Visible light-mediated radical addition cascade cyclization of aryl isocyanide with tricarbonyls: Rapid access to substituted phenanthridines and isoquinolines

Sabyasachi Manna, Rahul Halanuru Sreedhara, and Kandikere Ramaiah Prabhu*

Department of Organic Chemistry,

Indian Institute of Science,

Bangalore 560 012,

Karnataka, India

*To whom correspondence should be addressed. E-mail: prabhu@iisc.ac.in

Table of Contents:

SI.No	Title	Page No.
1	General Experimental	SI-3
2	Optimization and control studies	SI-4
3	General experimental procedure	SI-8
4	Characterization data for products	SI-9
5	Product modification	SI-16
6	Mechanistic studies	SI-16
7	Crystal data for 3fa	SI-18
8	References	SI-19
9	¹ H and ¹³ C spectra	SI-20

General Experimental

All reactions were carried out using distilled solvents. Reactions were monitored by using precoated silica TLC plates (GF-254). Mass spectra were recorded in EI and ESI (TOF) modes. NMR spectra were recorded in at 400 MHz spectrometers in CDCl₃, DMSO-d₆, and tetramethylsilane (TMS; $\delta = 0.00$ ppm) served as an internal standard for ¹H NMR. The corresponding residual non-deuterated solvent signal (CDCl₃; $\delta = 77.00$ ppm and DMSO-d₆; $\delta = 39.52$ ppm) was used as an internal standard for ¹³C NMR. Column chromatography was carried out on silica gel 230-400 mesh or 100-200 mesh (Merck), and thin-layer chromatography was carried out using Silica Gel GF-254. Chemicals obtained from commercial suppliers were used without further purification. Aryl isocyanides were prepared according to the literature procedures.¹ and (Ir[df(CF₃)ppy]₂(dtbpy))PF₆² were prepared according to the literature reports.

Emission Spectra of Blue LED Strip:

Fig 1: Plot of Intensity versus wavelength for the emission from the blue LED strip

An Ocean Optics spectrometer was used to record the emission spectrum of the blue LED strip, which was oriented toward the aperture of the spectrometer unit at a distance of approximately 8 cm.

Optimization and Control Studies

(a) Optimization of reaction conditions for the synthesis of phenanthridines:

In an 8 mL screw cap reaction vial equipped with a magnetic stirrer bar was added 2-isocyano-5-methyl-1,1'-biphenyl (0.2 mmol, 1 equiv.), triethyl methanetricarboxylate, appropriate oxidant, and appropriate photocatalyst. The appropriate solvent was added to the vial, and it was purged three times with argon and sealed with a cap containing a TFE-lined silicone septa. The reaction vial was degassed with argon for 15 minutes via an inlet needle. After this, the cap was changed with a solid-top cap under argon flow, and the vial was irradiated with 2 × 27 W CFL for 6-24 h. The reaction temperature was maintained at approximately 25 °C via a fan. After the reaction was stopped, the reaction mixture was transferred to a separatory funnel and diluted with EtOAc (10 mL) and water (10 mL). Sat. NaHCO₃ was then added and extracted with EtOAc (10 mL x 3) and washed with brine (saturated aq NaCl, 10 mL). The combined organic layer was dried over Na₂SO₄, and the solvent was removed in a rotatory evaporator followed by *a vacuo*. The reaction mixture was analyzed by ¹H NMR using 1,3,5trimethoxybenzene as an internal standard.

 Table 1 Optimization studies ^a

Entry	2a (equiv)	Oxidant (equiv)	Atmosphere	Time (h)	Photocatalyst (mol%)	Solvent	NMR Yield of 3aa (%) ^b
1	2	$K_2S_2O_8$	air	12	Ru(bpy) ₃ Cl ₂ . 6	CH ₃ CN:H ₂ O	62
		(2)			H₂O (2)	(1:1)	
						2 mL	
2	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	CH₃CN	n.d.
3	2	K ₂ S ₂ O ₈	air	12	Ru(bpy) ₃ Cl ₂ . 6	CH ₃ CH ₂ CN:H ₂ O	6
		(2)			H ₂ O (2)	(1:1)	
						2 mL	
4	2	$K_2S_2O_8$	air	12	$Ru(bpy)_3Cl_2$. 6	$C_3H_7CN:H_2O$	n.d.
		(2)			H ₂ O (2)	(1:1)	
						2 mL	

5	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	DCM:H ₂ O (1:1) 2 mL	trace
6	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	DMSO:H ₂ O (1:1) 2 mL	trace
7	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	TFE:H ₂ O (1:1) 2 mL	n.d.
8	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	HFIP:H ₂ O (1:1) 2 mL	n.d.
9	2	K ₂ S ₂ O ₈ (2)	air	12	Eosin Y (5)	CH₃CN:H₂O (1:1) 2 mL	n.d.
10	2	K ₂ S ₂ O ₈ (2)	air	12	Ir[{dF(CF ₃)ppy} ₂ (dtbpy)]PF ₆ (2)	CH ₃ CN:H ₂ O (1:1) 2 mL	n.d.
11	2	K ₂ S ₂ O ₈ (2)	air	12	Mes-Acr-PhBF ₄ (5)	CH ₃ CN:H ₂ O (1:1) 2 mL	n.d.
12	2	Na ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	CH ₃ CN:H ₂ O (1:1) 2 mL	59
13	2	(NH ₄) ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	CH ₃ CN:H ₂ O (1:1) 2 mL	53
14	2	70% aq. TBHP(2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	CH ₃ CN:H ₂ O (1:1) 2 mL	n.d.
15	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	CH ₃ CN:H ₂ O (1:1) 1 mL	46
16	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	CH₃CN:H₂O (1:1) 4 mL	38
17	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	CH ₃ CN:H ₂ O (3:1)	59

