H, J = 8.7 Hz), 7.30-7.33 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 27.6, 31.1, 38.3, 115.3 (d, J = 21.3 Hz), 124.6, 127.5(d, J = 7.8 Hz), 134.1(d, J = 2.7 Hz), 134.3, 135.5, 139.8, 161.9 (d, J = 244.2 Hz); HRMS (EI, m/z) calcd. For C<sub>16</sub>H<sub>21</sub>F [M]<sup>+</sup>: 232.1627; found: 232.1621.

### 1-bromo-4-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4e)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as yellowish liquid (118 mg, 80% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.98 (d, 6H, J = 6.7 Hz), 1.17 (s, 6H), 2.21-2.32 (m, 1H), 5.32-5.43 (m, 2H), 6.21 (q, 2H, J = 3.2 Hz), 7.21 (dd, 2H,  $J_I = 6.6$  Hz,  $J_2 = 1.4$  Hz), 7.40 (dd, 2H,  $J_I = 6.6$  Hz,  $J_2 = 1.9$  Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 27.6, 31.2, 38.4, 120.4, 124.6, 127.7, 131.5, 134.4, 135.3, 137.0, 140.9; HRMS (EI, m/z) calcd. For C<sub>16</sub>H<sub>21</sub>Br [M]<sup>+</sup>: 292.0827; found: 292.0826.

### 1-iodo-4-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4f)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as yellowish white liquid (100.2 mg, 58% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.98 (d, 6H, J = 6.7 Hz), 1.17 (s, 6H), 2.21-2.32 (m, 1H), 5.31-5.43 (m, 2H), 6.20 (s, 2H), 7.09 (dd, 2H,  $J_1 = 6.5$  Hz,  $J_2 = 1.8$  Hz), 7.59 (dd, 2H,  $J_1 = 6.5$  Hz,  $J_2 = 1.8$  Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.9, 27.6, 31.2, 38.4, 91.8, 124.8, 128.0, 134.4,

135.3, 137.5, 137.6, 141.0; HRMS (EI, m/z) calcd. For  $C_{16}H_{21}I$  [M]<sup>+</sup>: 340.0688; found: 340.0689.

### 1-chloro-4-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4g)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as white liquid (93.3 mg, 75% yield).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 1.01 (d, 6H, J = 6.6 Hz), 1.20 (s, 6H), 2.22-2.37 (m, 1H), 5.34-5.48 (m, 2H), 6.24 (q, 2H, J = 7.1 Hz), 7.29 (q, 4H, J = 2.7 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 27.6, 31.2, 38.4, 124.6, 127.4, 128.6, 132.4, 134.4, 135.4, 136.5, and 140.7; HRMS (EI, m/z) calcd. For C<sub>16</sub>H<sub>21</sub>Cl [M]<sup>+</sup>: 248.1332; found: 248.1345.

### 4-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)phenol (4h)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 95:5 hexane/EtOAc) afforded the desired product as a pale-yellow liquid (113 mg, 98% yield).

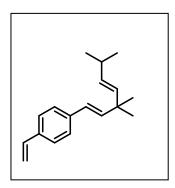
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.98 (d, 6H, J = 6.7 Hz), 1.16 (s, 6H), 2.21-2.32 (m, 1H), 5.30 (s, 1H), 5.35 (dd, 1H, J<sub>1</sub> = 15.7 Hz, J<sub>2</sub> = 6.1 Hz), 5.42 (d, 1H, J = 15.8 Hz), 6.06 (d, 1H, J = 16.2 Hz), 6.22 (d, 1H, J = 16.1 Hz), 6.77 (dd, 2H, J<sub>1</sub> = 6.6 Hz, J<sub>2</sub> = 2.1 Hz), 7.24 (dd, 2H, J<sub>1</sub> = 6.5 Hz, J<sub>2</sub> = 2.0 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 27.7, 31.1, 38.2, 115.4, 125.0,

127.4, 131.0, 134.0, 135.8, 138.0, 154.6; HRMS (EI, m/z) calcd. For  $C_{16}H_{22}O$  [M]<sup>+</sup>: 230.1671; found: 230.1669.

### *N,N*-dimethyl-4-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)aniline (4i)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 95:5 hexane/EtOAc) afforded the desired product as a pale-yellow liquid (113.2 mg, 88% yield).

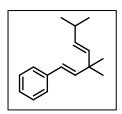
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.98 (d, 6H, J = 6.7 Hz), 1.16 (s, 6H), 2.22-2.30 (m, 1H), 2.93 (s, 6H), 5.34 (dd, 1H, J<sub>1</sub> = 15.7 Hz, J<sub>2</sub> = 6.2 Hz), 5.43 (d, 1H, J = 15.6 Hz), 6.01 (d, 1H, J = 16.1 Hz), 6.21 (d, 1H, J = 16.1 Hz), 6.68 (dd, 2H, J<sub>1</sub> = 6.7 Hz, J<sub>2</sub> = 2.0 Hz), 7.26 (dd, 2H, J<sub>1</sub> = 6.7 Hz, J<sub>2</sub> = 2.0 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.9, 27.9, 31.1, 38.2, 40.7, 112.8, 122.4, 125.3, 126.9, 133.7, 136.1, 136.2, 149.8; HRMS (EI, m/z) calcd. For C<sub>18</sub>H<sub>27</sub>N [M]<sup>+</sup>:257.2143; found: 257.2145.


### 1-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)-4-vinylbenzene (4j)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a pale-yellow liquid (102.4 mg, 86% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.99 (d, 6H, J = 6.7 Hz), 1.18 (s, 6H), 2.22-2.34 (m, 1H), 3.08 (s, 1H), 5.36 (dd, 1H, J<sub>1</sub> = 15.6 Hz, J<sub>2</sub> = 5.8 Hz), 5.43 (d, 1H, J = 15.8 Hz), 6.21-6.30 (m, 2H), 7.31 (dd, 2H, J<sub>1</sub> = 6.5 Hz, J<sub>2</sub> = 1.8 Hz), 7.42 (dd, 2H, J<sub>1</sub> = 6.4 Hz, J<sub>2</sub> = 1.7 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 27.6, 31.2, 38.5, 77.4, 83.9, 120.3, 125.1, 126.0, 132.3, 134.4, 135.3, 138.6, 141.4; HRMS (EI, m/z) calcd. For C<sub>18</sub>H<sub>22</sub> [M]<sup>+</sup>:238.1722; found: 238.1720.

### 1-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)-4-vinylbenzene (4k)


The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a pale-yellow liquid (93.7 mg, 78% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.98 (d, 6H, J = 6.7 Hz), 1.18 (s, 6H), 2.21-2.32 (m, 1H), 5.20 (dd, 1H, J<sub>1</sub> = 10.9 Hz, J<sub>2</sub> = 0.9 Hz), 5.35 (dd, 1H, J<sub>1</sub> = 9.6 Hz, J<sub>2</sub> = 6.0 Hz), 5.43 (d, 1H, J = 16.2 Hz), 5.71 (dd, 1H, J<sub>1</sub> = 17.6 Hz, J<sub>2</sub> = 0.9 Hz), 6.21 (d, 1H, J = 16.1 Hz), 6.28 (d, 1H, J = 16.2 Hz), 6.68 (dd, 1H, J<sub>1</sub> = 17.6 Hz, J<sub>1</sub> = 10.9Hz), 7.33 (d, 3H, J<sub>1</sub> = 1.9 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 27.6, 31.2, 38.4, 113.2, 125.3, 126.3, 126.4, 134.2, 135.6, 136.2, 136.6, 137.6, 140.1; HRMS (EI, m/z) calcd. For C<sub>18</sub>H<sub>24</sub> [M]<sup>+</sup>:240.1878; found: 240.1800.

### ((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4l)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as colourless liquid (81 mg, 75% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.02 (d, 6H, J = 6.8 Hz), 1.22 (s, 6H), 2.24-2.36 (m, 1H), 5.39 (dd, 2H,  $J_I$  = 15.7 Hz,  $J_2$  = 9.6 Hz), 5.47 (d, 1H, J = 16.2 Hz), 6.29 (dd, 2H,  $J_I$  = 36.2 Hz,  $J_2$  =

16.2 Hz), 7.21 (tt, 1H,  $J_I = 7.2$  Hz,  $J_2 = 1.2$  Hz), 7.29-7.33 (m, 2H), 7.39 (dd, 2H,  $J_I = 8.6$  Hz,  $J_2 = 1.4$  Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  22.9, 27.7, 31.2, 38.4, 125.7, 126.2, 126.9, 128.5, 134.2, 135.7, 138.1, 140.0; HRMS (EI, m/z) calcd. For C<sub>16</sub>H<sub>22</sub> [M]<sup>+</sup>: 214.1722; found: 214.1711.

### Methyl(3-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)phenyl)sulfane (4m)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 99:1 hexane/EtOAc) afforded the desired product as a pale-yellow liquid (119.7 mg, 92% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.99 (d, 6H, J = 6.7 Hz), 1.18 (s, 6H), 2.21-2.23 (m, 1H), 2.49 (s, 3H), 5.35 (dd, 1H,  $J_1 = 15.7$  Hz,  $J_2 = 5.9$  Hz), 5.42 (d, 1H, J = 15.9 Hz), 6.23 (q, 2H, J = 5.3 Hz), 7.08-7.10 (m, 1H), 7.14 (dt, 1H,  $J_1 = 7.7$  Hz,  $J_2 = 1.3$  Hz), 7.21 (t, 1H, J = 7.6 Hz), 7.26 (t, 1H, J = 1.7 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 16.0, 22.8, 27.6, 31.1, 38.4, 123.1, 124.5, 125.1, 125.2, 128.9, 134.3, 135.4, 138.5, 138.7, 140.7; HRMS (EI, m/z) calcd. For C<sub>17</sub>H<sub>24</sub>S [M]<sup>+</sup>: 260.1599; found: 260.1579.

### **1-nitro-3-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4n)**

The same general procedure was followed. Column chromatography (Silica gel, eluting with 97:3 hexane/EtOAc) afforded the desired product as a pale-yellow liquid (97.2 mg, 75% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.98 (d, 6H, J = 6.7 Hz), 1.19 (s, 6H), 2.23-2.31 (m, 1H), 5.36 (dd, 1H,  $J_1$  = 15.7 Hz,  $J_2$  = 5.3 Hz), 5.41 (d, 1H, J = 15.7 Hz), 6.33 (q, 2H, J = 1.2 Hz), 7.43 (t, 1H, J = 7.9 Hz), 7.63 (dt, 1H,  $J_1$  = 7.7 Hz,  $J_2$  = 1.3 Hz), 8.00-8.03 (m, 1H), 8.20 (t, 1H, J = 2.0 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 27.5, 31.2, 38.6, 120.6, 121.4, 123.8, 129.3, 132.1, 134.8, 139.9, 143.4, 148.6; HRMS (EI, m/z) calcd. For C<sub>16</sub>H<sub>21</sub>NO<sub>2</sub> [M]<sup>+</sup>:259.1572; found: 259.1573.

### 1-(3-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)phenyl)ethan-1-one (40)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as colourless liquid (90 mg, 70% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.97 (d, 6H, J = 6.7 Hz), 1.18 (s, 6H), 2.20-2.32 (m, 1H), 2.59 (s, 3H), 5.32-5.43 (m, 2H), 6.30 (q, 2H, J = 5.2 Hz), 7.36 (t, 1H, J = 7.7 Hz), 7.52-7.55 (m, 1H), 7.73-7.76 (m, 1H), 7.92-7.93 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 26.7, 27.6, 31.1, 38.5, 124.9, 125.8, 126.8, 128.7, 130.7, 134.5, 135.2, 137.4, 138.5, 141.5, 198.4; HRMS (EI, m/z) calcd. For C<sub>18</sub>H<sub>24</sub>O [M]<sup>+</sup>: 256.1827; found: 256.1832.

### Methyl 3-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzoate (4p)

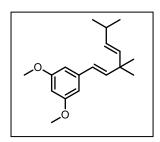
The same general procedure was followed. Column chromatography (Silica gel, eluting with 99:1 hexane/EtOAc) afforded the desired product as a pale-yellow liquid (107 mg, 78% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.98 (d, 6H, J = 6.7 Hz), 1.18 (s, 6H), 2.21-2.32 (m, 1H), 3.91 (s, 3H), 5.35 (dd, 1H, J<sub>1</sub> = 15.7 Hz, J<sub>2</sub> = 5.9 Hz), 5.42 (d, 1H, J = 15.9 Hz), 6.30 (q, 2H, J = 3.1 Hz), 7.34 (t, 1H, J = 7.7 Hz), 7.52 (dt, 1H, J<sub>1</sub> = 7.7 Hz, J<sub>2</sub> = 1.4 Hz), 7.84 (dt, 1H, J<sub>1</sub> = 8.0 Hz, J<sub>2</sub> = 1.3 Hz), 8.03 (t, 1H, J = 1.7 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 27.6, 31.9, 38.4, 52.1, 124.8, 127.1, 127.8, 128.5, 130.4, 130.6, 134.4, 135.3, 138.4, 141.3, 167.2; HRMS (EI, m/z) calcd. For C<sub>18</sub>H<sub>24</sub>O<sub>2</sub> [M]<sup>+</sup>:272.1776; found: 272.1775.

### 1-(trifluoromethyl)-3-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4q)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as colourless liquid (82.0 mg, 58% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.01 (d, 6H, J = 6.7 Hz), 1.21 (s, 6H), 2.23-2.35 (m, 1H), 5.36-5.46 (m, 2H), 6.31 (q, 2H, J = 5.3 Hz), 7.37-7.45 (m, 2H), 7.52 (d, 1H, J = 7.5 Hz), 7.61 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 27.5, 31.1, 38.5, 122.8 (q, J = 3.6 Hz), 123.4 (q, J = 3.2 Hz), 124.3 (q, J = 270.6 Hz), 124.6, 128.9, 129.3, 130.9 (q, J = 31.8 Hz), 134.6, 135.1, 138.8, 142.0; HRMS (EI, m/z) calcd. For C<sub>17</sub>H<sub>21</sub>F<sub>3</sub> [M]<sup>+</sup>: 282.1595; found: 282.1599.


### 1-bromo-3-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4r)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as pale yellowish liquid (102.6 mg, 70% yield).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 1.01(d, 6H, J = 6.9 Hz), 1.20 (s, 6H), 2.24-2.35 (m, 1H), 5.34-5.47 (m, 2H), 6.24 (s, 2H), 7.16 (t, 1H, J = 7.7 Hz), 7.26-7.34 (m, 2H), 7.54 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 27.6, 31.2, 38.5, 122.8, 124.5, 124.9, 129.0, 129.7, 130.0, 134.5, 135.2, 140.3, 141.6; HRMS (EI, m/z) calcd. For C<sub>16</sub>H<sub>21</sub>Br [M]<sup>+</sup>: 292.0827; found: 292.0828.

### 1,3-dimethoxy-5-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4s)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/ethyl acetate)) afforded the desired product as a colourless liquid (107 mg, 78% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.98 (d, 6H, J = 6.7 Hz), 1.18 (s, 6H), 2.21-2.33 (m, 1H), 3.79 (s, 6H), 5.33-5.44 (m, 2H), 6.21 (q, 2H, J = 3.8 Hz), 6.33 (1H, t, J = 2.2 Hz), 6.53 (d, 2H, J = 2.3 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.8, 27.6, 31.1, 38.3, 55.3, 99.3, 104.2, 125.7, 134.3, 135.5, 140.1, 140.5, 160.9. HRMS (ESI, m/z) calcd. For C<sub>18</sub>H<sub>26</sub>O<sub>2</sub> [M]<sup>+</sup>: 274.1933; found: 274.1938.

### **2-**((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)naphthalene (4t)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as white liquid (67.2 mg, 50% yield).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 1.08 (d, 6H, J = 6.7 Hz), 1.30 (s, 6H), 2.29-2.44 (m, 1H), 5.43-5.57 (m, 2H), 6.47 (q, 2H, J = 22.4 Hz), 7.47 (quin, 2H, J = 7.2 Hz), 7.66 (d, 1H, J = 8.5 Hz), 7.76 (s, 1H), 7.82 (q, 3H, J = 2.1 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.9, 27.8, 31.3, 38.5,

123.8, 125.5, 125.7, 125.9, 126.2, 127.7, 127.9, 128.1, 132.8, 133.9, 134.3, 135.6, 135.7, 140.5; HRMS (EI, m/z) calcd. For C<sub>20</sub>H<sub>24</sub> [M]<sup>+</sup>: 264.1878; found: 264.1871.

### 1-fluoro-2-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)benzene (4u)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as pale yellowish liquid (101.0 mg, 87% yield).

<sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): δ 0.97 (d, 6H, J = 6.7 Hz), 1.18 (s, 6H), 2.20-2.32 (m, 1H), 5.35 (dd, 1H,  $J_I$  = 15.7 Hz,  $J_2$  = 6.0 Hz), 5.42 (d, 1H, J = 16 Hz), 6.27 (d, 1H, J = 16.3 Hz), 6.46 (d, 1H, J = 16.3 H,), 6.97-7.02 (m, 1H), 7.05 (td, 1H,  $J_I$  = 7.4 Hz,  $J_2$  = 1.2 Hz), 7.11-7.17 (m, 1H), 7.45 (td, 1H,  $J_I$  = 7.6 Hz,  $J_2$  = 1.7 Hz); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 22.3, 27.0, 30.6, 38.2, 115.1 (d, J = 22.2 Hz), 117.46, 117.49, 123.4 (d, J = 3.4 Hz), 125.1, 125.2, 126.43, 126.45, 127.5 (d, J = 8.2 Hz), 133.9, 134.8, 141.8, 141.9, 159.5 (d, J = 246.4 Hz); HRMS (EI, m/z) calcd. For C<sub>16</sub>H<sub>21</sub>F [M]<sup>+</sup>: 232.1627; found: 232.1625.