						2 mL	
18	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	CH ₃ CN:H ₂ O (1:3)	52
						2 mL	
19	2	K ₂ S ₂ O ₈ (2)	air	24	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	CH ₃ CN:H ₂ O (1:1)	60
						2 mL	
20	2	K ₂ S ₂ O ₈ (2)	air	6	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	CH ₃ CN:H ₂ O (1:1)	56
						2 mL	
21	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ (PF ₆) ₂ (2)	CH ₃ CN:H ₂ O (1:1)	65
						2 mL	
22	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ (PF ₆) ₂ (1)	CH₃CN:H₂O (1:1)	61
						2 mL	
23	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ (PF ₆) ₂ (3)	CH ₃ CN:H ₂ O (1:1)	57
						2 mL	
24 ^c	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ (PF ₆) ₂ (2)	CH₃CN:H₂O (1:1)	71
						2 mL	
25 ^{c, d}	2	K ₂ S ₂ O ₈ (2)	purged and degassed	12	Ru(bpy) ₃ (PF ₆) ₂ (2)	CH ₃ CN:H ₂ O (1:1)	78
			WITTAI			2 mL	
26 ^{c, d}	2	K ₂ S ₂ O ₈ (1.5)	purged and degassed	12	Ru(bpy) ₃ (PF ₆) ₂ (2)	CH ₃ CN:H ₂ O (1:1)	76
			WITTAI			2 mL	
27 ^{c, d}	2	K ₂ S ₂ O ₈ (1.2)	purged and degassed	12	Ru(bpy) ₃ (PF ₆) ₂ (2)	CH ₃ CN:H ₂ O (1:1)	71
			with Ar			2 mL	
28 ^{c, d}	2	K ₂ S ₂ O ₈ (2.5)	purged and degassed	12	Ru(bpy) ₃ (PF ₆) ₂ (2)	CH ₃ CN:H ₂ O (1:1)	75
						2 mL	
29 ^{c, d}	1.5	K ₂ S ₂ O ₈ (1.5)	purged and degassed	12	Ru(bpy) ₃ (PF ₆) ₂ (2)	CH ₃ CN:H ₂ O (1:1)	79

			with Ar			2 mL	
30 ^{c, d}	1.2	K ₂ S ₂ O ₈ (1.5)	purged and degassed with Ar	12	Ru(bpy) ₃ (PF ₆) ₂ (2)	CH₃CN:H₂O (1:1) 2 mL	57
31	2	K ₂ S ₂ O ₈ (2)	air	12	none	CH ₃ CN:H ₂ O (1:1) 2 mL	n.d.
32	2	none	air	12	Ru(bpy)₃Cl₂. 6 H₂O (2)	CH₃CN:H₂O (1:1) 2 mL	n.d.
33 ^e	2	K ₂ S ₂ O ₈ (2)	air	12	Ru(bpy) ₃ Cl ₂ . 6 H ₂ O (2)	CH ₃ CN:H ₂ O (1:1) 2 mL	n.d.

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (X mmol), oxidant (X mmol), Photocatalyst (x mol%), Solvent (x mL) under 2 × 27W CFL for 6-12 h. ^{*b*} NMR yield (using 1,3,5-trimethoxybenzene as an internal standard). ^{*c*} Reaction was performed under blue LED strip (452 nm, 1.5 mW/cm²). ^{*d*} Reaction mixture was degassed with Ar for 15 min. ^{*e*} Reaction was performed in the dark.

Fig 2: Reaction set-up under CFL (left) and Blue LED strips (right)

General Experimental Procedure

(a) General experimental procedure for synthesis of phenanthridines from *ortho*-aryl isocyanides and tricarbonyls:

In a 8 mL screw cap reaction vial equipped with a magnetic stirr bar was added *ortho*-aryl isocyanide (0.2 mmol, 1 equiv.), tricarbonyl (0.3 mmol, 1.5 equiv.), $K_2S_2O_8$ (0.3 mmol, 1.5 equiv.), $Ru(bpy)_3(PF_6)_2$ (0.004 mmol, 2 mol%). 2 mL of degassed $CH_3CN:H_2O$ (1:1) was added to the vial and it was purged three times with argon and was sealed with a cap containing TFE-lined silicone septa. The reaction vial was then degassed with argon for 15 min *via* an inlet needle. After this, the cap was changed with a solid-top cap under argon flow and the vial was irradiated with a blue LED strip (0.11 W/cm², measured through a Newport optical power meter 1916-R at a distance of 2 cm) for 12-24 h. The temperature of the reaction vial was maintained at approximately 25 °C *via* a fan. After the reaction was stopped, the reaction mixture was transferred to a separatory funnel and diluted with EtOAc (10 mL) and water (10 mL). Sat. NaHCO₃ was then added to the reaction mixture and it was extracted with brine (saturated aq NaCl, 10 mL). The combined organic layer was dried over Na₂SO₄, and the solvent was removed in a rotatory evaporator followed by a *vacuo*. The crude products were then purified on a silica gel column (230-400 mesh) using EtOAc/petroleum ether mixture to get the pure product.

(b) Experimental procedure for synthesis of isoquinolines from vinyl isocyanides and tricarbonyls:

In an 8 mL screw cap reaction vial equipped with a magnetic stir bar was added vinylisocyanide (0.2 mmol, 1 equiv.), tricarbonyl (0.3 mmol, 1.5 equiv.), $K_2S_2O_8$ (0.3 mmol, 1.5 equiv.), $Ru(bpy)_3(PF_6)_2$ (0.004 mmol, 2 mol%). 2 mL of degassed CH₃CN: H₂O (1:1) was added to the vial, and it was purged three times with argon and was sealed with a cap containing TFE-lined silicone septa. The reaction vial was degassed with argon for 15 minutes *via* an inlet needle. After this, the cap was changed with a solid-top cap under argon flow and the vial was irradiated with a blue LED strip (0.11 W/cm², measured through a Newport optical power meter 1916-R at a distance of 2 cm) for 12-24 h. The temperature of the reaction vial was maintained at approximately 25 °C *via* a fan. After the reaction was stopped, the reaction mixture was transferred to a separatory funnel and diluted with EtOAc (10 mL) and water (10 mL). Sat. NaHCO₃ was then added to the reaction mixture and it was extracted with EtOAc (10 mL x 3) and washed with brine (saturated aq NaCl, 10 mL). The combined organic layer was dried over Na₂SO₄, and the solvent was removed in a rotatory evaporator followed by *a vacuum*. The crude products were then purified on a silica gel column (230-400 mesh) using EtOAc/petroleum ether mixture to get the pure product.

(c) Experimental Procedure for the scale-up reaction for phenanthridine from *ortho*-aryl isocyanide and triethylmethane tricarboxylate:

In a 50 mL RB (round bottom flask), equipped with a magnetic stir bar was added the 2-isocyano-5-methyl-1,1'-biphenyl (5.175 mmol, 1 equiv.), tricarbonyl (7.7625 mmol, 1.5 equiv.), $K_2S_2O_8$ (7.7625 mmol, 1.5 equiv.), $Ru(bpy)_3(PF_6)_2$ (0.1035 mmol, 2 mol%). 52 mL of

degassed CH₃CN:H₂O (1:1) was added to the RB, and it was purged three times with argon and was sealed with a rubber septum. The rb was then degassed with argon for 15 min via an inlet needle. After this, the rb was irradiated with a blue LED strip (0.11 W/cm², measured through an optical power meter 1916-R at a distance of 1 cm) for 12 h. The temperature of the RB was maintained at approximately 25 °C *via* a fan. After the reaction was stopped, the reaction mixture was transferred to a separatory funnel and diluted with EtOAc (20 mL) and water (20 mL). Sat. NaHCO₃ was then added to the reaction mixture, and it was extracted with EtOAc (20 mL x 3) and washed with brine (saturated aq NaCl, 20 mL). The combined organic layer was dried over Na₂SO₄ and the solvent was removed in a rotatory evaporator followed by a *vacuo*. The crude products were then purified on a silica gel column (230-400 mesh) using EtOAc/petroleum ether mixture to get the pure product **3aa** in 61% yield (1.34 gm).

Characterization data for products:

triethyl (2-methylphenanthridin-6-yl)methanetricarboxylate (3aa). White solid; Yield – (56.7 mg, 67%); mp: 145-147 °C; Prepared as shown in the general experimental procedure (a). IR

(Neat, cm⁻¹): 2982, 2925, 1739,1219, 1060; ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, *J* = 8.3 Hz, 1 H), 8.35 (s, 1 H), 7.98 (d, *J* = 8.3 Hz, 1 H), 7.81-7.73 (m, 2 H), 7.60-7.53 (m, 2 H), 4.37 (q, *J* = 7.1, 6 H), 2.64 (s, 3 H), 1.25 (t, *J* = 7.1 Hz, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 153.5, 140.8, 137.5, 132.9, 130.2, 130.1, 129.8, 126.6, 126.2, 125.2, 124.0, 122.4, 121.4, 74.7, 62.6, 22.0, 13.8; HRESI-MS (*m*/*z*): Calculated for C₂₄H₂₅NO₆H (M + H): 424.1760, found (M + H): 424.1759.

triethyl phenanthridin-6-ylmethanetricarboxylate (3ba). White solid; Yield – (52.1 mg, 64%);
 mp: 109-111 °C; Prepared as shown in the general experimental procedure (a). IR (Neat, cm⁻

¹): 2981, 1731, 1221, 1058; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (d, *J* = 8.3 Hz, 1 H), 8.59-8.57 (m, 1 H), 8.11-8.09 (m, 1 H), 7.84-7.77 (m, 2 H), 7.75-7.68 (m, 2 H), 7.63-7.59 (m, 1 H), 4.38 (q, *J* = 7.1 Hz, 6 H), 1.26 (t, *J* = 7.1 Hz, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 154.5, 142.5, 133.2, 130.5, 130.1, 128.4, 127.6, 126.7, 126.2, 125.2, 124.1, 122.4, 121.8, 74.7, 62.7, 13.8; HRESI-MS (*m*/*z*): Calculated for C₂₃H₂₃NO₆H (M + H): 410.1604, found (M + H): 410.1610.

3. triethyl (2-cyanophenanthridin-6-yl)methanetricarboxylate (3ca). White solid; Yield - (71.6

mg, 82%); *mp*: 164-166 °C; Prepared as shown in the general experimental procedure (a). **IR** (Neat, cm⁻¹): 2983, 2228, 1736, 1218, 1059; ¹H **NMR** (400 MHz, CDCl₃) δ 8.91 (d, J = 1.28 Hz, 1 H), 8.61 (d, J = 8.3 Hz, 1 H), 8.15 (d, J = 8.4 Hz, 1 H), 7.91-7.88 (m, 2 H), 7.81 (d, J = 8.2 Hz, 1 H), 7.71-7.67 (m, 1 H), 4.38 (q, J = 7.1 Hz, 6 H), 1.26 (t, J = 7.1 Hz, 9 H); ¹³C **NMR** (100 MHz, CDCl₃) δ 165.1, 157.7, 144.0, 132.1, 131.5, 131.2, 130.1,

128.0, 127.7, 126.6, 125.5, 124.3, 122.4, 118.9, 111.0, 74.7, 62.9, 13.8; **HRESI-MS** (*m/z*): Calculated for C₂₄H₂₂N₂O₆H (M + H): 435.1556, found (M + H): 435.1552.

- 4. triethyl (2-phenylphenanthridin-6-yl)methanetricarboxylate (3da). White solid; Yield (65.7
 - mg, 67%); mp: 168-170 °C; Prepared as shown in the general experimental procedure (a). IR (Neat, cm⁻¹): 2981, 2934, 1738, 1224, 1060; ¹H NMR (400 MHz, CDCl₃) δ 8.77-8.74 (m, 2 H), 8.16 (d, J = 8.4 Hz, 1 H), 7.97 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.8$ Hz, 1 H), 7.84-7.79 (m, 4 H), 7.63 (t, J = 7.4 Hz, 1 H), 7.55 (t, J = 7.4 Hz, 2 H), 7.45 (t, J = 7.4 Hz, 1 H), 4.41 (q, J = 7.2 Hz, 6 H), 1.29 (t, J = 7.1 Hz, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 154.4, 141.8, 141.0, 140.5, 133.2, 130.9, 130.1, 128.9, 127.9, 127.7, 127.6,

126.9, 126.3, 125.4, 124.3, 122.4, 120.2, 74.7, 62.7, 13.8; HRESI-MS (m/z): Calculated for C₂₉H₂₇NO₆H (M + H): 486.1917, found (M + H): 486.1920.

5. triethyl (2-nitrophenanthridin-6-yl)methanetricarboxylate (3ea). White solid; Yield – (41.8 mg, 46%); mp: 166-168 °C; Prepared as shown in the general experimental procedure (a). IR

(Neat, cm⁻¹): 2983, 1732, 1217, 1059; ¹H NMR (400 MHz, CDCl₃) δ 9.49(d, J = 2.4 Hz, 1 H), 8.74 (d, J = 8.3 Hz, 1 H), 8.51 (dd, J₁ = 8.9 Hz, J₂ = 2.4 Hz, 1 H), 8.20 (d, J = 8.9 Hz, 1 H), 7.97-7.92 (m, 1 H), 7.85-7.83 (m, 1 H), 7.75-7.71 (m, 1 H), 4.39 (q, J = 7.1 Hz, 6 H), 1.27 (t, J = 7.1 Hz, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.1, 158.4, 146.3, 145.3, 133.0, 131.8, 131.4, 128.3, 126.8, 125.6, 124.2, 122.7, 122.4, 118.7, 74.82, 63.0, 13.8; **HRESI-MS** (m/z): Calculated for C₂₃H₂₂N₂O₈H (M + H): 455.1454, found (M + H): 455.1452.