### 1-((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)naphthalene(4v)

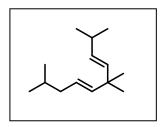
The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as white liquid (67.8 mg, 50% yield yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.05 (d, 6H, J = 6.7 Hz), 1.30 (s, 6H), 2.28-2.40 (m, 1H), 5.44-5.58 (m, 2H), 6.26 (d, 2H, J = 15.8 Hz), 7.07 (d, 2H, J = 15.8 Hz), 7.43-7.55 (m, 4H), 7.59 (d, 1H, J = 7.1 Hz), 7.76 (d, 1H, J = 8.2 Hz), 7.85 (dd, 1H, J<sub>1</sub> = 5.3 Hz, J<sub>2</sub> = 1.8 Hz), 8.13 (dd, 1H, J<sub>1</sub> = 6.9 Hz, J<sub>2</sub> = 1.3 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.9, 27.9, 31.2, 38.9, 123.0, 123.6,

124.0, 125.72, 125.76, 125.8, 127.3, 128.5, 131.4, 133.7, 134.5, 135.7, 136.0, 143.5; HRMS (EI, m/z) calcd. For  $C_{20}H_{24}[M]^+$ : 264.1878; found: 264.1880.

### (3E,6E)-2,5,5,8-tetramethylnona-3,6-diene (4w)


The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as white liquid (40.8 mg, 45% yield yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.95 (d, 12H, J = 6.7 Hz), 0.96 (s, 6H), 1.02 (s, 6H), 2.16-2.28 (m, 2H), 5.25 (dd, 2H,  $J_1 = 15.7$  Hz,  $J_2 = 6.2$  Hz), 5.33 (dd, 2H,  $J_1 = 15.7$  Hz,  $J_2 = 0.6$  Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.9, 27.9, 31.0, 37.5, 133.2, 136.5; HRMS (EI, m/z) calcd. For C<sub>13</sub>H<sub>24</sub> [M]<sup>+</sup>: 180.1878; found: 180.1876.

### (3E,6E)-2,5,5,9-tetramethyldeca-3,6-diene (4x)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a pale-yellow liquid (74.2 mg, 76% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.86 (d, 6H, J = 6.4 Hz), 0.95 (d, 6H, J = 6.8 Hz), 1.04 (s, 6H), 1.53-1.63 (m, 1H), 1.87 (td, 2H,  $J_1 = 6.8$  Hz,  $J_2 = 0.8$  Hz), 2.17-2.28 (m, 1H), 5.24-5.30 (m, 1H), 5.32-5.33 (m, 1H), 5.36-5.40 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.3, 22.9, 27.9,

28.6, 31.1, 37.9, 42.1, 124.7, 133.3, 136.4, 140.8; HRMS (EI, m/z) calcd. For  $C_{14}H_{26}$  [M]<sup>+</sup>:194.2035; found: 194.2031.

### ((1E,4E)-3,3,6-trimethylhepta-1,4-dien-1-yl)cyclopentane (4y)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a pale-yellow liquid (67.8 mg, 65% yield).

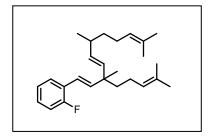
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.95 (d, 6H, J = 6.7 Hz), 1.03 (s, 6H), 1.23-1.27 (m, 2H), 1.49-1.57 (m, 2H), 1.58-1.65 (m, 2H), 1.69-1.77 (m, 2H), 2.18-2.26 (m, 1H), 2.31-2.41 (m, 1H), 5.22-5.29 (m, 2H), 5.31-5.38 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.9, 25.2, 27.9, 31.1, 33.4, 37.6, 43.4, 130.7, 133.2, 136.5, 137.6; HRMS (EI, m/z) calcd. For C<sub>15</sub>H<sub>26</sub> [M]<sup>+</sup>:206.2035; found: 206.2034.

## $1-fluoro-4-((1E,4E)-3,6,10-trimethyl-3-(4-methylpent-3-en-1-yl)undeca-1,4,9-trien-1-yl)benzene \ (4ya)$

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as yellowish brown (138.2 mg, 75% yield yield).

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 1.03 (dd, 3H,  $J_I$  = 6.7 Hz,  $J_2$  = 2.7 Hz), 1.25 (s, 3H), 1.35 (quin, 2H, J = 6.2 Hz), 1.52 (t, 2H, J = 8.2 Hz), 1.62 (s, 6H), 1.75 (s, 3H), 2.00 (q, 4H, J = 7.0 Hz), 2.17 (quin, 1H, J = 6.9 Hz), 5.16 (t, 2H, J = 5.7 Hz), 5.27-5.31 (m, 1H), 5.46 (d, 1H, J = 15.7 Hz), 6.16 (d, 1H, J = 16.2 Hz), 6.30 (dd, 1H,  $J_I$  = 16.2 Hz,  $J_2$  = 2.5 Hz), 7.01 (t, 2H, J = 8.6 Hz), 7.33-7.36 (m, 2H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 17.1, 17.24, 17.25, 20.6, 20.7, 22.8,

22.9, 23.66, 23.67, 25.27, 114.8 (d, J = 21.3 Hz), 124.3, 124.4, 125.0, 126.9 (d, J = 7.8 Hz), 130.68, 130.69, 130.7, 133.5, 133.6, 133.7 (d, J = 3.3 Hz), 135.35, 135.37, 138.30, 138.31, 138.32, 161.4 (d, J = 244.0 Hz); HRMS (EI, m/z) calcd. For C<sub>26</sub>H<sub>37</sub>F [M]<sup>+</sup>: 368.2879; found: 368.2880.


### $1-(trifluoromethyl)-3-((1E,4E)-3,6,10-trimethyl-3-(4-methylpent-3-en-1-yl)undeca-1,4,9-trien-1-yl)benzene \ (4yb)$

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as pale brown (132 mg, 63% yield yield).

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 1.02 (dd, 3H,  $J_I$  = 6.7 Hz,  $J_2$  = 2.5 Hz), 1.25 (s, 3H), 1.34 (quin, 2H, J = 6.5 Hz), 1.53 (t, 2H, J = 8.3 Hz), 1.61 (s, 6H), 1.70 (s, 3H), 1.99 (q, 4H, J = 7.8 Hz), 2.16 (quin, 1H, J = 6.9 Hz), 5.14 (t, 2H, J = 7.2 Hz), 5.27-5.31 (m, 1H), 5.45 (d, 1H, J = 15.7 Hz), 6.30 (d, 1H, J = 16.2 Hz), 6.36 (dd, 1H,  $J_I$  = 16.2 Hz,  $J_Z$  = 2.2 Hz), 7.42 (t, 1H, J = 7.6 Hz), 7.46 (d, 1H, J = 7.7 Hz), 7.54 (d, 1H, J = 7.5 Hz), 7.61 (s, 1H),; <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 17.1, 17.2, 20.61, 20.67, 22.84, 22.87, 23.51, 23.53, 25.23, 25.23, 25.25, 25.50, 25.52, 36.29, 36.35, 36.8, 36.9, 41.1, 41.2, 41.36, 41.37, 122.28 (q, J = 3.7 Hz), 122.86 (q, J = 3.7 Hz), 124.28, 124.29, 124.3, 128.3, 127.7 (q, J = 275.8 Hz), 130.2, 130.51(q, J = 34.9 Hz), 130.506, 130.73, 130.75, 133.8, 133.9, 134.93, 134.96, 138.3, 140.57, 140.59. HRMS (EI, m/z) calcd. For C<sub>27</sub>H<sub>37</sub>F<sub>3</sub> [M]<sup>+</sup>: 418.2847; found: 418.2843.

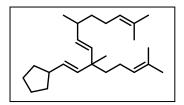
### Methyl(3-((1E,4E)-3,6,10-trimethyl-3-(4-methylpent-3-en-1-yl)undeca-1,4,9-trien-1-yl)phenyl)sulfane(4yc)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a pale-yellow liquid (139.2 mg, 75% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.98 (dd, 3H,  $J_1 = 6.7$  Hz,  $J_2 = 1.8$  Hz ), 1.19 (s, 3H), 1.29-1.33 (m, 2H), 1.46-1.50 (m, 2H), 1.57 (s, 6H), 1.67 (, 6H), 1.92-1.98 (m, 4H), 2.08-2.15 (m, 1H), 5.08-5.12 (m, 2H), 5.25 (ddd, 1H,  $J_1 = 15.7$  Hz,  $J_2 = 7.8$  Hz,  $J_3 = 2.1$  Hz), 5.42 (d, 1H,  $J_1 = 15.7$  Hz), 6.26 (d, 1H,  $J_1 = 16.4$  Hz), 6.46 (d, 1H,  $J_2 = 16.3$  Hz), 6.99 (ddd, 1H,  $J_1 = 10.7$  Hz,  $J_2 = 8.1$  Hz,  $J_3 = 1.1$  Hz), 7.05 (dt, 1H,  $J_1 = 7.6$  Hz,  $J_2 = 1.2$  Hz), 7.12-7.17 (m, 1H), 7.44 (tt, 1H,  $J_1 = 7.7$  Hz,  $J_2 = 1.6$  Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 17.6, 17.7, 21.1, 21.2, 23.40, 23.42, 25.7, 26.02, 26.04, 29.7, 36.81, 36.86, 37.4, 41.71, 41.76, 42.0, 115.6 (d,  $J_1 = 22.1$  Hz), 119.0, 119.04, 124.0 (d,  $J_1 = 3.1$  Hz), 124.8, 124.9, 125.8, 125.9, 126.9, 127.0, 127.9, 128.0 (d,  $J_1 = 3.1$  Hz), 141.5,160.0 (d, 1H,  $J_1 = 246.4$  Hz); HRMS (EI, m/z) calcd. For C<sub>26</sub>H<sub>37</sub>F [M]<sup>+</sup>:368.2879; found: 368.2872.

### 1-methyl-2-((1E,4E)-3,6,10-trimethyl-3-(4-methylpent-3-en-1-yl)undeca-1,4,9-trien-1-yl)benzene (4yd)


The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a pale-yellow liquid (115.6 mg, 63% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.03 (dd, 3H,  $J_1 = 6.7$  Hz,  $J_2 = 1.3$  Hz ), 1.23 (s, 3H), 1.33-1.37 (m, 2H), 1.51-1.55 (m, 2H), 1.62 (s, 6H), 1.71 (s, 6H), 1.98-2.04 (m, 4H), 2.14-2.21 (m, 1H), 2.35 (s, 3H), 5.13-5.18 (m, 2H), 5.30 (dd, 1H,  $J_1 = 15.6$  Hz,  $J_2 = 7.8$  Hz), 5.48 (d, 1H,  $J_1 = 15.8$  Hz), 6.10 (dd, 1H,  $J_1 = 16.0$  Hz,  $J_2 = 1.2$  Hz), 6.54 (d, 1H,  $J_1 = 16.0$  Hz), 7.14-7.20 (m, 3H), 7.44 (d, 1H,  $J_1 = 7.0$  Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 17.73, 17.78, 19.9, 21.30, 21.33, 23.50, 23.53, 24.4, 24.5, 25.8, 26.1, 36.9, 37.5, 41.8, 42.0, 124.8, 124.9, 125.1, 125.6, 126.1,

126.8, 130.1, 131.2, 136.16, 136.18, 137.4, 140.5, 140.6; HRMS (EI, m/z) calcd. For  $C_{27}H_{40}$  [M]<sup>+</sup>:364.3130; found: 364.3136.

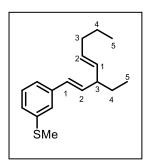
### ((1E,4E)-3,6,10-trimethyl-3-(4-methylpent-3-en-1-yl)undeca-1,4,9-trien-1yl) cyclopentane (4ye)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a colourless liquid (101.8 mg, 59% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.96 (dd, 3H,  $J_1 = 6.7$  Hz,  $J_2 = 0.6$  Hz ), 1.03 (s, 3H), 1.19-1.24 (m, 2H), 1.29-1.34 (m, 2H), 1.50-1.54 (m, 2H), 1.57 (d, 6H, J = 4.3 Hz), 1.60-1.64 (m, 2H), 1.67 (d, 6H, J = 3.4 Hz), 1.71-1.77 (m, 2H), 1.85-1.97 (m, 4H), 2.04-2.13 (m, 1H), 2.34-2.43 (m, 1H), 5.07-5.11 (m, 2H), 5.15 (t, 1H, J = 7.8 Hz), 5.27 (td, 1H,  $J_1 = 9.0$  Hz,  $J_2 = 1.4$  Hz), 5.34 (dd, 3H,  $J_1 = 15.7$  Hz,  $J_2 = 10.2$  Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 17.6, 17.74, 17.76, 21.2, 23.35, 23.37, 24.3, 24.4, 25.1, 25.77, 25.79, 26.0, 33.4, 36.74, 36.77, 37.5, 40.9, 41.9, 43.5, 125.0, 125.3, 130.8, 131.0, 131.8, 133.04, 133.07, 136.4, 136.5, 136.8; HRMS (EI, m/z) calcd. For C<sub>25</sub>H<sub>42</sub> [M]<sup>+</sup>:342.3287; found: 342.3282.

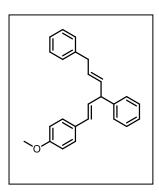
### 1-methoxy-4-((1E,4E)-3-propylnona-1,4-dien-1-yl)benzene (4yf)


The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as a colourless liquid (92.6 mg, 68% yield).

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 0.93 (q, 6H, J = 5.3 Hz), 1.37 (q, 6H, J = 6.7 Hz), 1.46 (q, 2H, J = 8.3 Hz), 2.05 (q, 2H, J = 6.8 Hz), 2.82 (quin, 1H, J = 7.2 Hz), 3.82 (s, 3H), 5.39 (dd, 1H, J<sub>I</sub> = 15.3 Hz, J<sub>I</sub> = 7.3 Hz), 5.47 (dt, 1H, J<sub>I</sub> = 15.3 Hz, J<sub>I</sub> = 6.6 Hz), 6.00 (dd, 1H, J<sub>I</sub> = 15.9 Hz, J<sub>I</sub> = 7.6 Hz), 6.32 (d, 1H, J<sub>I</sub> = 15.9 Hz), 6.86 (d, 2H, J = 8.6 Hz), 7.31 (d, 2H, J = 8.5 Hz); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 13.5, 13.6, 19.9, 21.7, 31.3, 31.9, 37.1, 40.9, 45.3, 54.8, 113.4,

126.6, 127.6, 129.8, 130.2, 131.7, 132.5, 158.2; HRMS (EI, m/z) calcd. For  $C_{19}H_{28}O$  [M]<sup>+</sup>:272.2140; found: 272.2146.

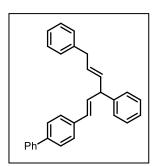
### (3-((1E,4E)-3-ethylocta-1,4-dien-1-yl)phenyl)(methyl)sulfane (4yg)


The same general procedure was followed. Column chromatography (Silica gel, eluting with 99:1 hexane/EtOAc) afforded the desired product as a colourless liquid (94.2 mg, 72% yield)



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 0.92 (td, 6H,  $J_I$  = 7.3 Hz,  $J_2$  = 2.7 Hz), 1.38-1.44 (m, 2H), 1.49-1.52 (m, 2H), 2.02 (q, 2H, , J = 7.14 Hz), 2.50 (s, 3H), 2.72 (quin, 1H, J = 7.2Hz), 5.38 (dd, 1H,  $J_I$  = 15.3 Hz,  $J_2$  = 7.3 Hz), 5.47 (dt, 1H,  $J_I$  = 15.3 Hz,  $J_2$  = 6.6 Hz), 6.14 (dd, 1H,  $J_I$  = 15.8 Hz,  $J_2$  = 7.5 Hz), 6.32 (d, 1H, , J = 15.8 Hz), 7.11 (d, 1H, J = 7.5 Hz), 7.15 (d, 1H, J = 7.6 Hz), 7.23 (t, 1H, J = 7.7 Hz), 7.27 (d, 1H, J = 3.4 Hz); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 11.3, 13.2, 15.4, 22.2, 27.7, 34.3, 47.3, 122.5, 123.8, 124.6, 128.0, 128.4, 130.2, 132.1, 134.4, 138.00, 138.04; HRMS (EI, m/z) calcd. For C<sub>17</sub>H<sub>24</sub>S [M]<sup>+</sup>:260.1599; found: 260.1601.

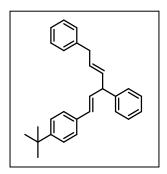
### ((1E,4E)-3-(4-methoxyphenyl)hexa-1,4-diene-1,6-diyl)dibenzene (5a)


The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as a light brown liquid (140.0 mg, 82% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.43 (d, 2H, J = 6.4 Hz), 3.80 (s, 3H), 4.21 (t, 1H, J = 6.7 Hz), 5.68-5.75 (m, 1H), 5.79-5.85 (m, 1H), 6.26 (dd, 1H,  $J_I = 15.8$  Hz,  $J_2 = 6.8$  Hz), 6.37 (d, 1H,  $J_I = 15.9$  Hz), 6.84 (dd, 2H,  $J_I = 6.7$  Hz,  $J_2 = 2.1$  Hz), 7.20-7.23 (m, 3H), 7.24 (t, 1H,  $J_2 = 2.0$  Hz), 7.27 (t, 1H,  $J_2 = 1.4$  Hz), 7.29 (s, 3H), 7.30-7.32 (m, 3H), 7.33-7.35 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 37.9, 50.2, 54.1, 112.7, 124.8, 125.2, 126.2, 126.8, 127.2, 127.3, 127.4, 128.5, 128.9, 129.10, 129.13, 132.4, 139.4, 142.3, 157.8; HRMS (EI, m/z) calcd. For C<sub>25</sub>H<sub>24</sub>O [M]<sup>+</sup>: 340.1827; found: 340.1823.

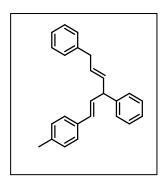
### 4-((1E,4E)-1,6-diphenylhexa-1,4-dien-3-yl)-1,1'-biphenyl (5b)


The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a colourless liquid (155.4 mg, 80% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.55 (d, 2H, J = 6.5 Hz), 4.36 (t, 1H, J = 3.1 Hz), 5.82-5.89 (m, 1H), 5.92-5.98 (m, 1H), 6.57-6.58 (m, 2H), 7.31-7.32 (m, 1H), 7.33-7.37 (m, 3H), 7.40-7.41 (m, 1H), 7.41-7.43 (m, 4H), 7.44-7.47 (m, 2H), 7.50-7.55 (m, 5H), 7.65 (dd, 2H,  $J_I$  = 6.4 Hz,  $J_2$  = 1.9 Hz), 7.68-7.69 (m, 1H), 7.70-7.71 (m, 1H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 39.0, 51.3, 126.0, 126.4, 126.6, 126.8, 127.1, 127.2, 128.0, 128.4, 128.54, 128.55, 128.7, 129.8, 130.3, 132.5, 133.2, 136.4, 139.9, 140.4, 140.7, 143.1; HRMS (EI, m/z) calcd. For C<sub>30</sub>H<sub>26</sub> [M]<sup>+</sup>: 340.2035; found: 340.2041.

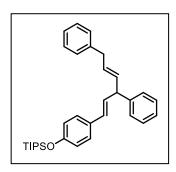
### ((1E,4E)-3-(4-(tert-butyl)phenyl)hexa-1,4-diene-1,6-diyl)dibenzene (5c)


The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a colourless liquid (150.2 mg, 82% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.19 (s, 9H), 3.30 (d, 2H, J = 6.4 Hz), 4.10 (t, 1H, J = 6.2 Hz), 5.56-5.64 (m, 1H), 5.67-5.72 (m, 1H), 6.22-6.32 (m, 2H), 7.04-7.09 (m, 4H), 7.11 (t, 1H, J = 1.7 Hz) 7.14-7.18 (m, 6H), 7.19 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 31.5, 34.7, 39.2, 51.5, 125.6, 126.1, 126.2, 126.5, 128.2, 128.6, 128.71, 128.77, 130.2, 130.4, 131.8, 133.6, 134.8, 140.7, 143.5, 150.4; HRMS (EI, m/z) calcd. For C<sub>28</sub>H<sub>30</sub> [M]<sup>+</sup>: 366.2348; found: 366.2354.

### ((2E,5E)-6-(p-tolyl)hexa-2,5-diene-1,4-diyl)dibenzene (5d)


The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a colorless liquid (117.2 mg, 72% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 2.38 (s, 3H), 3.48 (d, 2H, J = 6.4 Hz), 4.27 (t, 1H, J = 6.2 Hz), 5.74-5.81 (m, 1H), 5.85-5.90 (m, 1H), 6.38-6.48 (m, 2H), 7.16 (d, 2H, J = 7.8 Hz), 7.24-7.28 (m, 4H), 7.29-7.31 (m, 1H), 7.33-7.40 (m, 7H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): 21.3, 39.2, 51.5, 126.1, 126.3, 126.5, 128.2, 128.5, 128.6, 128.7, 129.3,130.3, 131.5, 133.6, 134.7, 137.0, 140.7, 143.5; HRMS (EI, m/z) calcd. For C<sub>25</sub>H<sub>24</sub> [M]<sup>+</sup>: 324.1878; found: 324.1874.

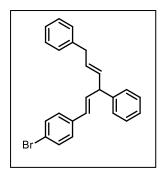
#### (4-((1E,4E)-3,6-diphenylhexa-1,4-dien-1-yl)phenoxy)triisopropylsilane (5e)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a pale white liquid (136.4 mg, 56% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.20-1.23 (m, 18H), 1.32-1.41(m, 3H), 3.53 (d, 2H, J = 5.9 Hz), 4.31 (t, 1H, J = 6.3 Hz), 5.79-5.86 (m, 1H), 5.88-5.95 (m, 1H), 6.32-6.39 (m, 1H), 6.46 (dd, 1H, J<sub>1</sub> = 15.9 Hz, J<sub>2</sub> = 4.1 Hz), 6.92-6.94 (m, 2H), 7.30-7.35 (m, 6H), 7.38-7.45 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): 12.9, 18.1, 39.2, 51.6, 120.1, 126.2, 126.5, 127.5, 128.2, 128.6, 128.7, 128.8, 130.0, 130.3, 130.4, 130.6, 133.7, 140.7, 143.6, 155.6; HRMS (EI, m/z) calcd. For C<sub>33</sub>H<sub>42</sub>OSi [M]<sup>+</sup>: 482.3005; found: 482.2998.

### ((1E,4E)-3-(4-fluorophenyl)hexa-1,4-diene-1,6-diyl)dibenzene (5f)


The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a colourless liquid (159.4 mg, 97% yield).



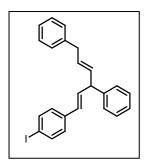
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.52 (d, 2H, J = 6.4 Hz), 4.30 (t, 1H, J = 6.4 Hz), 5.77-5.85 (m, 1H), 5.88-5.93 (m, 1H), 6.40 (dd, 1H,  $J_I$  = 15.8, Hz,  $J_I$  = 6.3 Hz), 6.47 (d, 1H, J = 15.9 Hz), 7.04 (dd, 1H,  $J_I$  = 6.6 Hz,  $J_I$  = 2.1 Hz), 7.07 (dd, 1H,  $J_I$  = 6.8 Hz,  $J_I$  = 1.8 Hz), 7.27-7.30 (m, 3H), 7.32-7.34 (m, 1H),7.35-7.39 (m, 5H), 7.40-7.44 (m,3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 39.1, 51.3, 115.4 (d, J = 21.3 Hz), 126.1, 126.5, 127.7 (d, J = 7.9 Hz), 128.0, 128.5, 128.6, 129.2, 130.4, 132.2, 133.2 133.6 (d, J = 2.8 Hz), 140.5, 143.2, 162.1 (d, J = 245.1 Hz); HRMS (EI, m/z) calcd. For C<sub>24</sub>H<sub>21</sub>F [M]<sup>+</sup>: 328.1627; found: 328.1628.

### ((1E,4E)-3-(4-bromophenyl)hexa-1,4-diene-1,6-diyl)dibenzene (5g)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a brown liquid (155.9 mg, 80% yield).



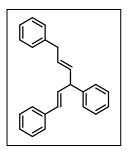
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.47 (d, 2H, J = 6.3 Hz), 4.25 (t, 1H, J = 6.3 Hz), 5.72-5.80 (m, 1H), 5.82-5.88 (m, 1H), 6.35-6.47 (m, 2H), 7.23-7.40 (m, 13H), 7.42-7.46 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 39.1, 51.4, 121.0, 126.2, 126.7, 127.9, 128.1, 128.5, 128.7, 128.8, 129.3, 130.6, 131.7, 133.1, 133.4, 136.4, 140.5, 143.0; HRMS (EI, m/z) calcd. For C<sub>24</sub>H<sub>21</sub>Br [M]<sup>+</sup>: 388.0827; found: 388.0827.


### ((1E,4E)-3-(4-chlorophenyl)hexa-1,4-diene-1,6-diyl)dibenzene(5h)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a colourless liquid (124.2 mg, 72% yield).

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 3.52 (d, 2H, J = 6.3 Hz), 4.30 (t, 1H, J = 5.5 Hz), 5.77-5.84 (m, 1H), 5.87-5.93 (m, 1H), 6.41-6.50 (m, 2H), 7.28-7.30 (m, 3H), 7.32-7.34 (m, 5H), 7.36 (m, 2H), 7.38-7.44 (m, 4H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 39.2, 51.5, 126.2, 126.7, 127.6, 128.2, 128.6, 128.7, 128.8, 129.3, 130.7, 132.9, 133.2, 133.3, 136.0, 140.6, 143.1; HRMS (EI, m/z) calcd. For C<sub>24</sub>H<sub>21</sub>Cl [M]<sup>+</sup>: 344.1332; found: 344.1316.

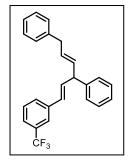
### ((1E,4E)-3-(4-iodophenyl)hexa-1,4-diene-1,6-diyl)dibenzene (5i)


The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a colourless liquid (179.6 mg, 82% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.46 (d, 2H, J = 6.3 Hz), 4.24 (t, 1H, J = 6.5 Hz), 5.71-5.78 (m, 1H), 5.81-5.86 (m, 1H), 6.35 (d, 1H, J = 16 Hz), 6.41-6.47 (m, 1H), 7.11 (d, 2H, J = 8.4 Hz), 7.22-7.25 (m, 3H), 7.27-7.39 (m, 8H), 7.63 (d, 2H, J = 8.0 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 39.1, 51.4, 92.4, 126.2, 126.7, 128.1, 128.2, 128.6, 128.7, 128.8, 129.4, 130.7, 133.1, 133.5, 137.0, 137.6, 140.5, 143.0; HRMS (EI, m/z) calcd. For C<sub>24</sub>H<sub>21</sub>I [M]<sup>+</sup>: 436.0688; found: 436.0682.

### ((1E,4E)-hexa-1,4-diene-1,3,6-triyl)tribenzene (5j)


The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a white liquid (123.0 mg, 79% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.49 (t, 2H, J = 6.0 Hz), 4.29-4.30 (m, 1H), 5.76-5.93 (m, 2H), 5.76-5.93 (m, 2H), 6.47-6.50 (m, 2H), 7.24-7.30 (m, 5H), 7.34-7.45 (m, 10H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 39.2, 51.6, 126.2, 126.4, 126.6, 127.4, 128.2, 128.6, 128.7, 128.8, 130.5, 132.6, 133.5, 137.6, 140.7, 143.4; HRMS (EI, m/z) calcd. For C<sub>24</sub>H<sub>22</sub> [M]<sup>+</sup>: 310.1722; found: 310.1728.

### ((1E,4E)-3-(3-(trifluoromethyl)phenyl)hexa-1,4-diene-1,6-diyl)dibenzene (5k)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 99:1 hexane/EtOAc) afforded the desired product as a colourless liquid (122.8 mg, 65% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.52 (d, 2H, J = 6.2 Hz), 4.32 (t, 1H, J = 6.3 Hz), 5.78-5.85 (m, 1H), 5.88-5.93 (m, 1H), 6.48-6.60 (m, 2H), 7.26-7.33 (m, 4H), 7.34-7.38 (m, 4H), 7.39-7.41 (m, 1H), 7.42-7.46 (m, 2H), 7.52 (d, 1H, J = 7.7 Hz), 7.57 (d, 1H, J = 7.6 Hz), 7.67 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 39.2, 51.5, 123.0 (q, J = 3.2 Hz), 123.8 (q, J = 3.7 Hz), 126.2, 126.8, 127.0 (q, J = 271 Hz), 128.1, 128.6, 128.7, 128.8, 129.0, 129.2, 129.5, 130.9, 131.0 (q, J = 31.5 Hz), 133.0, 134.6, 138.3, 140.5, 142.9; HRMS (EI, m/z) calcd. For C<sub>25</sub>H<sub>21</sub>F<sub>3</sub> [M]<sup>+</sup>: 378.1595; found: 378.1596

### (3-((1E,4E)-3,6-diphenylhexa-1,4-dien-1-yl)phenyl)(methyl)sulfane (5l)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a colourless liquid (122.8 mg, 65% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 2.47 (s, 3H), 3.43 (d, 2H, J = 6.4 Hz), 4.22 (t, 1H, J = 6.0 Hz), 5.68-5.75 (m, 1H), 5.78-5.84 (m, 1H), 6.34-6.44 (m, 2H), 7.09-7.14 (m, 2H), 7.19-7.23 (m, 4H), 7.25-7.28 (m, 4H), 7.29-7.35 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 16.0, 39.1, 51.4, 123.2, 124.6, 125.5, 126.1, 126.5, 128.1, 128.5, 128.6, 129.0, 129.9, 130.5, 133.2, 138.1, 138.7, 140.5, 143.1; HRMS (EI, m/z) calcd. For C<sub>25</sub>H<sub>24</sub>S [M]<sup>+</sup>: 356.1599; found: 356.1595.

#### ((2E,5E)-6-(3-methoxyphenyl)hexa-2,5-diene-1,4-diyl)dibenzene (5m)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as a yellowish-brown liquid (136.2 mg, 80% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub> δ 3.45 (d, 2H, J = 6.3 Hz), 3.82 (s, 3H), 4.25 (t, 1H, J = 3.9 Hz), 5.70-5.78 (m, 1H), 5.81-5.87 (m, 1H), 6.41-6.43 (m, 2H), 6.78-6.80 (m, 1H), 6.93 (s, 1H), 6.97-6.99 (m, 1H), 7.21-7.25 (m, 5H), 7.28-7.32 (m, 4H), 7.34-7.38 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): 39.1, 51.4, 55.3, 111.6, 113.0, 119.0, 126.1, 126.5, 128.1, 128.5, 128.67, 128.69, 129.5, 130.3, 130.5, 132.8, 133.3, 138.9, 140.6, 143.2, 159.9; HRMS (EI, m/z) calcd. For C<sub>25</sub>H<sub>24</sub>O [M]<sup>+</sup>: 340.1827; found: 340.1825.

### ((1E,4E)-3-(4-bromophenyl)hexa-1,4-diene-1,6-diyl)dibenzene (5n)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a light brown liquid (160.2 mg, 82% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.48 (d, 2H, J = 6.2 Hz), 4.27 (t, 1H, J = 6.5 Hz), 5.73-5.80 (m, 1H), 5.85 (dd, 1H, J<sub>1</sub> = 15.3 Hz, J<sub>2</sub> = 6.5 Hz), 6.38 (d, 1H, J = 16.0 Hz), 6.43-6.49 (m, 1H), 7.16-7.20 (m, 1H), 7.25-7.29 (m, 4H), 7.30-7.33 (m, 3H), 7.35-7.41 (m, 5H), 7.56 (t, 1H, J = 1.7 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 39.2, 51.4, 122.8, 125.1, 126.2, 126.7, 128.1, 128.6,

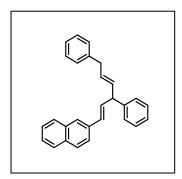
128.7, 128.8, 129.1, 129.2, 130.1, 130.2, 130.7, 133.0, 134.2, 139.7, 140.5, 142.9; HRMS (EI, m/z) calcd. For C<sub>24</sub>H<sub>21</sub>Br [M]<sup>+</sup>: 388.0827; found: 388.0821.

### ((1E,4E)-3-(3,5-dimethoxyphenyl)hexa-1,4-diene-1,6-diyl)dibenzene (50)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as a colourless liquid (133.2 mg, 72% yield).

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 3.30 (d, 2H, J = 5.9 Hz), 3.63 (t, 6H, J = 4.6 Hz), 4.09 (t, 1H, J = 6.2 Hz), 5.56-5.62 (m, 1H), 5.66-5.71 (m, 1H), 6.22-6.31 (m, 3H), 6.41 (q, 2H, J = 2.2 Hz), 7.07-7.11 (m, 4H), 7.14-7.21 (m, 6H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 39.1, 51.3, 55.3, 99.6, 104.3, 126.1, 126.5, 128.1, 128.4, 128.6, 130.4, 130.5, 132.9, 133.2, 139.4, 140.5, 143.1, 160.9; HRMS (ESI, m/z) calcd. For C<sub>26</sub>H<sub>26</sub>O<sub>2</sub> [M]<sup>+</sup>: 370.1933; found: 370.1939.

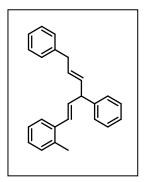
### ((1E,4E)-3-(4-chlorophenyl)hexa-1,4-diene-1,6-diyl)dibenzene (5p)


The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a pale-yellow liquid (120.8 mg, 63% yield).

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 3.50 (d, 2H, J = 6.4 Hz), 4.28 (t, 1H, J = 6.8 Hz), 5.77-5.81 (m, 1H), 5.86 (dd, 1H,  $J_1 = 15.4$  Hz,  $J_2 = 6.4$  Hz), 6.33 (d, 1H, J = 15.7 Hz), 6.49 (dd, 1H,  $J_1 = 15.8$  Hz,  $J_2 = 7.0$  Hz), 7.24-7.33 (m, 9H), 7.40 (dt, 4H,  $J_1 = 21.8$  Hz,  $J_2 = 7.6$  Hz), <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 39.1, 51.3, 124.6, 126.1, 126.7, 126.9, 128.0, 128.05, 128.54, 128.55, 128.6,

128.7, 130.9, 132.6, 135.0, 135.6, 140.3, 140.4, 142.4; HRMS (EI, m/z) calcd. For  $C_{24}H_{20}Cl_2$  [M]<sup>+</sup>: 378.0942; found: 378.0936.

### 2-((1E,4E)-3,6-diphenylhexa-1,4-dien-1-yl)naphthalene (5q)

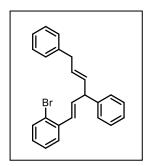

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a colourless liquid (135.2 mg, 75% yield).



1H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  3.52 (d, 2H, J = 6.4 Hz), 4.35 (t, 1H, J = 6.0 Hz), 5.79-5.87 (m, 1H), 5.90-5.96 (m, 1H), 6.60 (dd, 1H,  $J_1$  = 16.0 Hz,  $J_2$  = 6.0 Hz), 6.66 (d, 1H, J = 16.0 Hz), 7.26-7.34 (m, 4H), 7.36-7.42 (m, 6H), 7.47-7.52 (m, 2H), 7.65 (dd, 1H,  $J_1$  = 8.8 Hz,  $J_2$  = 1.6 Hz), 7.76 (s, 1H), 7.82 (t, 3H, J = 9.2 Hz); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): 39.2, 51.6, 123.8, 125.8, 126.1, 126.2, 126.3, 126.6, 127.8, 128.0, 128.2, 128.6, 128.7, 130.5, 130.6, 133.01, 133.04, 133.4, 133.8, 135.0, 140.7, 143.3; HRMS (EI, m/z) calcd. For C<sub>28</sub>H<sub>24</sub> [M]<sup>+</sup>: 360.1878; found: 360.1885.

### ((2E,5E)-6-(o-tolyl)hexa-2,5-diene-1,4-diyl)dibenzene (5r)

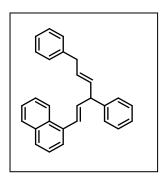
The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a colorless liquid (117.2 mg, 72% yield).