6. triethyl (8-methylphenanthridin-6-yl)methanetricarboxylate (3fa). White solid; Yield – (57.1 mg, 68%); mp: 162-164 °C; Prepared as shown in the general experimental procedure (a). IR (Neat, cm⁻¹): 2981, , 1737, 1206, 1059; ¹**H NMR** (400 MHz, CDCl₃) δ 8.56-8.54 (m, 2 H), 8.08-8.05 (m, 1 H), 7.69-7.63(m, 3 H), 7.51 (s, 1 H), 4.38 (q, J = 7.1 Hz, 6 H), 2.53 (s, 3 H), 1.26 (t, J = 7.1 Hz, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 154.2, 142.2, 136.7, 131.9, 131.2, 130.5, 128.0, 127.5, 125.6, 125.4, 124.3, 122.4, 121.6, 74.8, 62.7, 21.8, 13.8; HRESI-**MS** (m/z): Calculated for C₂₄H₂₅NO₆H (M + H): 424.1760, found (M + H): 424.1760.

7. triethyl (8-methoxyphenanthridin-6-yl)methanetricarboxylate (3ga). White solid; Yield – (62.6 mg, 71%); mp: 121-123 °C; Prepared as shown in the general experimental procedure

(a). IR (Neat, cm⁻¹): 2981, 1736, 1220, 1058; ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 9.1 Hz, 1 H), 8.50-8.48 (m, 1 H), 8.08-8.05 (m, 1 H), 7.68-7.66 (m, 2 H), 7.45 (dd, J₁ = 9.0 Hz, J₂ = 2.4 Hz 1 H), 7.10 (s, 1 H), 4.38 (q, J = 7.1 Hz, 6 H), 3.87 (s, 3 H), 1.27 (t, J = 7.0 Hz, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 158.1, 153.6, 141.7, 130.4, 127.6, 127.4, 126.4, 124.2, 124.0, 121.3, 121.0, 106.3, 74.9, 62.6, 55.3, 13.9; **HRESI-MS** (*m/z*):

Calculated for C₂₄H₂₅NO₇H (M + H): 440.1709, found (M + H): 440.1711.

8. triethyl (8-chlorophenanthridin-6-yl)methanetricarboxylate (3ha). White solid; Yield – (61.7 mg, 70%); mp: 143-145 °C; Prepared as shown in the general experimental procedure (a). IR (Neat, cm⁻¹): 2981, 1736, 1207, 1058; ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 9.0 Hz, 1 H), 8.49

(d, J = 7.4 Hz, 1 H), 8.08 (d, J = 7.9 Hz, 1 H), 7.75-7.67 (m, 4 H), 4.41 (q, J = 7.1 Hz, 6 H), 1.30 (t,

 $J = 7.1 \text{ Hz}, 9 \text{ H}); {}^{13}\text{C} \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 165.2, 153.3, 142.3, 132.7, 131.6, 130.6, 130.5, 128.7, 128.0, 126.1, 125.7, 124.1, 123.5, 121.6, 74.7, 62.8, 13.8;$ **HRESI-MS**(*m/z*): Calculated for C₂₃H₂₂CINO₆H (M + H): 444.1214, found (M + H): 444.1211.

 triethyl (8-bromophenanthridin-6-yl)methanetricarboxylate (3ia). White solid; Yield – (76.8 mg, 79%); *mp*: 149-151 °C; Prepared as shown in the general experimental procedure (a). IR (Neat, cm⁻¹): 2982, 1736, 1208, 1059; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 8.4 Hz, 2 H), 8.07 (d, *J* = 7.92 Hz, 1 H), 7.89-7.86 (m, 2 H), 7.75-7.67 (m, 2 H), 4.41 (q, *J* = 7.1 Hz, 6 H), 1.31 (t, *J* = 7.0 Hz, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 153.2, 142.3, 133.3, 131.9, 130.5, 128.9, 128.8, 128.0, 126.4, 124.2, 123.5, 121.6, 120.8, 74.7, 62.8, 13.8; HRESI-MS (*m/z*): Calculated for C₂₃H₂₂BrNO₆H (M + H): 488.0709, found (M + H): 488.0702.

10. triethyl (8-fluorophenanthridin-6-yl)methanetricarboxylate (3ja). White solid; Yield – (49.2

mg, 57%); *mp*: 105-107 °C; Prepared as shown in the general experimental procedure (a). **IR** (Neat, cm⁻¹): 2982, 2937, 1734, 1194, 1058; ¹H NMR (400 MHz, CDCl₃) δ 8.67-8.63 (m, 1 H), 8.52-8.50 (m, 1 H), 8.10-8.08 (m, 1 H), 7.74-7.68 (m, 2 H), 7.59-7.55 (m, 1 H), 7.43-7.40 (m, 1 H), 4.40 (q, J = 7.1 Hz, 6 H), 1.29 (t, J = 7.1 Hz, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.3, 160.7 (d, J_{C-F} = 246.9 Hz), 153.6 (d, J_{C-F} = 3.8 Hz), 142.1, 130.5, 129.9, 128.3, 128.0, 126.4 (d, J_{C-F} = 7.9 Hz), 125.0 (d, J_{C-F} = 8.4 Hz),

123.7, 121.5, 119.5 (d, J_{C-F} = 23.6 Hz), 111.0 (d, J_{C-F} = 22.1 Hz), 74.7, 62.8, 13.8; **HRESI-MS** (*m/z*): Calculated for C₂₃H₂₂FNO₆H (M + H): 428.1059, found (M + H): 428.1509.

11. triethyl (8-(trifluoromethyl)phenanthridin-6-yl)methanetricarboxylate (3ka). White solid; Yield – (74.3 mg, 78%); *mp*: 144-146 °C; Prepared as shown in the general experimental

procedure (a). **IR** (Neat, cm⁻¹): 2983, 1733, 1208, 1124, 1058; ¹**H NMR** (400 MHz, CDCl₃) δ 8.76 (d, *J* = 8.7 Hz, 1 H), 8.57 (d, *J* = 8.0 Hz, 1 H), 8.11 (d, *J* = 8.0 Hz, 1 H), 8.05 (s, 1 H), 8.0 (d, *J* = 8.7 Hz, 1 H), 7.81-7.72 (m, 2 H), 4.41 (q, *J* = 7.1 Hz, 6 H), 1.30 (t, *J* = 7.1 Hz, 9 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.3, 154.4, 143.1, 135.5, 130.7, 129.8, 128.5 (q, *J* = 35.2 Hz), 128.3, 125.9 (q, *J* = 3.7 Hz), 124.7, 124.2 (q, *J* = 4.3 Hz), 123.8 (q, *J* = 270.8 Hz), 123.6, 123.3,

,122.3, 74.9, 63.0, 13.8; **HRESI-MS** (m/z): Calculated for C₂₄H₂₂F₃NO₆H (M + H): 478.1477, found (M + H): 478.1478.