<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 2.37 (s, 3H), 3.49 (d, 2H, J = 6.2 Hz), 4.31 (t, 1H, J = 6.4 Hz), 5.75-5.83 (m, 1H), 5.85-5.91 (m, 1H), 6.31-6.38 (m, 1H), 6.70 (d, 1H, J = 15.7 Hz), 7.18-7.19 (m, 3H), 7.26-7.31 (m, 4H), 7.33-7.41 (m, 6H), 7.48-7.50 (m, 1H); <sup>13</sup>C NMR (100 MHz,

CDCl<sub>3</sub>): 19.9, 39.2, 51.7, 125.7, 126.1, 126.5, 127.2, 128.1, 128.3, 128.5, 128.6, 128.7, 130.3, 130.4, 133.6, 133.8, 135.3, 136.6, 140.7, 143.4; HRMS (EI, m/z) calcd. For  $C_{25}H_{24}$  [M]<sup>+</sup>: 324.1878; found: 324.1872.

### ((1E,4E)-3-(2-bromophenyl)hexa-1,4-diene-1,6-diyl)dibenzene (5s)

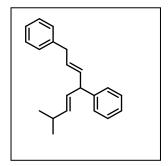

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a brown liquid (110.2 mg, 56% yield).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.48 (d, 2H, J = 6.3 Hz), 4.32 (t, 1H, J = 6.7 Hz), 5.74-5.82 (m, 1H), 5.84-5.90 (m, 1H), 6.39 (ddd, 1H,  $J_1 = 15.8$  Hz,  $J_2 = 6.9$  Hz,  $J_3 = 1.2$  Hz), 6.87 (d, 1H, J = 15.8 Hz), 7.07-7.11 (m, 1H), 7.22-7.30 (m, 6H), 7.32-7.34 (m, 3H), 7.36-7.41 (m, 3H), 7.54 (dd, 1H,  $J_1 = 7.7$  Hz,  $J_2 = 1.4$  Hz), 7.57 (dt, 1H,  $J_1 = 8.0$  Hz,  $J_2 = 1.1$  Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 39.2, 51.5, 123.7, 126.2, 126.7, 127.1, 127.5, 128.1, 128.5, 128.6, 128.76, 128.78, 129.4, 130.8, 133.0, 133.1, 135.5, 137.4, 140.5, 143.0; HRMS (EI, m/z) calcd. For C<sub>24</sub>H<sub>21</sub>Br [M]<sup>+</sup>: 388.0827; found: 388.0820

#### 1-((1E,4E)-3,6-diphenylhexa-1,4-dien-1-yl)naphthalene (KVL-5t)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a colourless liquid (117.0 mg, 65% yield).




<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.51 (d, 2H, J = 6.4 Hz), 4.41 (t, 1H, J = 6.6 Hz), 5.81-5.88 (m, 1H), 5.94 (dd, 1H,  $J_1 = 15.6$  Hz,  $J_2 = 6.6$  Hz), 6.49 (dd, 1H,  $J_1 = 15.6$  Hz,  $J_2 = 6.8$  Hz), 7.20-7.31 (m, 5H), 7.35 (d, 1H, J = 7.2 Hz), 7.38-7.44 (m, 5H), 7.47 (d, 1H, J = 7.8 Hz), 7.53 (t, 2H,

J = 3.5 Hz), 7.63 (d, 1H, J = 7.1 Hz), 7.79 (d, 1H, J = 8.1 Hz), 7.88 (d, 1H, J = 8.2 Hz), 8.10 (d, 1H, J = 7.5 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  39.2, 51.8, 123.8, 124.0, 125.7, 125.8, 126.0, 126.2, 126.6, 127.7, 128.2, 128.6, 128.7, 130.6, 131.3, 133.5, 133.7, 135.3, 135.8, 140.7, 143.3; HRMS (EI, m/z) calcd. For C<sub>28</sub>H<sub>24</sub> [M]<sup>+</sup>: 360.1878; found: 360.1879.

### ((2E,5E)-7-methylocta-2,5-diene-1,4-diyl)dibenzene (5u)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a light brown liquid (69.2 mg, 50% yield).

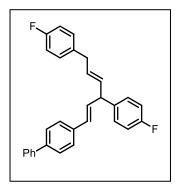


<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.00 (d, 3H, J = 3.5 Hz), 1.02 (d, 3H, J = 3.5 Hz), 2.26-2.38 (m, 1H), 3.41 (d, 2H, J = 6.5 Hz), 4.01 (t, 2H, J = 6.7 Hz), 5.45-5.51 (m, 1H), 5.56-5.60 (m, 1H), 5.61-5.67 (m, 1H), 5.71-5.77 (m, 1H), 7.19-7.23 (m, 5H), 7.24 (d, 1H, J = 1.6 Hz), 7.28-7.34 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.6, 31.1, 39.1, 51.0, 126.0, 126.2, 128.0, 128.4, 128.6, 129.2, 134.4, 138.5, 140.8, 144.1; HRMS (EI, m/z) calcd. For C<sub>21</sub>H<sub>24</sub> [M]<sup>+</sup>: 276.1878; found: 276.1875.

### 4-((1E,4E)-1,6-bis(4-methoxyphenyl)hexa-1,4-dien-3-yl)-1,1'-biphenyl (5v)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as a pale brown liquid (198.8 mg, 89% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.45 (d, 2H, J = 6.3 Hz), 3.84 (s, 3H), 3.86 (s, 3H), 4.27 (t, 1H, J = 2.9 Hz), 5.74-5.79 (m, 1H), 5.86 (dd, 1H,  $J_I$  = 15.3 Hz,  $J_2$  = 6.6 Hz ), 6.51 (t, 2H, J = 1.9 Hz), 6.93 (dd, 2H,  $J_I$  = 8.6 Hz,  $J_2$  = 1.7 Hz), 6.96 (dd, 2H,  $J_I$  = 7.1 Hz,  $J_2$  = 1.9 Hz), 7.20 (d, 2H, J = 8.2 Hz), 7.28 (d, 2H, J = 8.6 Hz), 7.37-7.42 (m, 1H), 7.49 (t, 4H, J = 7.2 Hz), 7.61 (d, 2H, J = 8.2 Hz), 7.66 (dd, 2H,  $J_I$  = 7.0 Hz,  $J_2$  = 1.7 Hz; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 38.3, 50.7, 55.4, 114.0, 114.1, 126.8, 127.0, 127.3, 127.4, 128.9, 129.1, 129.6, 129.7, 130.7, 132.7, 133.1, 133.3, 135.4, 136.7, 140.0, 140.9, 158.1, 158.4; HRMS (EI, m/z) calcd. For C<sub>32</sub>H<sub>30</sub>O<sub>2</sub> [M]<sup>+</sup>: 446.2246; found: 446.2238.


### 4-((1E,4E)-3,6-bis(4-bromophenyl)hexa-1,4-dien-1-yl)-1,1'-biphenyl (5w)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a pale brown liquid (196.2 mg, 72% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.46 (d, 2H, J = 6.3 Hz), 4.24 (t, 1H, J = 6.3 Hz), 5.71-5.78 (m, 1H), 5.80-5.87 (m, 1H), 6.33-6.38 (m, 1H), 6.43 (dd, 1H,  $J_I$  = 15.9 Hz,  $J_2$  = 6.2 Hz), 7.22-7.27 (m, 7H), 7.28 (q, 1H, J = 0.4 Hz), 7.29-7.31 (m, 2H), 7.33 (quin, 1H, J = 0.8 Hz), 7.34-7.35 (m, 1H), 7.36 (t, 1H, J = 0.8 Hz), 7.38-7.40 (m, 1H), 7.43 (dd, 2H,  $J_I$  = 6.5 Hz,  $J_2$  = 1.8 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): 39.1, 51.4, 121.0, 126.2, 126.6, 127.9, 128.1, 128.5, 128.6, 128.7, 129.3, 130.6, 131.6, 133.1, 133.4, 136.4, 140.5, 143.0; HRMS (EI, m/z) calcd. For C<sub>30</sub>H<sub>24</sub>Br<sub>2</sub> [M]<sup>+</sup>: 542.0245; found: 542.0248.

### 4-((1E,4E)-1,6-bis(4-fluorophenyl)hexa-1,4-dien-3-yl)-1,1'-biphenyl (5x)

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as a pale white liquid (194.8 mg, 92% yield).



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>): δ 3.45 (d, 2H, J = 6.6 Hz), 4.28 (t, 1H, J = 6.2 Hz), 5.72-5.76 (m, 1H), 5.82 (dd, 1H,  $J_I$  = 15.3 Hz,  $J_2$  = 6.6 Hz), 6.44-6.51 (m, 2H), 7.06 (dt, 2H,  $J_I$  = 15.2 Hz,  $J_2$  = 11.4 Hz,  $J_3$  = 5.7 Hz), 7.20 (q, 2H, J = 2.5 Hz), 7.28 (q, 2H, J = 2.4 Hz), 7.39 (t, 1H, J = 7.1 Hz), 7.47-7.49 (m, 4H), 7.60 (d, 2H, J = 8.1 Hz), 7.65 (d, 2H, J = 7.9 Hz); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>): δ 37.7, 50.1, 114.7 (d, J = 7.8 Hz), 114.9 (d, J = 7.8 Hz), 126.2, 126.5, 126.8, 126.9, 128.3, 129.0 (d, J = 7.8 Hz), 129.4 (d, J = 7.6 Hz), 130.0, 131.7, 132.8, 135.5 (d, J = 3 Hz), 135.8, 138.2 (d, J = 3 Hz), 139.7, 140.2, 161.0 (d, J = 242.4), 161.1 (d, J = 243.3 Hz); HRMS (EI, m/z) calcd. For C<sub>30</sub>H<sub>24</sub>F<sub>2</sub> [M]<sup>+</sup>: 422.1846; found: 422.1851.

### 4,4'-((1E,4E)-3-(3,5-dichlorophenyl)hexa-1,4-diene-1,6-diyl)bis(methoxybenzene) (5y)

The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as a brownish yellow liquid (167.2 mg, 76% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 3.37 (d, 2H, J = 6.0 Hz), 3.79 (s, 3H), 3.80 (s, 3H), 4.16 (t, 1H, J = 6.5 Hz), 5.63-5.70 (m, 1H), 5.74 (dd, 1H, J<sub>I</sub> = 15.3 Hz, J<sub>I</sub> = 6.2 Hz), 6.24 (dd, 1H, J<sub>I</sub> = 15.8 Hz, J<sub>I</sub> = 0.8 Hz), 6.41 (dd, 1H, J<sub>I</sub> = 15.8 Hz, J<sub>I</sub> = 6.9 Hz), 6.86 (dd, 2H, J<sub>I</sub> = 6.6 Hz, J<sub>I</sub> = 2.1 Hz), 6.88 (dd, 2H, J<sub>I</sub> = 6.6 Hz, J<sub>I</sub> = 2.1 Hz), 7.11 (dd, 2H, J<sub>I</sub> = 6.5 Hz, J<sub>I</sub> = 2.0 Hz), 7.15 (dd, 2H, J<sub>I</sub> = 6.5 Hz, J<sub>I</sub> = 2.0 Hz), 7.18 (t, 1H, J = 1.8 Hz), 7.21 (d, 2H, J = 1.8 Hz); <sup>13</sup>C NMR

(150 MHz, CDCl<sub>3</sub>): 38.2. 50.4, 55.3, 113.9. 114.1. 124.6, 126.9, 127.7, 129.0, 129.5, 131.1, 132.5, 132.6, 134.6, 135.1, 136.0, 140.6, 158.1, 158.4; HRMS (EI, m/z) calcd. For C<sub>26</sub>H<sub>24</sub>Cl<sub>2</sub>O<sub>2</sub> [M]<sup>+</sup>: 438.1153; found: 438.1156.

## 4,4'-((2E,5E)-7-methylocta-2,5-diene-1,4-diyl)bis(methoxybenzene) (5z)

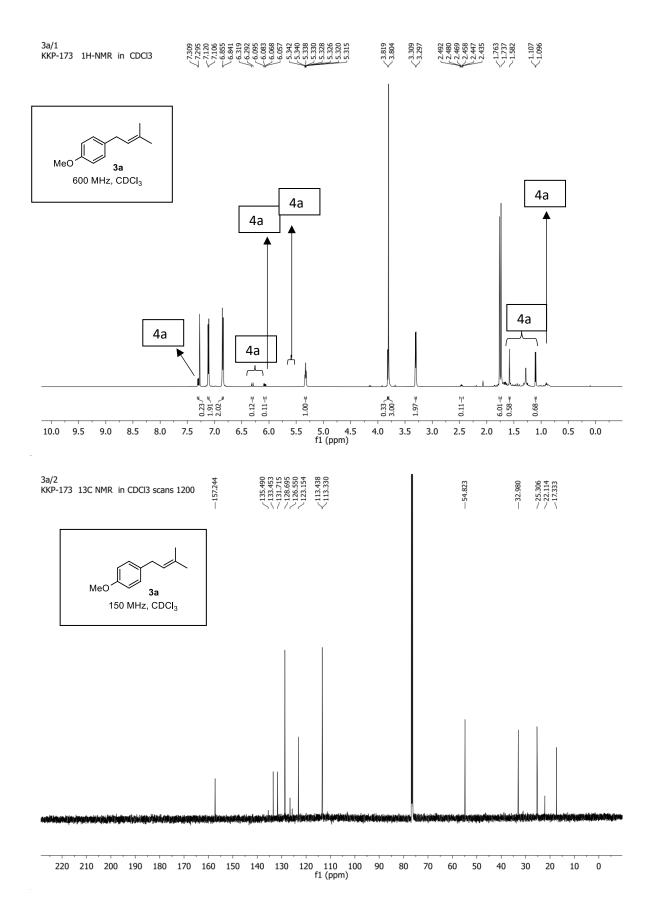
The same general procedure was followed. Column chromatography (Silica gel, eluting with 98:2 hexane/EtOAc) afforded the desired product as a yellow brown liquid (93.2 mg, 55% yield).

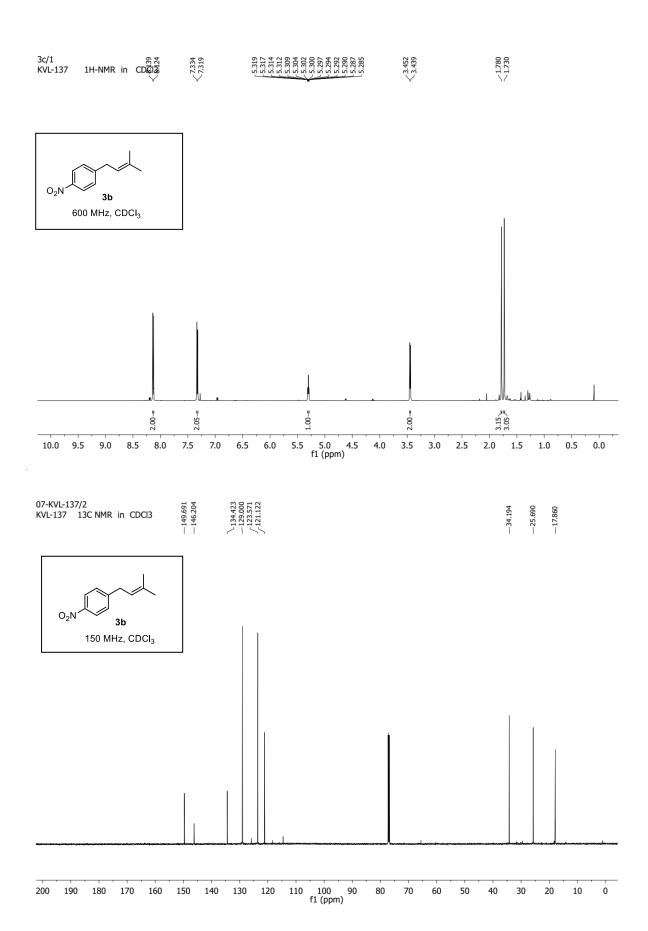
<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 0.99 (d, 3H, J = 2.9 Hz), 1.00 (d, 3H, J = 3.0 Hz), 2.24-2.36 (m, 1H), 3.36 (d, 2H, J = 6.5 Hz), 3.79 (s, 6H), 3.94 (t, 2H, J = 6.7 Hz), 5.41-5.47 (m, 1H), 5.52-5.56 (m, 1H), 5.57-5.61 (m, 1H), 5.65-5.71 (m, 1H), 6.84 (dd, 2H,  $J_I$  = 4.6 Hz,  $J_2$  = 1.9 Hz), 6.85 (dd, 2H,  $J_I$  = 4.8 Hz,  $J_2$  = 2.0 Hz), 7.06 (dd, 2H,  $J_I$  = 7.0 Hz,  $J_2$  = 2.5 Hz), ), 7.13 (dd, 2H,  $J_I$  = 6.6 Hz,  $J_2$  = 2.0 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 22.6, 22.7, 31.1, 38.1, 50.1, 55.3, 113.85, 113.87, 128.9, 129.52, 129.55, 132.9, 134.3, 136.2, 138.2, 157.9; HRMS (EI, m/z) calcd. For C<sub>23</sub>H<sub>28</sub>O<sub>2</sub> [M]<sup>+</sup>: 336.2089; found: 336.2078.

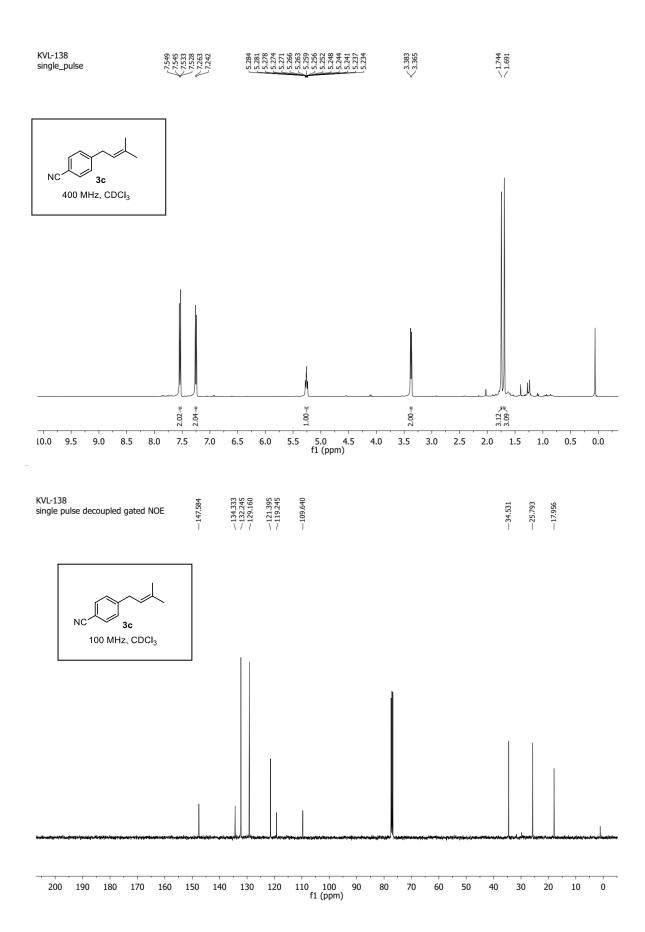
## Representative procedure for unsymmetrical skipped diene compounds:

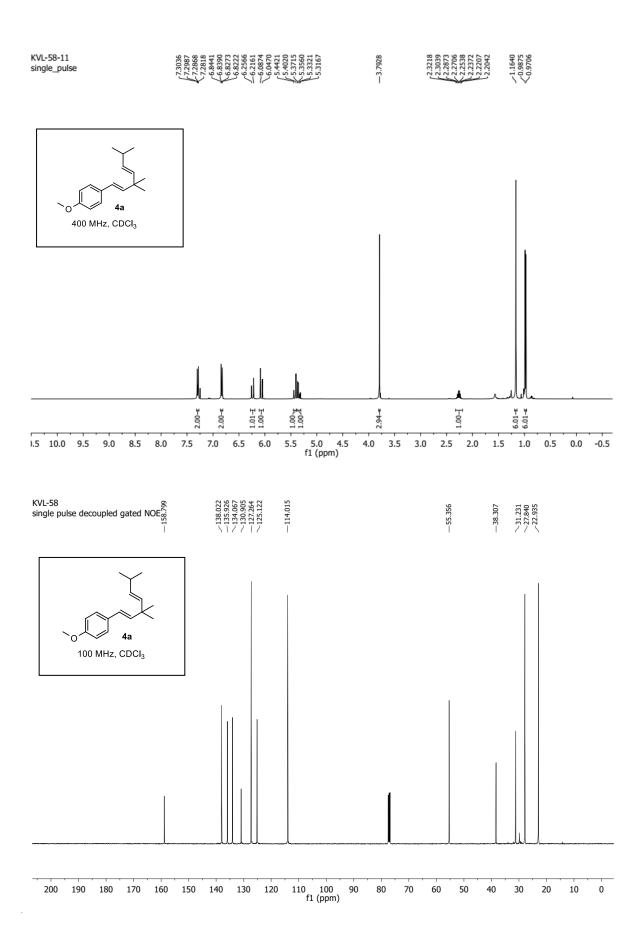
In an oven dried round bottom flask containing a stir bar, containing 4-biphenylboronic acid (0.5 mmol) and corresponding hydrazones of prenyl (1.0 equivalent) and 4-methoxy substituted cinnamaldehyde were added. Dry 1,4 Dioxane (2mL) was then added followed by Na<sub>2</sub>CO<sub>3</sub> (1.5 equivalent) and molecular sieves. Then the reaction mixture was purged with N<sub>2</sub> gas for 2 minutes. The mixture was refluxed for 120 °C for 24 hours. After allotted time the reaction mixture was cooled to room temperature. The mixture was diluted with EtOAc (15 mL) and washed with water (25 mL), followed by brine solution (25 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated in *vacuo*. The crude mixture was loaded on a silica gel column chromatography and purified using (Hexane) to isolate the desired skipped diene products.

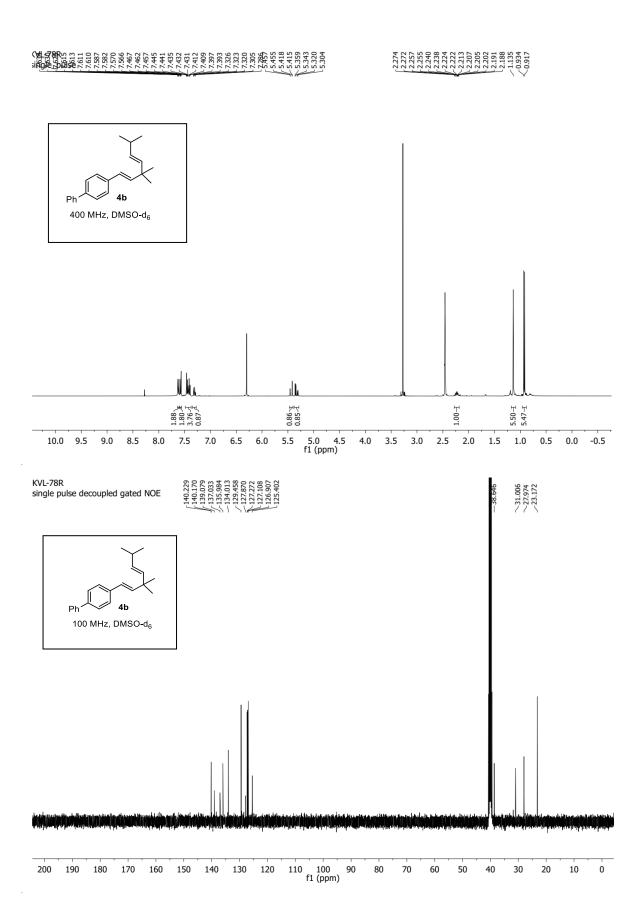
## Spectral data for unsymmetrical skipped diene compounds:

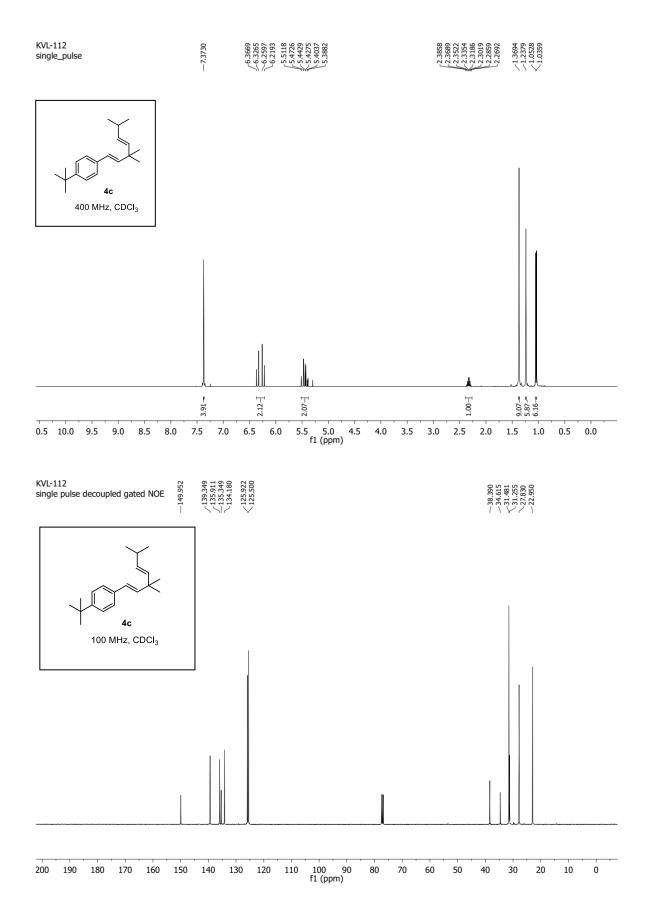

4-((1E,4E)-3-(4-methoxyphenyl)-6-methylhepta-1,4-dien-1-yl)-1,1'-biphenyl(6a): ((1E,4E)-6-(4-methoxyphenyl)-3,3-dimethylhexa-1,4-dien-1-yl)-1,1'-biphenyl(6b) (2:1 inseparable mixture)

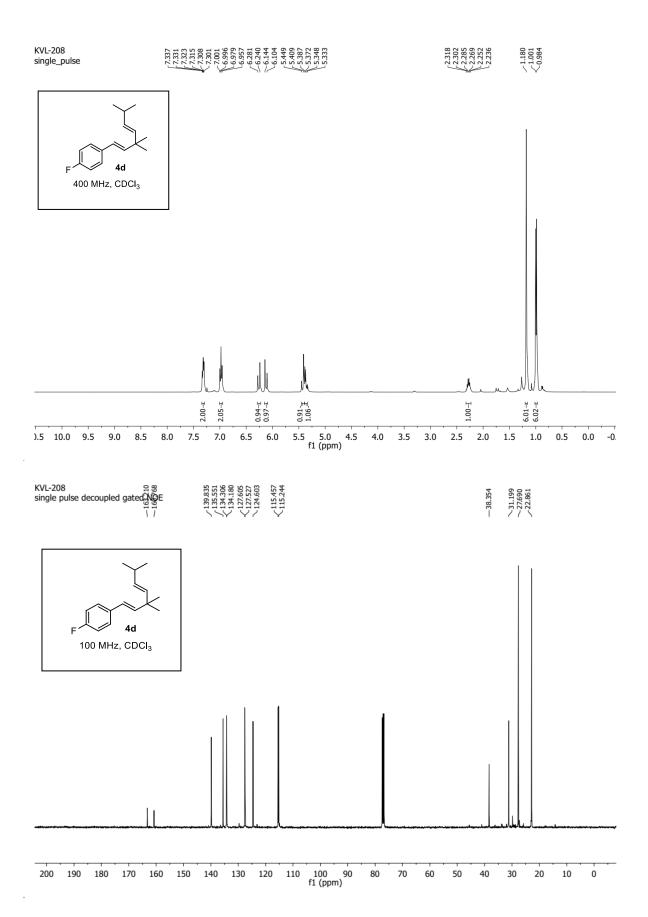

The same general procedure was followed. Column chromatography (Silica gel, eluting with hexane) afforded the desired product as colorless liquid (56.4 mg, 30% yield).


<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 1.01 (d, 3H, J = 3.2 Hz), 1.03 (d, 3H, J = 3.2 Hz), 1.23 (s, 3H), 2.29-2.40 (m, 1H), 3.32 (d, 1H, J = 5.2 Hz), 3.79 (s, 1H), 3.80 (s, 3H), 4.13 (t, 1H, J = 5.6 Hz), 5.49-5.59 (m, 2H), 5.61-5.67 (m, 1H), 6.21-6.34 (m, 1H), 6.36-6.49 (m, 3H), 6.83-6.86 (m, 1H), 6.87 (dd, 2H,  $J_I$  = 6.6 Hz,  $J_Z$  = 2.1 Hz), 7.11 (dd, 1H,  $J_I$  = 6.6 Hz,  $J_Z$  = 2.0 Hz), 7.19 (dd, 2H,  $J_I$  = 6.8 Hz,  $J_Z$  = 2.0 Hz), 7.30-7.35 (m, 3H), 7.41-7.45 (m, 7H), 7.54 (d, 4H, J = 8.4 Hz),


7.58-7.60 (m, 4H);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  22.65, 22.69, 27.6, 31.2, 38.3, 38.8, 50.5, 55.3, 113.8, 113.9, 114.0, 125.5, 126.1, 126.6, 126.7, 126.9, 127.1, 127.2, 127.30, 127.34, 128.81, 128.83, 128.9, 129.0, 129.1, 129.3, 129.4, 129.5, 129.7, 130.6,133.0, 133.4, 135.7, 136.7, 138.8, 139.8, 139.92, 139.98, 140.8, 157.9, 158.2; HRMS (EI, m/z) calcd. For C<sub>27</sub>H<sub>28</sub>O [M]<sup>+</sup>: 368.2140; found: 368.2143.