12. triethyl (8-cyanophenanthridin-6-yl)methanetricarboxylate (3la). White solid; Yield - (50.1

mg, 58%); *mp*: 155-157 °C; Prepared as shown in the general experimental procedure (a). **IR** (Neat, cm⁻¹): 2982, 2230, 1733, 1206, 1057; ¹H NMR (400 MHz, CDCl₃) δ 8.74 (d, J = 8.6 Hz, 1 H), 8.57 (d, J = 8.0 Hz, 1 H), 8.13-8.08 (m, 2 H), 7.98 (d, J = 8.3 Hz, 1 H), 7.85-7.76 (m, 2 H), 4.43 (q, J = 7.1 Hz, 6 H), 1.33 (t, J = 7.1 Hz, 9 H); ¹³C NMR (100 MHz, CDCl3) δ 165.1, 153.7, 143.3, 135.9,

131.9, 131.2, 130.7, 130.3, 128.6, 124.8, 123.8, 122.9, 122.4, 118.3, 110.3, 74.7, 63.1, 13.8 ; **HRESI-MS** (*m/z*): Calculated for C₂₄H₂₂N₂O₆H (M + H): 435.1556, found (M + H): 435.1575.

13. triethyl (8-acetylphenanthridin-6-yl)methanetricarboxylate (3ma). White solid; Yield - (59.8

mg, 66%); *mp*: 136-138 °C; Prepared as shown in the general experimental procedure (a). **IR** (Neat, cm⁻¹): 2981, 2937, 1731, 1686, 1249, 1057; ¹H **NMR** (400 MHz, CDCl₃) δ 8.71 (d, *J* = 8.6 Hz, 1 H), 8.59 (d, *J* = 8.0 Hz, 1 H), 8.39 (s, 1 H), 8.36 (d, *J* = 8.6 Hz, 1 H), 8.11 (d, *J* = 7.9 Hz, 1 H), 7.81-7.72 (m, 2 H), 4.41 (q, *J* = 7.0 Hz, 6 H), 2.69 (s, 3 H), 1.30 (t, *J* = 7.4 Hz, 9H); ¹³C **NMR** (100 MHz, CDCl₃) δ 196.9, 166.0, 165.5, 154.8, 143.3, 136.4, 134.7, 130.6, 129.7, 128.4, 128.1, 128.0, 124.7, 123.5, 123.0, 122.5, 74.9,

63.3, 63.0, 26.4, 13.9; **HRESI-MS** (*m/z*): Calculated for C₂₅H₂₅NO₇Na (M + Na): 474.1529, found (M + H): 474.1531.

14. triethyl (7,9-dichlorophenanthridin-6-yl)methanetricarboxylate (3na). White solid; Yield – (83.8 mg, 88%); *mp*: 177-179 °C; Prepared as shown in the general experimental procedure

(a). **IR** (Neat, cm⁻¹): 2982, 1746, 1592, 1197, 1062; ¹**H NMR** (400 MHz, CDCl₃) δ 8.62 (s, 1 H), 8.44 (d, *J* = 8.1Hz, 1 H), 8.01 (d, *J* = 7.9 Hz, 1 H), 7.77-7.67 (m, 3 H), 4.53-4.48 (m, 2 H), 4.31-4.30 (m, 4 H), 1.44 (t, *J* = 7.08, 3 H), 1.21 (s, 6 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.9, 165.5, 152.6, 141.7, 137.1, 135.6, 132.7, 130.5, 130.1, 129.8, 128.4, 122.5, 122.3, 122.1, 121.8, 77.8, 62.9, 62.6, 14.0, 13.6; **HRESI-MS** (*m*/*z*): Calculated for C₂₃H₂₁Cl₂NO₆Na (M + Na): 500.0644, found (M + Na): 500.0643.

15. triethyl benzo[c]phenanthridin-6-ylmethanetricarboxylate (3oa). White solid; Yield – (50.4

mg, 64%); *mp*: 150-152 °C; Prepared as shown in the general experimental procedure (a). **IR** (Neat, cm⁻¹): 2982, 2925, 1736, 1225, 1059; ¹**H NMR** (400 MHz, CDCl₃) δ 9.23 (d, *J* = 7.9 Hz, 1 H), 8.74 (d, *J* = 8.4 Hz, 1 H), 8.56 (d, *J* = 9.0 Hz, 1 H), 8.06 (d, *J* = 8.9 Hz, 1 H), 7.99-7.97 (m, 1 H), 7.90-7.84 (m, 2 H), 7.75-7.63 (m, 3 H), 4.45 (q, *J* = 7.1 Hz, 6 H), 1.27 (t, *J* = 7.1 Hz, 9 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.7, 153.0, 139.2, 133.6, 133.1, 131.9, 130.0, 128.4, 127.5, 127.3, 126.8, 126.6, 126.3, 125.6,

124.7, 75.2, 62.7, 13.8; **HRESI-MS** (*m*/*z*): Calculated for C₂₇H₂₅NO₆H (M + H): 460.1760, found (M + H): 460.1759.

16. triethyl (8-methoxy-2-methylphenanthridin-6-yl)methanetricarboxylate (3pa). White solid;

Yield – (64.4 mg, 71%); *mp*: 133-135 °C; Prepared as shown in the general experimental procedure (a). **IR** (Neat, cm⁻¹): 2981, 2926, 1737, 1222, 1058; ¹**H NMR** (400 MHz, CDCl₃) δ 8.55 (d, *J* = 9.12 Hz, 1 H), 8.27 (s, 1 H), 7.95 (d, *J* = 8.3 Hz, 1 H), 7.48 (d, *J* = 8.2 Hz, 1 H), 7.43 (dd, *J*₁ = 9.1 Hz, *J*₂ = 2.4 Hz, 1 H), 7.08 (d, *J* = 2.4 Hz, 1 H), 4.38 (q, *J* = 7.1 Hz, 6 H), 3.87 (s, 3 H), 2.64 (s, 3 H), 1.27 (t, *J* = 7.1 Hz, 9 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.7, 158.0, 152.6, 140.1, 137.6, 130.2, 129.2,

127.5, 126.5, 124.1, 124.0, 120.9, 120.8, 106.2, 74.9, 62.7, 55.3, 22.1, 13.9; **HRESI-MS** (*m/z*): Calculated for C₂₅H₂₇NO₇H (M + H): 454.1866, found (M + H): 454.1865.