<sup>1</sup>H and <sup>13</sup>C NMR spectra



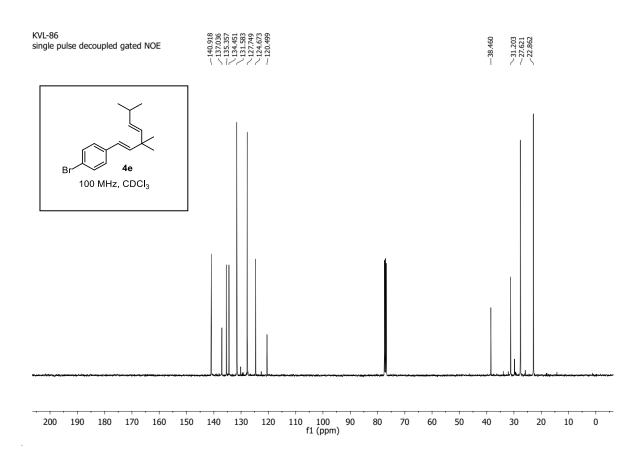


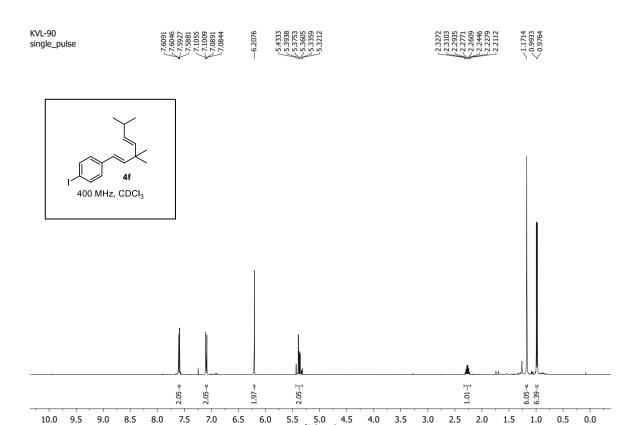


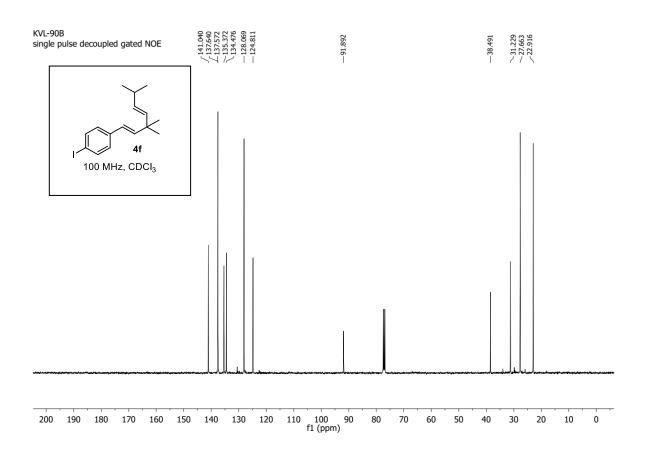




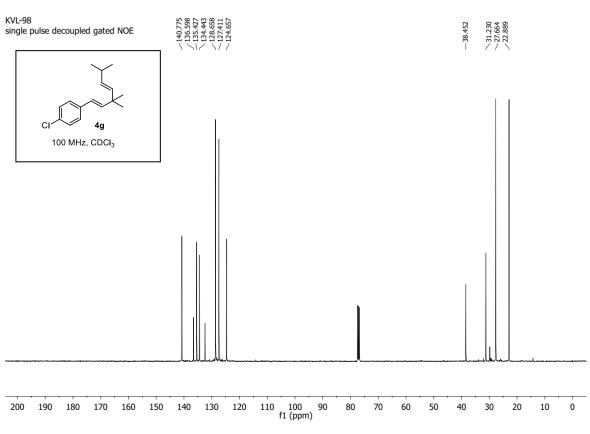


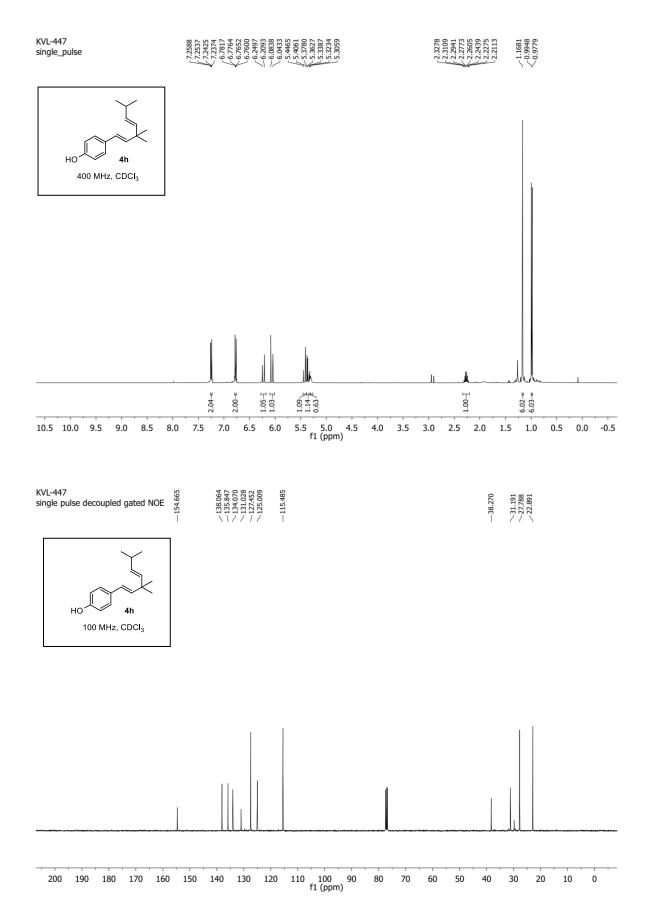


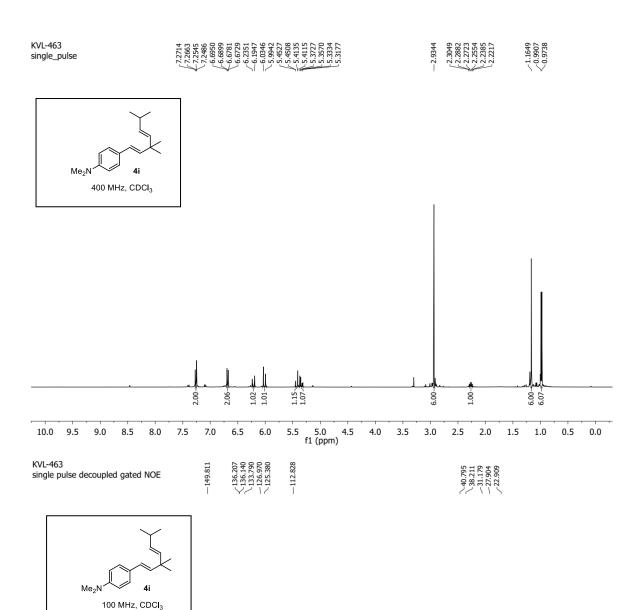



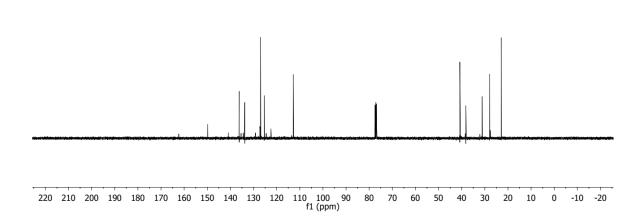



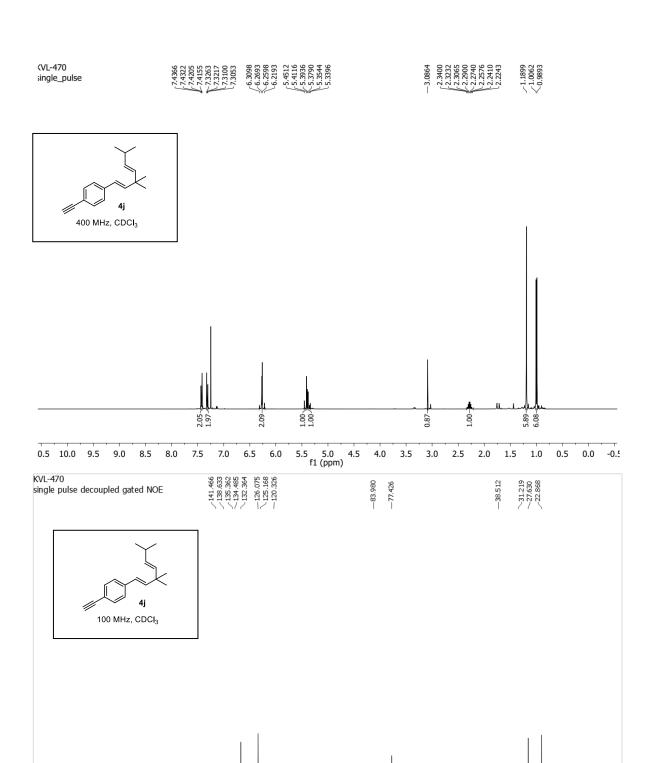








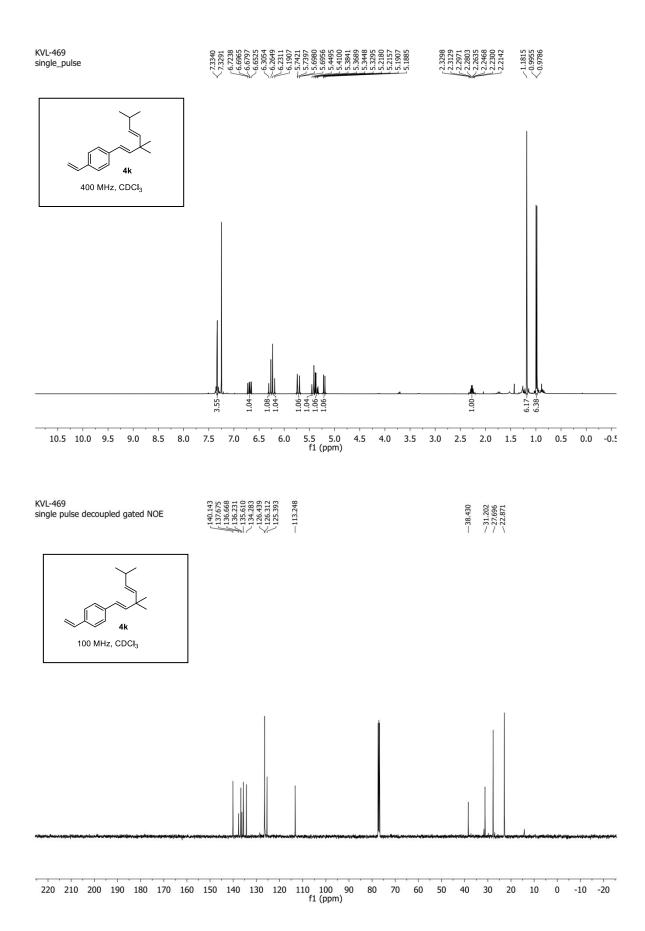





80

70

60

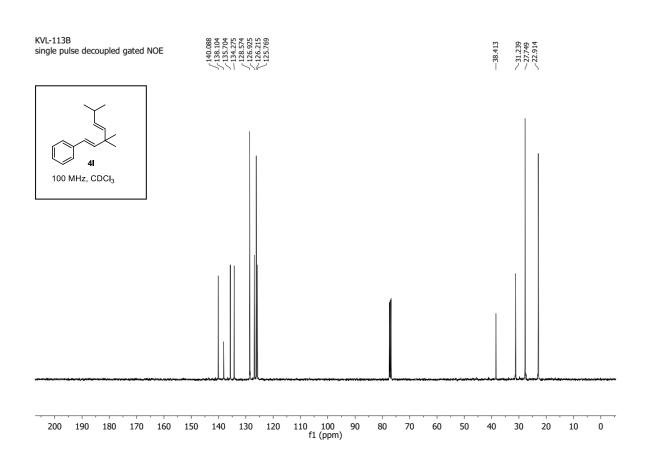

50

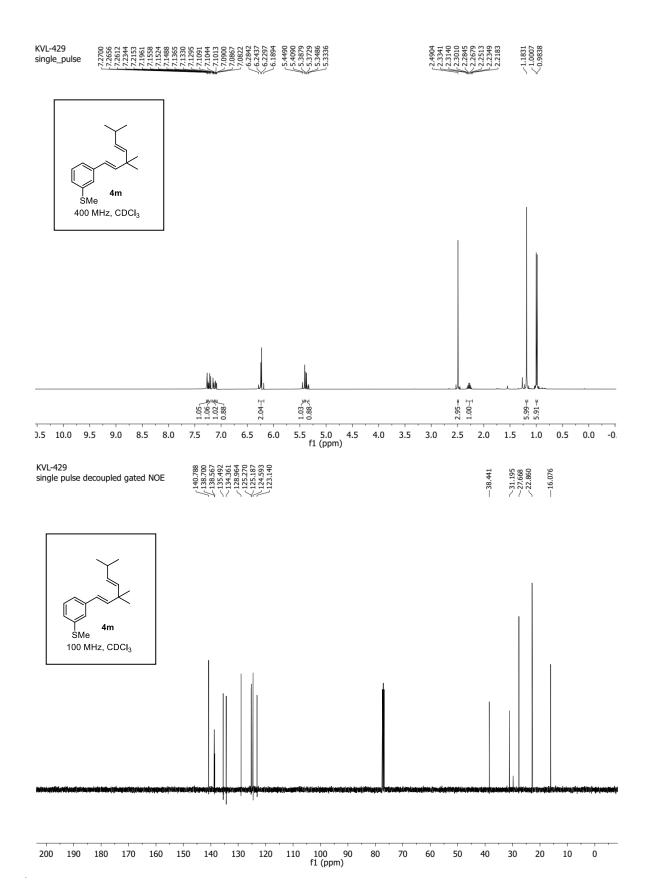
40 30

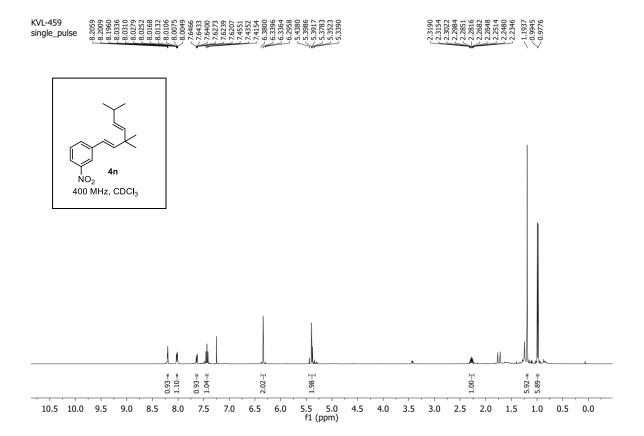
20 10

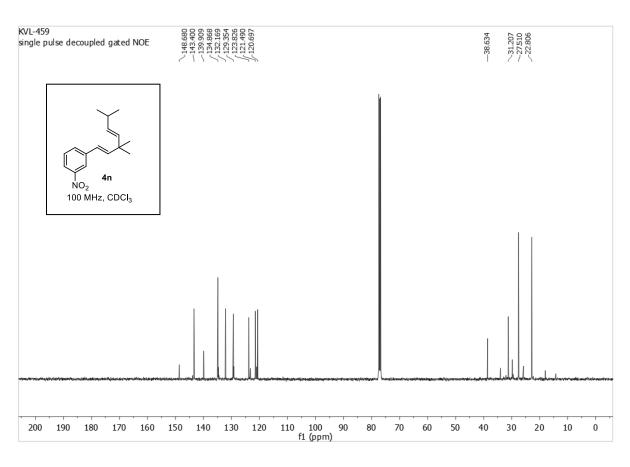
0

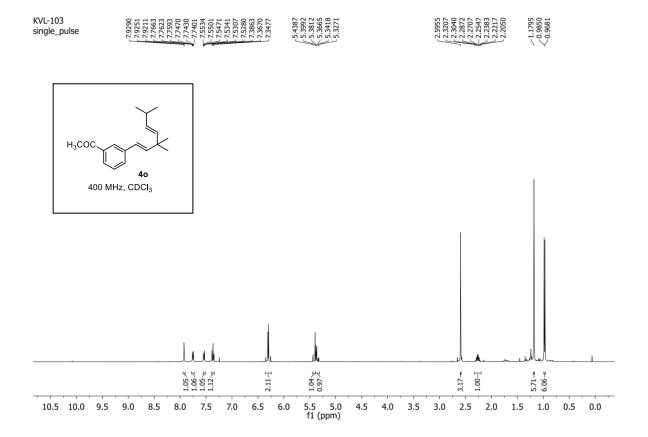
200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

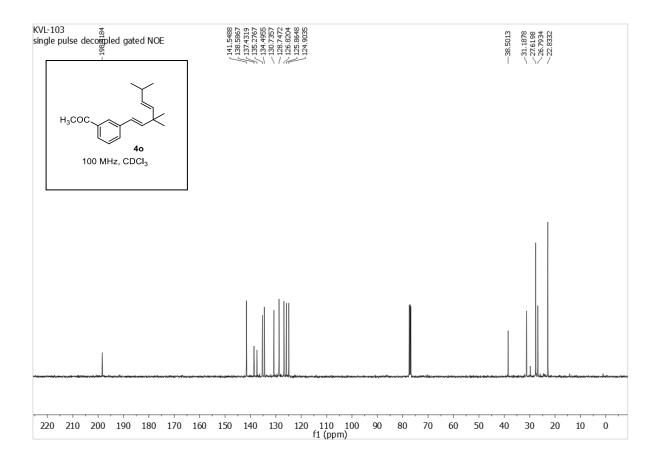


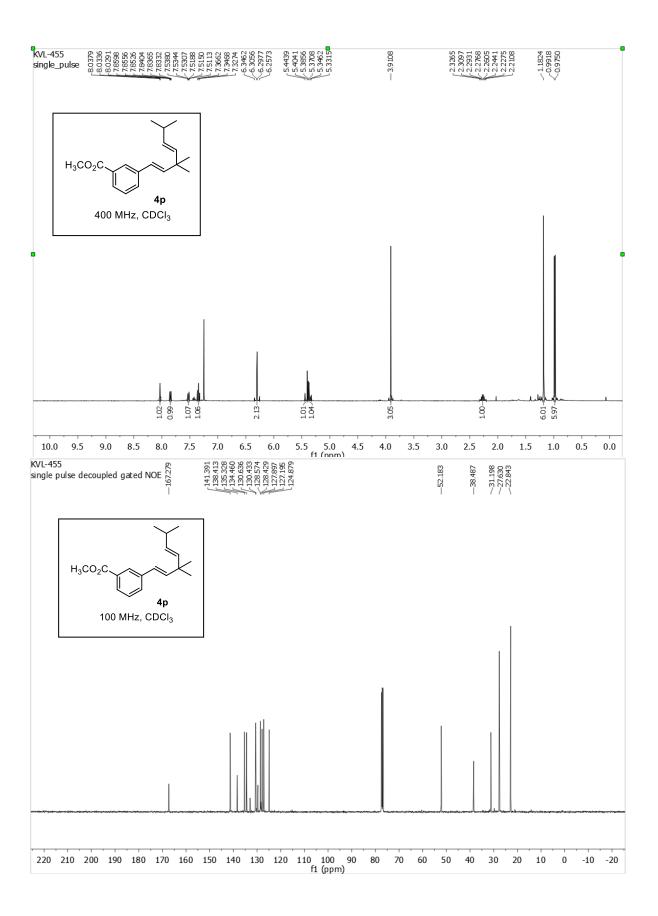


3.5

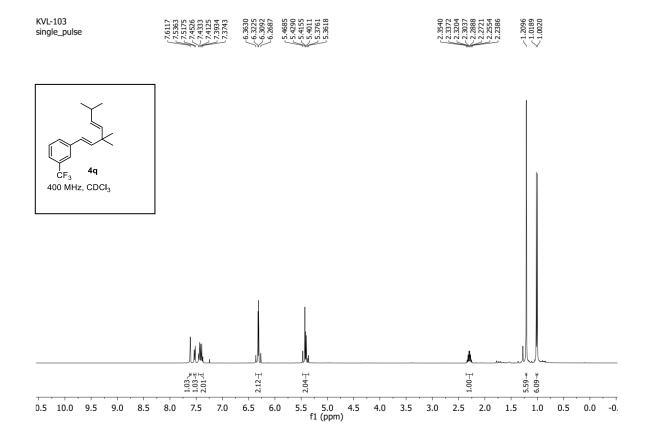

10.5 10.0 9.5 9.0 8.5 8.0

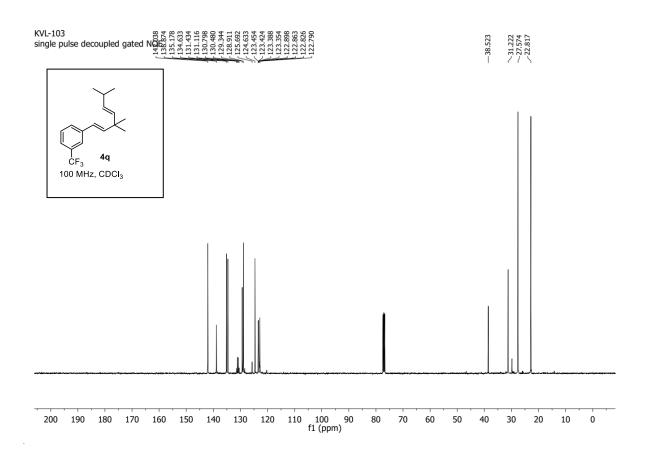

7.5 7.0

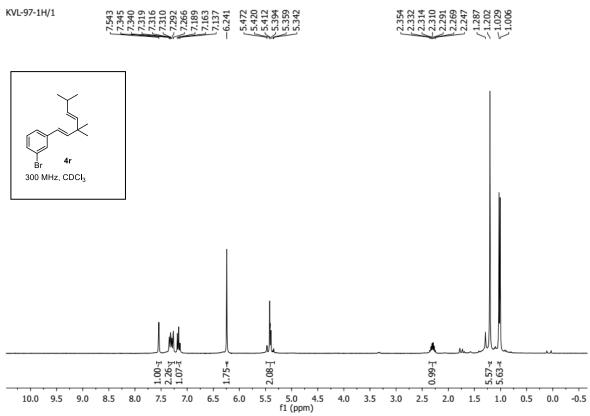

6.5

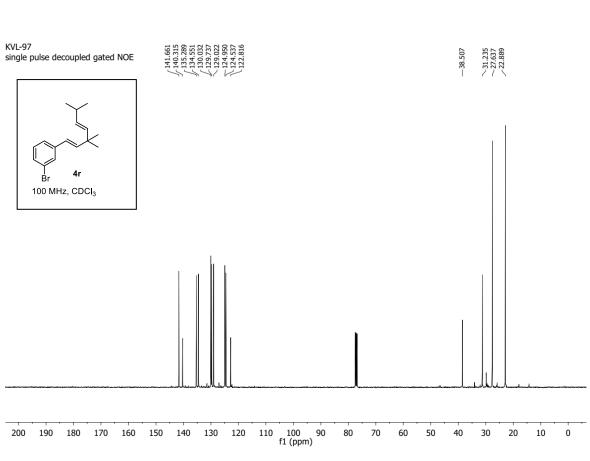


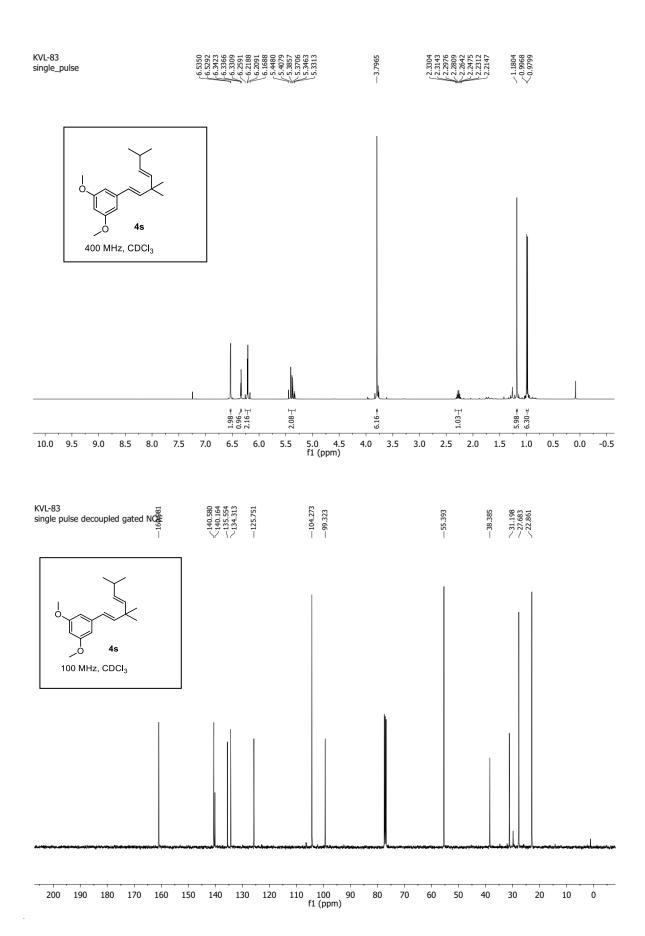



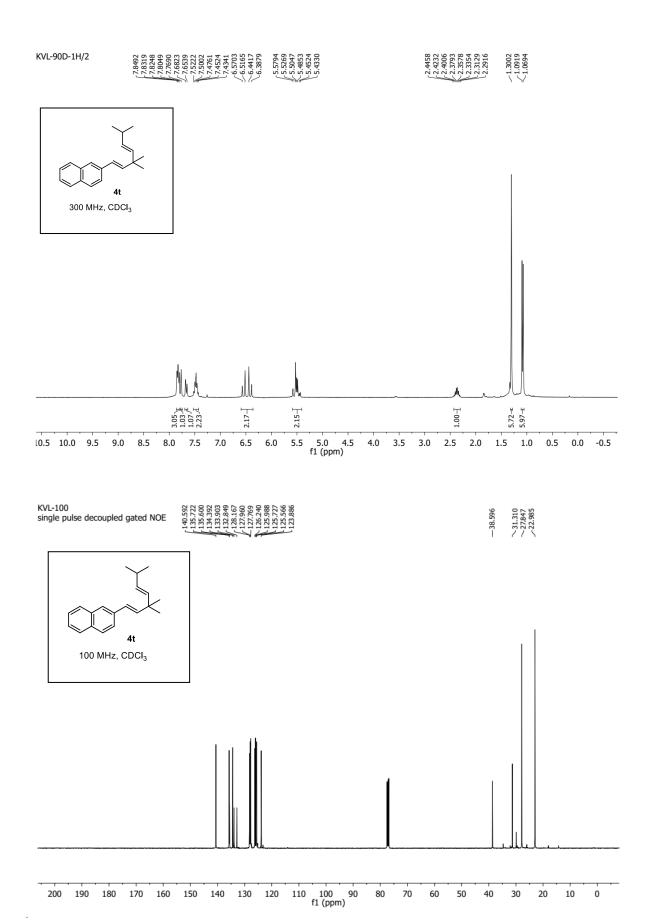



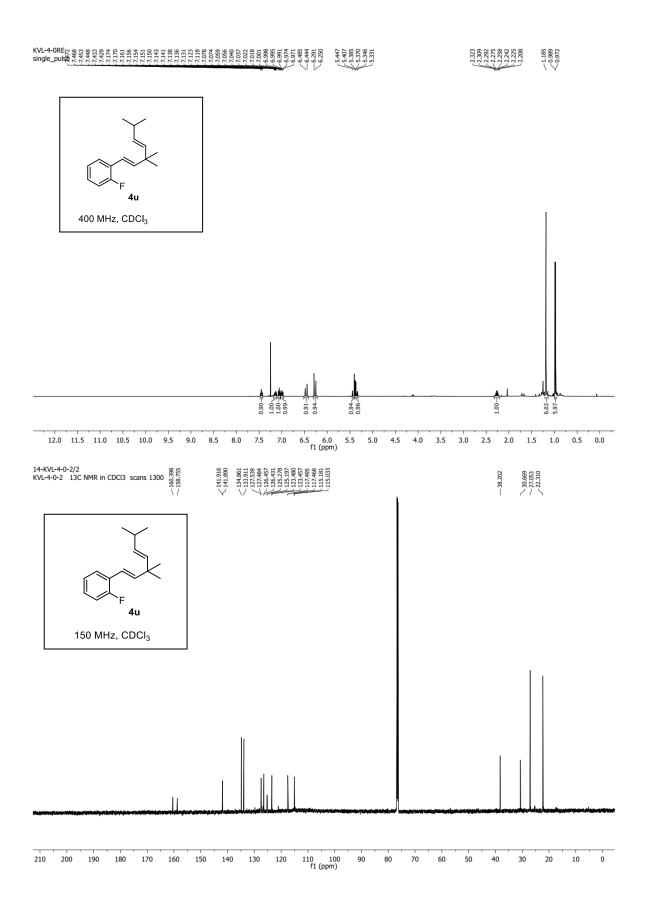



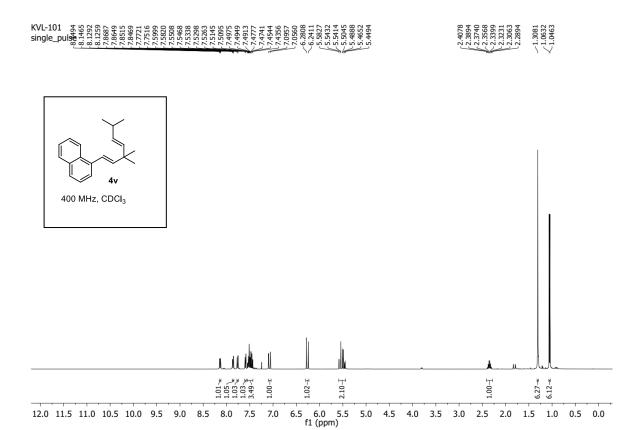



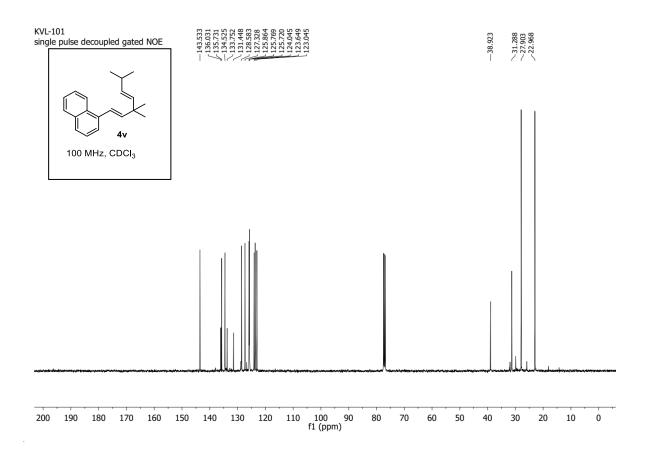



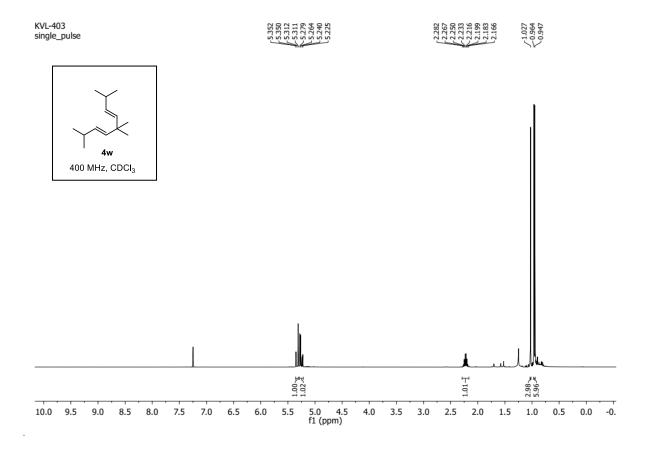



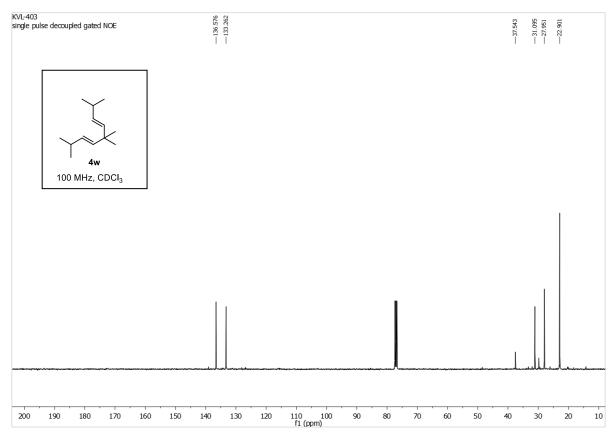



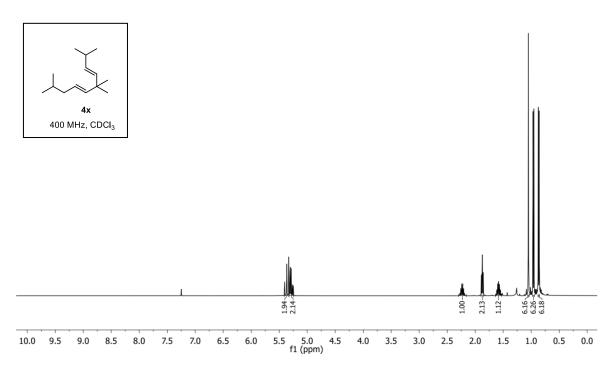



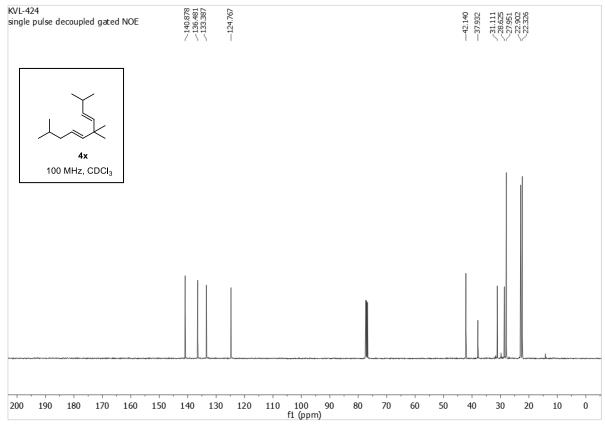



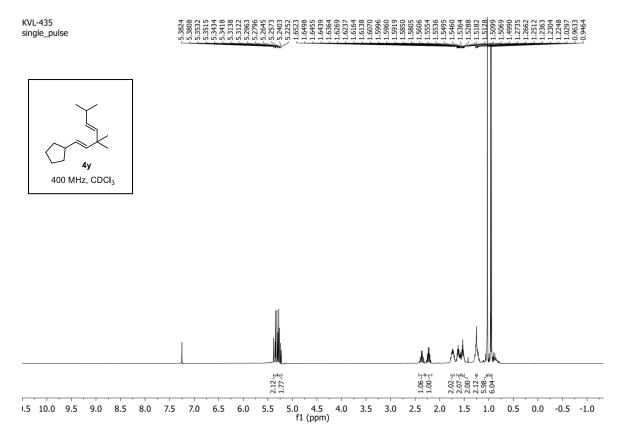



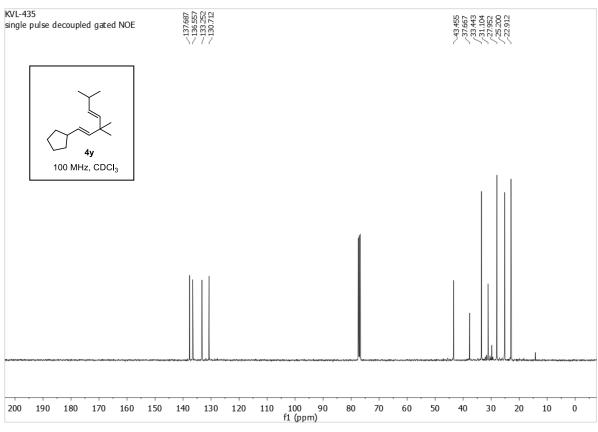









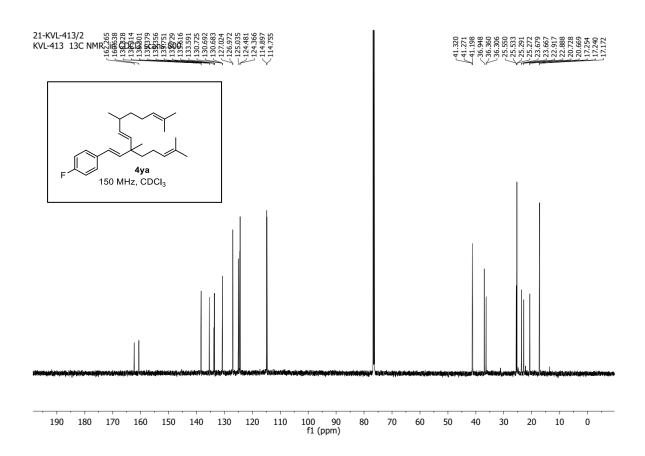





1.00년 3.91년 2.01년 3.03년 4.4년 3.03년

1.5

1.0

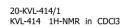

0.5 0.0

0.96년 0.97년

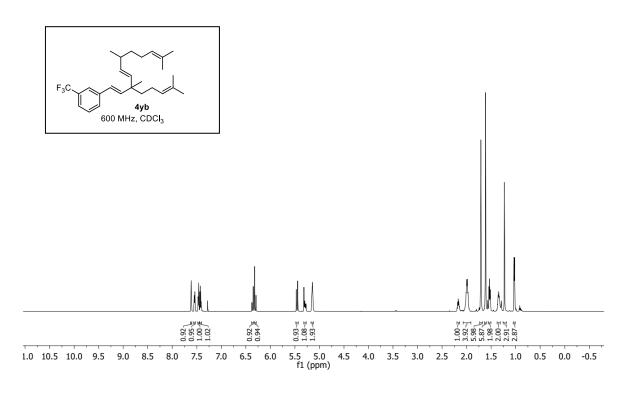
6.5

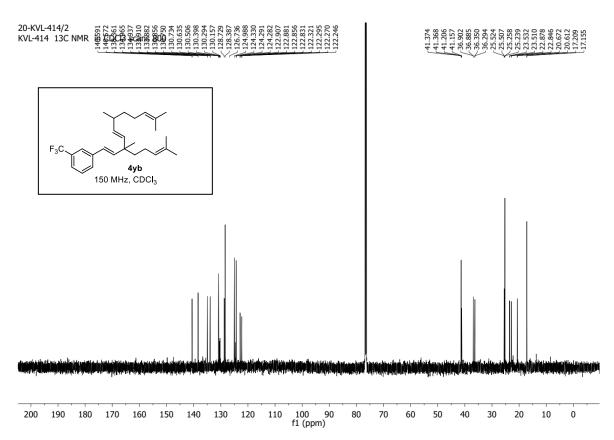
1.92 ≠ 1.94 ±

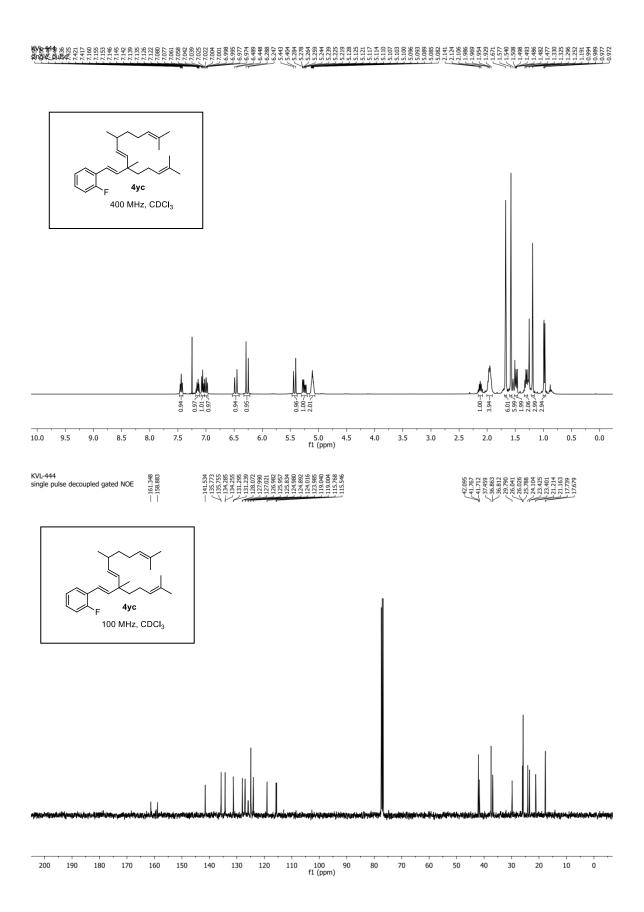
7.5

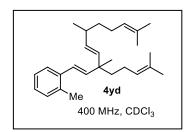


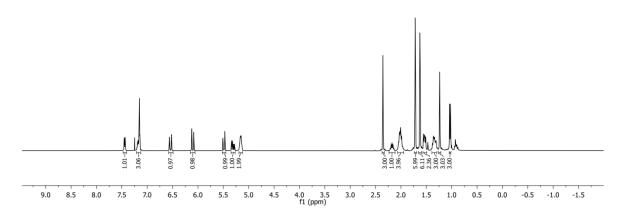

5.5 5.0 f1 (ppm)