17. triethyl (8-cyano-2-methylphenanthridin-6-yl)methanetricarboxylate (3qa). White solid;

Yield – (42.3 mg, 47%); *m*: 130-132 °C; Prepared as shown in the general experimental procedure (a). **IR** (Neat, cm⁻¹): 2226, 1734, 1216, 1054; ¹**H NMR** (400 MHz, CDCl₃) δ 8.71 (d, *J* = 8.5 Hz, 1 H), 8.32 (s, 1 H), 8.07 (s, 1 H), 7.99 (d, *J* = 8.3 Hz, 1 H), 7.94 (dd, *J*₁ = 8.5 Hz, *J*₂ = 1.2 Hz, 1 H), 7.63 (d, *J* = 8.3 Hz, 1 H), 4.42 (q, *J* = 7.1 Hz, 6 H), 2.66 (s, 3 H), 1.32 (t, *J* = 7.1 Hz, 9 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.2, 152.6, 141.7, 138.8, 135.6, 132.0, 131.9, 131.0, 130.4, 124.8, 123.8, 122.7, 121.9, 118.4,

110.1, 74.7, 63.0, 22.0, 13.9; **HRESI-MS** (*m/z*): Calculated for C₂₅H₂₄N₂O₆Na (M + Na): 471.1532, found (M + H): 471.1533.

18. triethyl (2-methyl-8-(trifluoromethyl)phenanthridin-6-yl)methanetricarboxylate (3ra).

White solid; Yield – (79.8 mg, 81%); *m*: 102-104 °C; Prepared as shown in the general experimental procedure (a). **IR** (Neat, cm⁻¹): 2983, 1731, 1210, 1124, 1056; ¹**H NMR** (400 MHz, CDCl₃) δ 8.75 (d, *J* = 8.7 Hz, 1 H), 8.35 (s, 1 H), 8.02-7.96 (m, 3 H), 7.61 (d, *J* = 8.2 Hz, 1 H), 4.40 (q, *J* = 7.1 Hz, 6 H), 2.66 (s, 3 H), 1.29 (t, *J* = 7.1 Hz, 9 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.3, 153.4, 141.4, 138.4, 135.2, 131.2, 130.4, 128.3 (q, *J* = 32.5 Hz), 125.6 (q, *J* = 2.9 Hz), 124.1 (q, *J* = 4.2 Hz), 123.8 (q, *J* = 270.8 Hz), 123.5,

121.8, 74.8, 62.9, 22.0, 13.8; **HRESI-MS** (m/z): Calculated for C₂₅H₂₄F₃NO₆H (M + H): 492.1634, found (M + H): 492.1632.

19. Triethyl (2-(((2-isopropyl-5-methylcyclohexyl)oxy)carbonyl)phenanthridin-6yl)methanetricarboxylate (3sa). White solid; Yield – (96.9 mg, 80%); *mp*: 62-64 °C; Prepared

as shown in the general experimental procedure (a). **IR** (Neat, cm⁻¹): 2955, 2928, 2869, 1738, 1712, 1285, 1254, 1060; ¹**H NMR** (400 MHz, CDCl₃) δ 9.32 (s, 1 H), 8.77 (d, *J* = 8.3 Hz, 1 H), 8.33 (d, *J*₁ = 8.5 Hz, *J*₂ = 1.5 Hz, 1 H), 8.12 (d, *J* = 8.5 Hz, 1 H), 7.88 (t, *J* = 7.5 Hz, 1 H), 7.79 (d, *J* = 8.3 Hz, 1 H), 7.65 (t, *J* = 7.5 Hz, 1 H), 5.07 (td, *J*₁ = 10.9 Hz, *J*₂ = 4.2 Hz, 1 H), 4.37 (q, *J* = 7.1 Hz, 6 H), 2.24-2.21 (m, 1 H), 2.07-2.01 (m, 1 H), 1.80-1.77 (m, 2 H), 1.71-1.63 (m, 2 H), 1.27-1.22 (m, 11 H), 0.99-0.97 (m, 7H), 0.86 (d, *J* = 6.8 Hz, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.9, 165.3,

O CO₂Et CO₂Et 3sa

156.7, 144.8, 133.3, 130.7, 130.5, 129.5, 128.5, 127.3, 126.4, 125.3, 124.5, 123.7, 122.7, 75.3, 74.7, 62.8, 47.3, 41.0, 34.3, 31.4, 26.6, 23.7, 22.0, 20.7, 16.6, 13.8; **HRESI-MS** (m/z): Calculated for C₃₄H₄₁NO₈H (M + H): 592.2910, found (M + H): 592.2913.

20. trimethyl phenanthridin-6-ylmethanetricarboxylate (3ta). White solid; Yield – (49.2 mg, 67%); *mp*: 190-192 °C; Prepared as shown in the general experimental procedure (a). IR (Neat, cm⁻¹): 2952, 1742, 1232,

1066; ¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (d, *J* = 8.3 Hz, 1 H), 8.60-8.58 (m, 1 H), 8.11-8.08 (m, 1 H), 7.84 (t, *J* = 8 Hz, 1 H), 7.76-7.70 (m, 3 H), 7.64-7.60 (m, 1 H), 3.89 (s, 9 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 165.9, 154.2, 142.3, 133.3, 130.7, 130.2,

128.6, 127.8, 127.1, 125.0, 124.2, 121.8, 74.6, 53.7; **HRESI-MS** (m/z): Calculated for C₂₀H₁₇NO₆H (M + H): 368.1134, found (M + H): 368.1138.

21. trimethyl phenanthridin-6-ylmethanetricarboxylate (3ua). White solid; Yield – (51.4 mg, 65%); *mp*: 179-181 °C; Prepared as shown in the general

experimental procedure (a). **IR** (Neat, cm⁻¹): 2923, 2855, 1740, 1510, 1458, 1352, 1251, 1172, 1065; ¹**H NMR** (400 MHz, CDCl₃) δ 8.68 (d, *J* = 8.3 Hz, 1 H), 8.60-8.58 (m, 1 H), 8.11-8.09 (m, 1 H), 7.85-7.81 (m, 1 H), 7.76-7.71 (m, 3 H), 7.63-7.60 (m, 1 H), 4.39 (t, *J* = 7.1 Hz, 4 H), 3.87 (s, 3 H), 1.27 (t, *J* = 7.1 Hz, 6 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.2, 165.4, 154.4, 142.4, 133.2, 130.5, 130.1, 128.5, 127.7, 126.8, 126.1, 125.1, 124.1,

CO₂Et CO₂Me Sua

122.5, 121.8, 74.7, 62.7, 53.5, 13.8; **HRESI-MS** (*m/z*): Calculated for C₂₂H₂₁NO₆H (M + H): 396.1447, found (M + H): 396.1448.