4.0


3.5 3.0


2.5

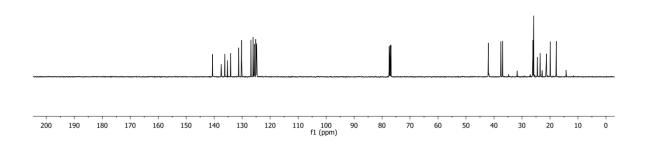


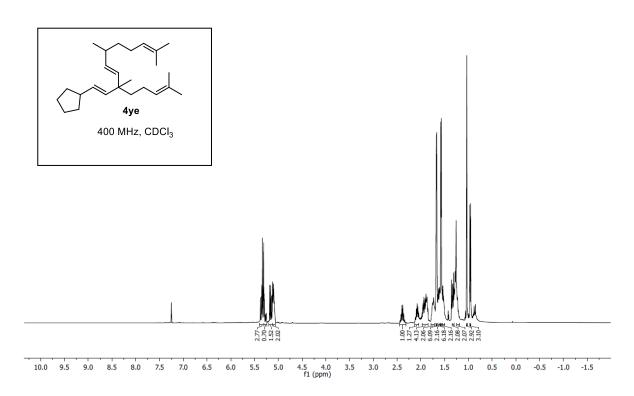









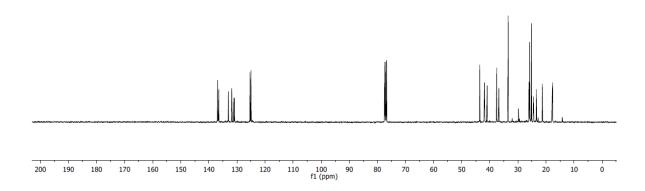



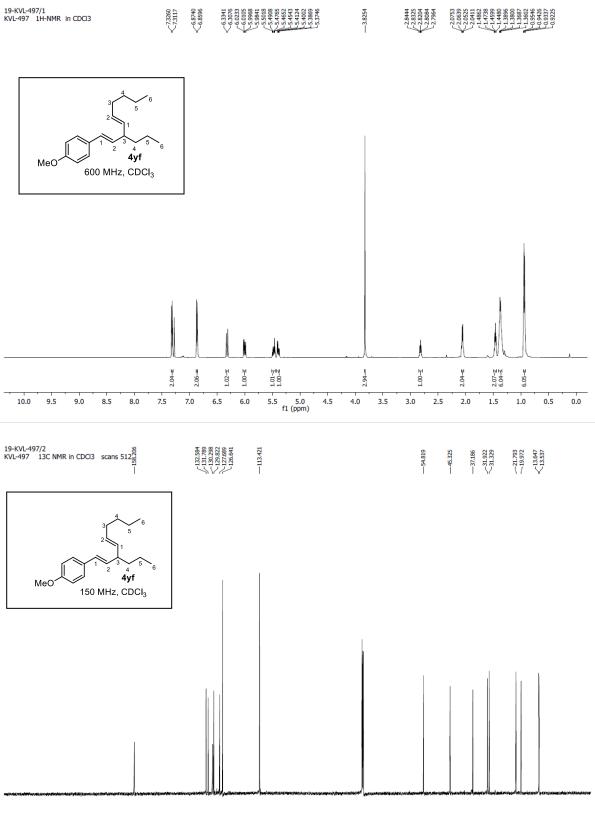




KVL-445 single pulse decoupled gated NOE

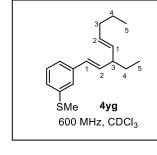
140.611 140.564 135.262 135.220 134.122 134.122 134.122 134.122 130.191 126.102 126.102 126.102 126.102 126.102 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.103 126.10

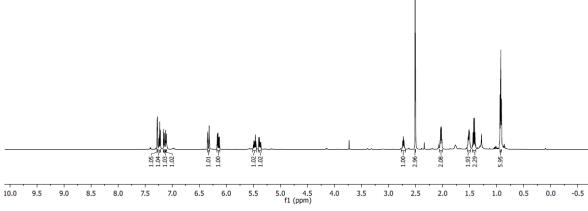
42.038 41.894 41.894 36.932 26.124 22.583 24.552 24.552 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23.530 23

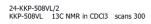



KVL-421 single pulse decoupled gated NOE

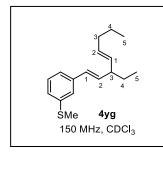

136.894 136.481 133.070 133.043 133.043 131.850 131.850 125.338

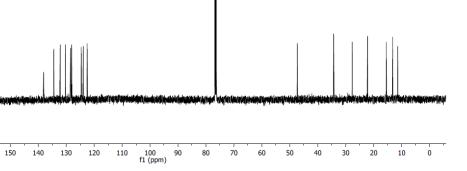

43.579 41.908 37.544 36.775 36.775 36.775 25.792 25.792 25.792 25.792 24.456 24.456 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23.379 23



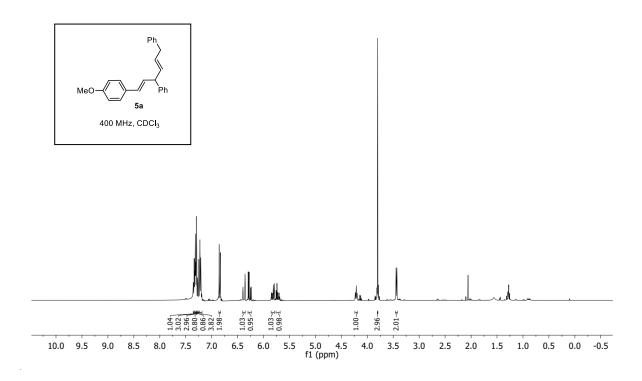


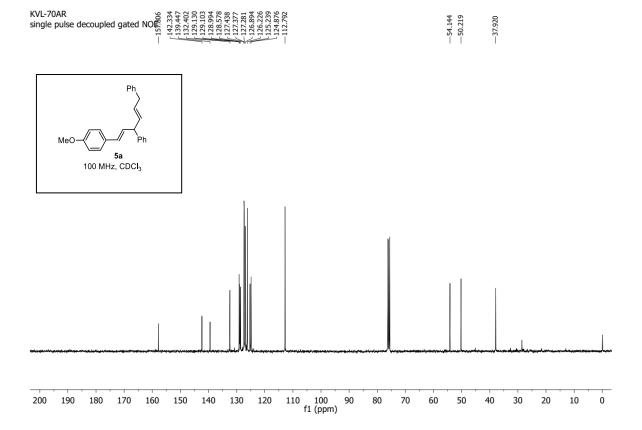

f1 (ppm)

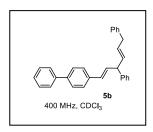


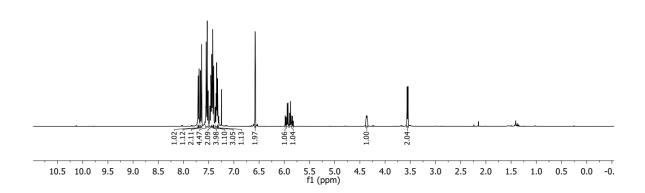



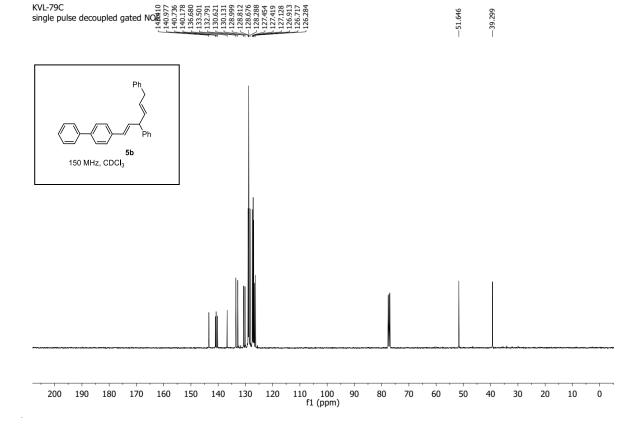


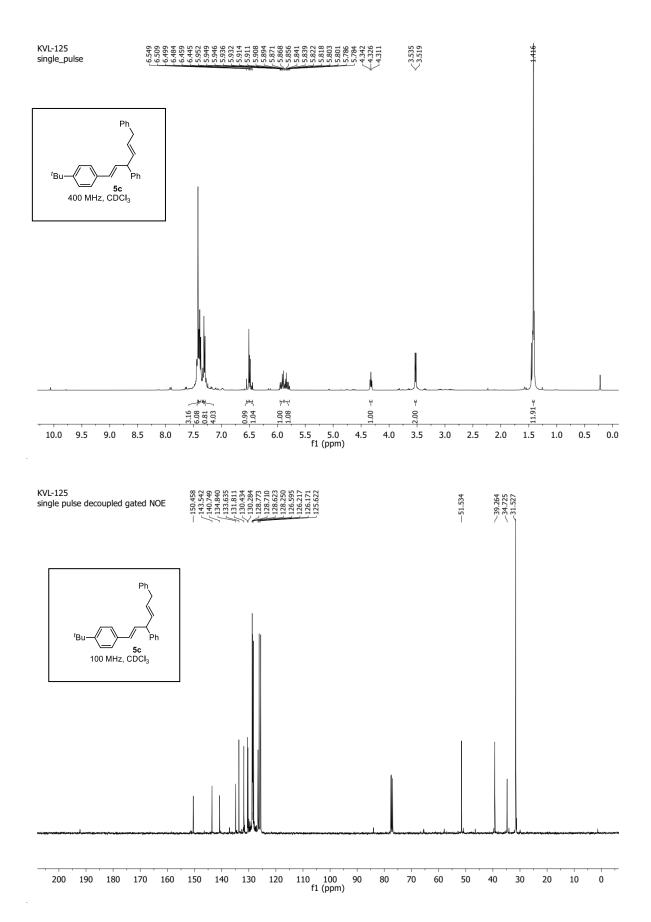



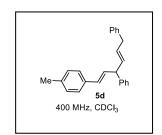



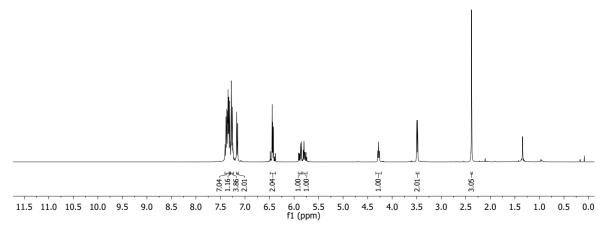



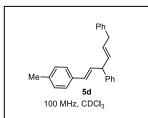


## 200 (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997

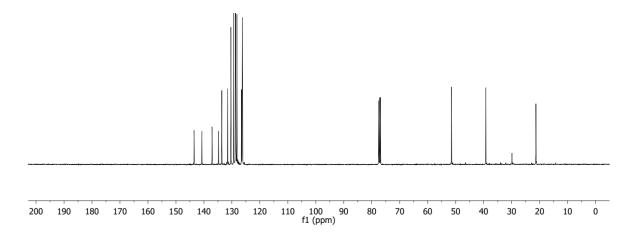


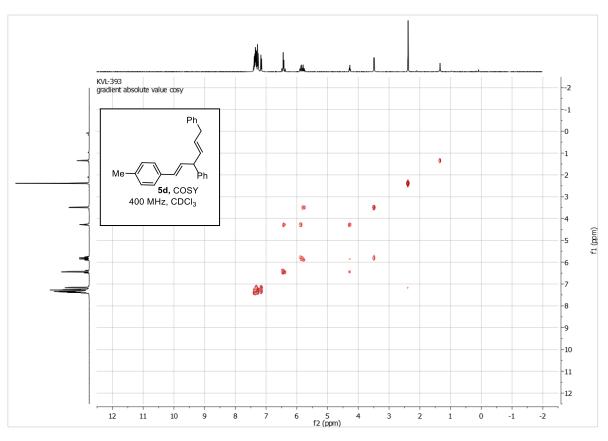



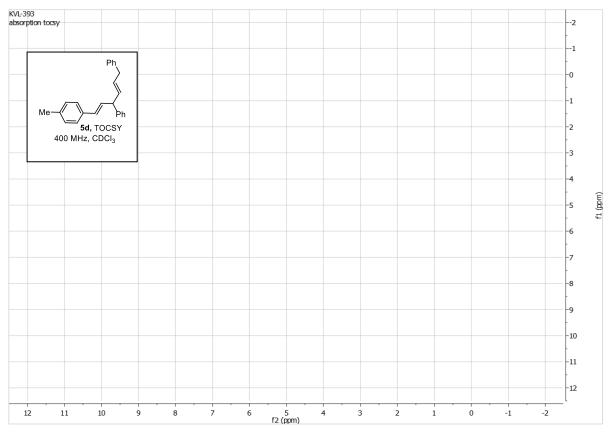


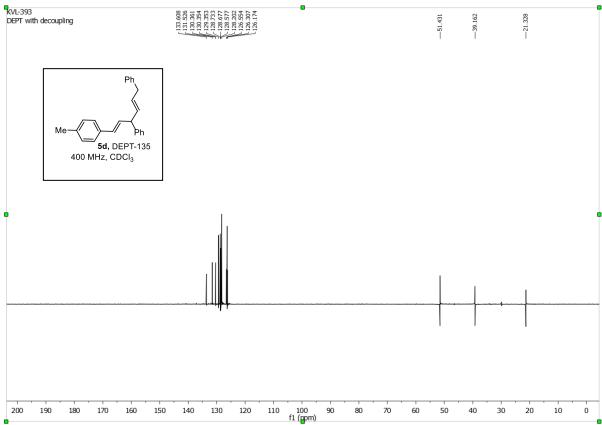



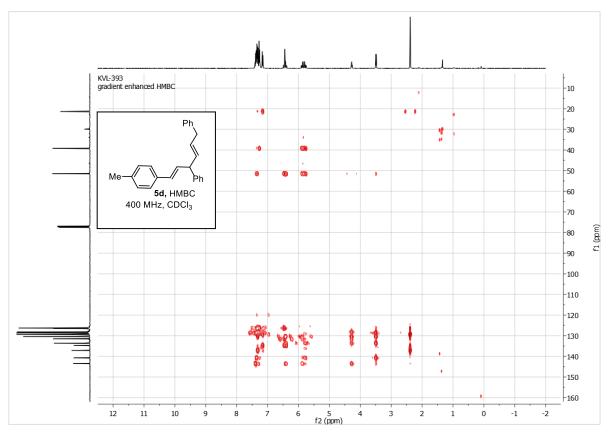



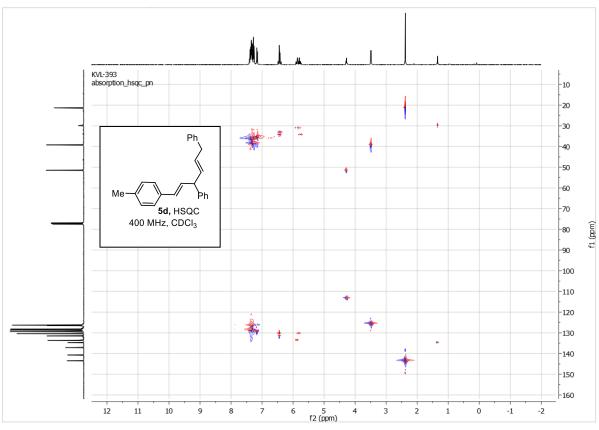



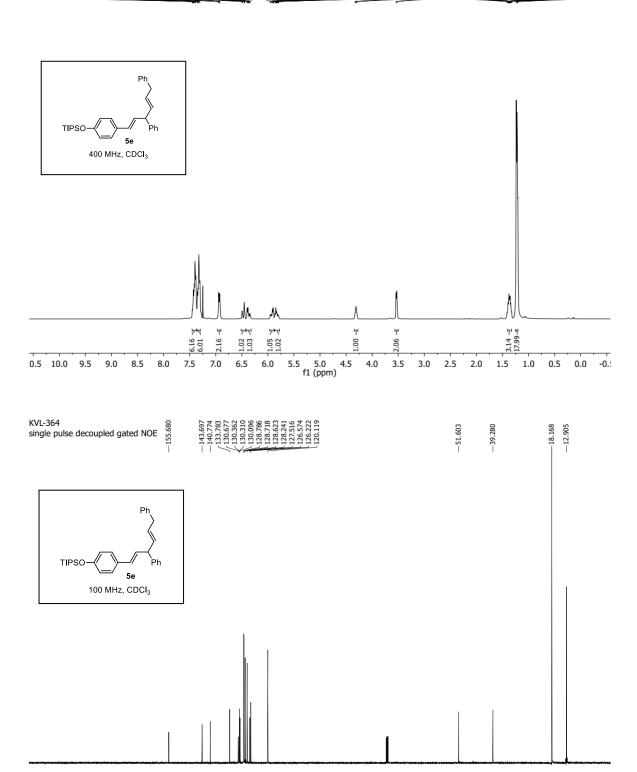


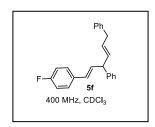



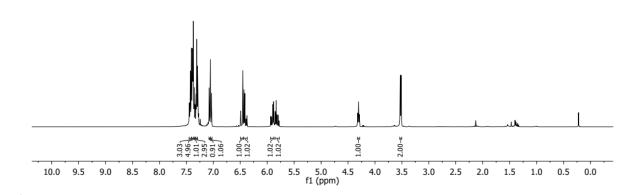



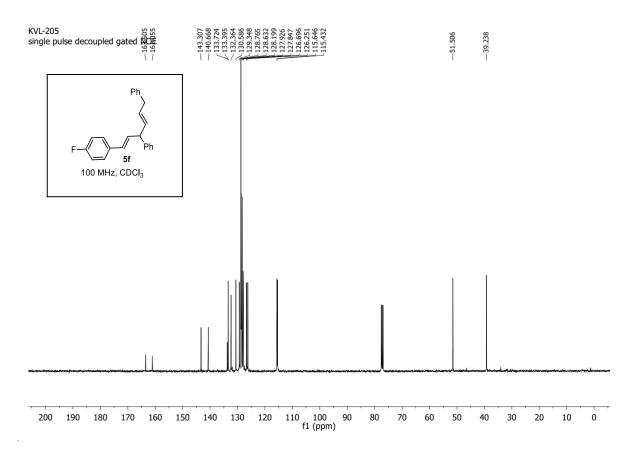


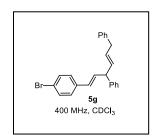


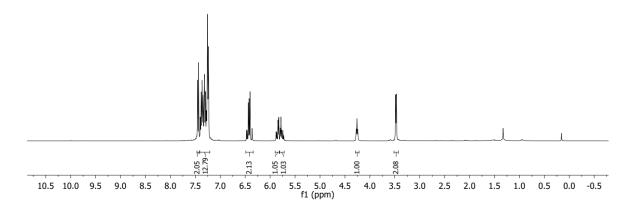




110 100 f1 (ppm)


160 150


## 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431 6.431