22. triethyl (3-(ethoxycarbonyl)-4-phenylisoquinolin-1-yl)methanetricarboxylate (4aa) . white

sticky solid; Yield – (85.2 mg, 70%); Prepared as shown in the general experimental procedure (b). **IR** (Neat, cm⁻¹): 2982, 1735, 1221, 1059; ¹**H NMR** (400 MHz, CDCl₃) δ 7.80-7.70 (m, 1 H), 7.67-7.64 (m, 1 H), 7.61-7.59 (m 2 H), 7.51-7.50 (m, 3H), 7.38-7.36 (m, 2 H), 4.39 (q, *J* = 7.1 Hz, 6 H), 4.11 (q, *J* = 7.1 Hz, 2 H), 1.29 (t, *J* = 7.1 Hz, 9 H), 1.05 (t, *J* = 7.1 Hz, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.2, 165.4, 153.4, 139.7, 136.4, 136.1, 134.7, 130.0, 129.7, 128.1, 128.0, 127.9, 127.8, 127.2, 125.5, 74.5, 62.8, 60.9, 13.8; **HRESI-MS** (*m*/*z*): Calculated for C₂₈H₂₉NO₈H (M + H): 508.1971, found (M + H): 508.1973.

- 23. triethyl (3-(methoxycarbonyl)-4-phenylisoquinolin-1yl)methanetricarboxylate (4ba). White solid; Yield – (78.3 mg, 79%); *mp*: 90-92 °C; Prepared as shown in the general experimental procedure (b). IR (Neat, cm⁻¹): 2982, 2925, 1733, 1221, 1058; ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.78 (m, 1 H), 7.63-7.61 (m, 3 H), 7.52-7.50 (m, 3 H), 7.35 (d, *J* = 7.2 Hz, 2 H), 4.39 (q, *J* = 7.2 Hz, 6 H), 3.69 (s, 3 H), 1.29 (t, *J* = 7.1 Hz, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 165.4, 153.4, 138.9, 136.5, 135.9, 135.3, 130.0, 129.5, 128.2, 128.1, 127.9, 127.4, 125.5, 74.5, 62.8, 51.9, 13.8; HRESI-MS (*m*/*z*): Calculated for C₂₇H₂₇NO₈Na (M + Na): 516.1634, found (M + H): 516.1631.
- 24. trimethyl (3-(methoxycarbonyl)-4-phenylisoquinolin-1-yl)methanetricarboxylate (4ca). White solid; Yield (61.9 mg, 69%); mp: 168-170 °C; Prepared as shown in the general experimental procedure (b). IR (Neat, cm⁻¹): 2953, 1736, 1433, 1226, 1065; ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.72 (m, 1 H), 7.64-7.62 (m, 3 H), 7.52-7.51 (m, 3 H), 7.34-7.33 (m, 2 H), 3.90 (s, 9 H), 3.69 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 165.8, 153.1, 138.5, 136.7, 135.9, 130.2, 129.5, 128.6, 128.1, 128.0, 127.9, 127.7, 125.0, 74.4, 53.8, 52.1; HRESI-MS

(m/z): Calculated for C₂₄H₂₁NO₈Na (M + Na): 474.1165, found (M + H): 474.1165.

25. triethyl(3-(methoxycarbonyl)-6-methyl-4-(p-tolyl)isoquinolin-1-yl)methanetricarboxylate

(4da). White solid; Yield – (64.7 mg, 62%); *mp*: 105-107 °C; Prepared as shown in the general

experimental procedure (b). **IR** (Neat, cm⁻¹): 2981, 2923, 1736, 1221, 1059; ¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.7 Hz, 1 H), 7.51 (s, 1 H), 7.42 (dd, *J*₁ = 8.6 Hz, *J*₂ = 1.2 Hz, 1 H), 7.32 (d, *J* = 7.9 Hz, 2 H), 7.22 (d, *J* = 7.9 Hz, 2 H), 4.40 (q, *J* = 7.1 Hz, 6 H), 3.70 (s, 3 H), 2.50 (s, 3 H), 2.48 (s, 3 H), 1.29 (t, *J* = 7.1 Hz, 9 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 166.6, 165.5, 152.4, 138.5, 138.0, 137.5, 135.6, 135.0, 133.0, 132.2, 129.3, 128.8, 128.2, 127.3, 124.3, 74.4, 62.8, 51.9, 22.2, 21.3, 13.7; **HRESI-MS** (*m*/*z*): Calculated for C₂₉H₃₁NO₈H (M + H): 522.2128, found (M + H): 522.2128.

26. Triethyl (6-fluoro-4-(4-fluorophenyl)-3-

(methoxycarbonyl)isoquinolin-1-yl)methanetricarboxylate (4ea). White solid; Yield – (83.8 mg, 79%); *mp*: 124-126 °C; Prepared as shown in the general experimental procedure (b). IR

(Neat, cm⁻¹): 2984, 1735, 1220, 1196, 1058; ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.61 (m, 1 H), 7.43-7.39 (m, 2 H), 7.33-7.29 (m, 2 H), 7.24-7.20 (m, 2 H), 4.41 (q, *J* = 7.1 Hz, 6 H), 3.70 (s, 3 H), 1.32 (t, *J* = 7.1 Hz, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 166.1, 165.1, 162.6 (d, *J*_{c-f} = 245.8 Hz), 161.3 (d, *J*_{c-f} = 251.1 Hz), 153.1 (d, *J*_{c-f} = 5.5 Hz), 138.7, 134.3, 131.5(d, *J*_{c-f} = 3.6 Hz), 131.3(d, *J*_{c-f} = 8.0 Hz), 130.2(d, *J*_{c-f} = 8.8 Hz), 129.3 (d, *J*_{c-f} = 8.9 Hz), 120.8 (d, *J*_{c-f} = 24.7 Hz), 115.5(d, *J*_{c-f} = 21.5 Hz), 109.8(d, *J*_{c-f} = 22.3 Hz), 74.5, 63.0, 52.0, 13.8; HRESI-MS (*m*/*z*): Calculated for C₂₇H₂₅F₂NO₈H (M + H): 530.1626, found (M + H): 530.1624.

Product modification

Synthesis of dicarbonyl 5aa:

The compound **3aa** (0.2 mmol, 1 equiv) in dry THF (2 mL) was added dropwise to a well stirred solution of sodium ethoxide (0.44 mmol, 2.2 equiv) in THF (2 mL) under argon at rt. After stirring at rt for 2 h the solution was acidified with 1N HCl and diluted with ethyl acetate (10 mL). The organic layer was collected and washed with water, sat. NaHCO₃ solution, brine. The organic layer collected was then dried over Na₂SO₄. The solvent was concentrated in rotatory evaporator followed by in *vacuo* and purified by silica gel (230-400 mesh) column chromatography with EtOAc/petroleum ether mixture to provide the pure dicarbonyl product **5aa** (54.1 mg, 77% yield)

diethyl 2-(2-methylphenanthridin-6-yl)malonate (5aa)

White solid; Yield – (54.1 mg, 77%); *mp*: 129-131 °C; **IR** (Neat, cm⁻¹): 2981, 1737, 1451, 1365, 1304, 1252, 1179, 1148, 1097, 1035; ¹H NMR **\delta** (CDCl₃, 400 MHz): 8.65 (d, *J* = 8.2 Hz, 1 H), 8.34 (s, 1 H), 8.07-7.99 (m, 2 H), 7.85-7.81 (m, 1 H), 7.69-7.65 (m, 1 H), 7.56 (d, *J* = 8.3 Hz, 1 H), 5.65 (s, 1 H), 4.41-4.29 (m, 4 H), 2.63 (s, 3 H), 1.30 (t, J = 7.1 Hz, 6 H); ¹³C NMR δ (CDCl₃, 100 MHz): 167.5, 152.5, 141.5, 137.2, 132.9, 130.3, 130.2, 130.1, 127.3, 125.0, 124.9, 123.7, 122.5, 121.4, 61.9, 59.3, 21.9, 14.0; HRMS (ESI) (*m/z*): Calculated for C₂₁H₂₁NO₄H [M+H]: 352.1549, found [M+H]: 352.1551.

Synthesis of 2,6-dimethylphenanthridine 6aa:

DMSO (2 mL) solution of the compound triethyl (2-methylphenanthridin-6yl)methanetricarboxylate, **3aa** (84.69 mg, 0.2 mmol, 1.0 equiv.), LiCl (27.13 mg, 0.64 mmol, 3.2 equiv), and water (7 mg, 0.4 mmol, 2.0 equiv.) was heated at 170°C for 2 h. After cooling down to room temperature, the reaction mixture was washed with water (10 mL), and the aqueous layer was extracted with diethyl ether (3x20 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na₂SO₄, and then concentrated under reduced pressure to give a crude product. The crude product was purified by flash chromatography on silica gel using EtOAc/petroleum ether as the eluant in 91% (37.7 mg) yield.

2,6-dimethylphenanthridine (6aa)

White solid; Yield – (37.7 mg, 91%); **IR** (Neat, cm⁻¹): 2922, 2854, 1582, 1495, 1457, 1375, 1315, 1244, 1187, 1082, 825, 760; ¹H NMR δ (CDCl₃, 400 MHz): 8.63 (d, *J* = 8.3 Hz, 1 H), 8.34 (s, 1 H), 8.22 (d, *J* = 8.1 Hz, 1 H), 8.02 (d, J = 8.3 Hz, 1 H), 7.86-7.82 (m, 1 H), 7.71-7.67 (m, 1 H), 7.56-7.54 (m, 1 H), 3.05 (s, 3 H), 2.63 (s, 3 H); ¹³C NMR δ (CDCl₃, 100 MHz): 157.8, 141.8, 136.0, 132.3, 130.3, 130.2, 128.9, 127.1, 126.4, 125.9, 123.5, 122.2, 121.5, 23.2, 21.8; HRMS (ESI) (*m*/z): Calculated for C₁₅H₁₃NH [M+H]: 208.1126, found [M+H]: 208.1128.

Mechanistic Studies:

Tempo Quenching Studies

In a 8 mL screw cap reaction vial equipped with a magnetic stirrer bar was added 2isocyano-5-methyl-1,1'-biphenyl **1a** as ortho-aryl isocyanide (0.2 mmol, 1 equiv.), tricarbonyl **2a** (0.3 mmol, 1.5 equiv.), $K_2S_2O_8$ (0.3 mmol, 1.5 equiv.), 2,2,6,6--1-piperidinyloxy (0.4 mmol, 2 equiv.), Ru(bpy)₃(PF₆)₂ (0.004 mmol, 2 mol%). 2 mL of degassed CH₃CN:H₂O (1:1) was added to the vial then and it was purged three times with argon and was sealed with a cap containing PTFE-lined silicone septa. The reaction vial was then degassed with argon for 15 min via an inlet needle. After this, the cap was changed with a PTFE-lined solid-top cap under argon flow and the vial was irradiated with a blue LED strip (1.5 mW/cm2, at a distance of 2 cm) for 12 h. The temperature of the reaction vial was maintained at approximately 25 °C via a fan. After the reaction was stopped, the reaction mixture was transferred to a separatory funnel and diluted with EtOAc (10 mL) and water (10 mL). The residue was extracted with EtOAc (10 mL x 3) and washed with brine (saturated aq NaCl, 10 mL). The combined organic layer was dried over Na₂SO4 and the solvent was removed in rotatory evaporator followed by in vacuo. The crude product was then purified by column chromatography on silica gel (230-400 mesh) using EtOAc/petroleum ether mixture.

Crystal Data:

Crystal data for 3fa:

The ORTEP diagram and crystal parameters of **3fa** in thermal ellipsoids are drawn at 50% probability level. The crystal of suitable quality was obtained from slow evaporation of solution of pure isolated **3fa** in DCM/hexane and was analyzed by single crystal diffractometer. Atomic coordinates, bond lengths, bond angles, and thermal parameters for this compound have been deposited at the Cambridge Crystallographic Data Centre. CCDC 2344514 contains supplementary crystallographic data.

Bond precision: C-C = 0.0022 A Wavelength = 0.71076

Cell: a=7.8789 (9) b=14.2204 (13) c=10.1298 (19)

alpha=90 beta=110.174 (7) gamma=90

Temperature: 100 K

	Calculated	Reported
Volume	1065.3 (3)	1065.3 (3)
Space group	P 21	P 21
Hall group	P 2yb	P 2yb
Moiety formula	C ₂₄ H ₂₅ NO ₆	?
Sum formula	C ₂₄ H ₂₅ NO ₆	C ₂₄ H ₂₅ NO ₆
Mr	423.45	423.45
Dx, g cm ⁻³	1.320	1.320
Z	2	2

Mu (mm ⁻¹)	0.095	0.095
F000	448.0	448.0
F000'	448.24	
h, k, lmax	11, 20, 14	11, 20, 14
Nref	6535[3388]	6437
Tmin, Tmax		
Tmin′	0.973	

Correction method= Not given

Data completeness= 1.90/0.99; Theta(max)= 30.564; R (reflections) = 0.0336 (6269); S =1.086; Npar= 284; wR2 (reflections) = 0.0925 (6437).

References:

- (a) M. Tobisu, K. Koh, T. Furukawa and N. Chatani, *Angew. Chem. Int. Ed.*, 2012, **51**, 11363 –11366. (b) J. Rong, L. Deng, P. Tan, C. Ni, Y. Gu and J. Hu, *Angew. Chem. Int. Ed.*, 2016, **55**, 2743 –2747.
- C. B. Kelly, N. R. Patel, D. N. Primer, M. Jouffroy, J. C. Tellis, G. A. Molander, *Nat. Protoc.*, 2017, 12, 472-492.
