Electronic Supplementary Information

DBU-catalyzed annulation strategy for modular assembly of 2,3-

difunctionalized dihydrobenzofurans

Lili Yuan,^{a,b} Jie Wang,^b Qiang Tang,^{b,c} Yiping Wang,^b Beibei Ma,^b Yongjia Shang^{b,*} and Xinwei He,^{b,*}

^aDepartment of Chemical and Chemical Engineering, Hefei Normal University, Hefei, 230601, P. R. China

^bKey Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China

^cDepartment of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu 241001, P.R. China

Table of contents

1. General information	S2
2. General procedure for the synthesis of 2-(2-nitrovinyl)phenols 1	-S2
3. General procedure for the synthesis of 2,3-dihydrobenzofuran derivatives 3 and 5	S2
4. Procedure for the synthesis of compound 6	S3
5. Characterization data for all products	S3
6. GC-MS spectra for mechanistic investigations	·S12
7. X-ray crystallographic data of compound 3bb	S14
8. ¹ H and ¹³ C NMR spectra for all compounds	S15

1. General information

Experimental: Unless otherwise noted, all the reactions were carried out using standard roundbottom flasks under air atmosphere. Reactions were monitored using thin-layer chromatography (TLC) on precoated silica gel 60 F_{254} plates. Visualization of the developed plates was performed under UV light (245 or 365 nm) stain. Silica-gel flash column chromatography was performed using 200–300 mesh silica gel.

Materials: Unless otherwise indicated, starting catalysts and materials were obtained from Energy Chemicals, Bidepharm. Moreover, commercially available reagents were used without additional purification

Instrumentation: Melting points were recorded on an uncorrected Melting Point instrument. The ¹H NMR spectra were recorded on a 300 MHz and 500 MHz NMR spectrometers. Spectra were referenced internally to the residual proton resonance in CDCl₃ (δ 7.26 ppm), or with TMS (δ 0.00 ppm) as the internal standard. Chemical shifts (δ) were reported as part per million (ppm) in δ scale downfield from TMS. ¹³C NMR spectra were recorded on a 75 or 125 MHz spectrometer and the spectra were referenced to CDCl₃ (δ = 77.16 ppm, the middle peak), and all ¹³C NMR were recorded with proton broadband decoupling and indicated as ¹³C{¹H} NMR. Coupling constants (*J*) were reported in Hertz (Hz). Multiplicities are described as s (singlet), d (doublet), t (triplet), q (quartet), or m (multiplet), and the coupling constants (*J*) are reported in Hertz (Hz). HRMS analysis with a quadrupole time-of-flight mass spectrometer yielded ion mass/charge (m/z) ratios in atomic mass units.

2. General procedure for the synthesis of 2-(2-nitrovinyl)phenols 1

To a 100 mL round-bottomed flask equipped with a stirring bar were added nitromethane (5.0 mL), NH₄OAc (77 mg, 1.0 mmol), and acetic acid (2.0 mL). The mixture was stirred at 90 °C for 15 min before addition of salicylaldehydes (5.0 mmol). The reaction mixture was heated at 135 °C for 3 h. After cooling to ambient temperature, the reaction was worked up with Et_2O (50 mL) and brine (50 mL). Purification by column chromatography on silica gel (200-300 mesh), using ethyl acetate and petroleum ether (1:8, v/v) as the elution solvent to give desired 2-(2-nitrovinyl)phenols **1** as a yellow solid. All the substrates are known compounds.

3. General procedure for the synthesis of 2,3-dihydrobenzofuran derivatives 3 and 5

To a solution of DBU (0.4 mmol) in DCM, 2-(2-nitrovinyl)phenols 1 (1 mmol) and α bromoacetophenones 2 (1 mmol) were added and the resulting mixture was stirred at room temperature for about 6 h. Upon the completion of this reaction, the mixture diluted with DCM (3×10 mL), and washed with water. Organic layers were combined, dried over Na₂SO₄, filtered, and evaporated under vacuum. The residue was purified using flash column chromatography with a silica gel (200-300 mesh), using ethyl acetate and petroleum ether (1:10-1:8, v/v) as the elution solvent to give desired products 3 and 5.

4. Procedure for the synthesis of compound 6.

A mixture of **3aa** (0.2 mmol), iron powder and HCl (1.0 equiv.) were added under air atmosphere to a resealable screw-capped Schlenk tube. EtOH (2.0 mL) was then added. The tube sealed with a Teflon-coated cap and the resulting mixture was stirred in an oil bath preheated to 80 °C for 12 h (monitored by TLC). Upon the completion of this reaction, the mixture was cooled to room temperature, extracted with DCM (3×10 mL), and washed with water. Organic layers were combined, dried over Na₂SO₄, filtered, and evaporated under vacuum. The residue was purified using flash column chromatography with a silica gel (200-300 mesh), using ethyl acetate and petroleum ether (1:10-1:8, v/v) as the elution solvent to give desired products **6** as a white solid in 73% yield.

5. Characterization data for all products.

(3-(Nitromethyl)-2,3-dihydrobenzofuran-2-yl)(phenyl)methanone (3aa). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, $R_f = 0.5$) to afford a light yellow oil in 93% yield (263 mg); ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, J = 7.5Hz, 2H), 7.62-7.67 (m, 1H), 7.50-7.55 (m, 2H) 7.21 (d, J = 7.5Hz, 2H) , 6.87-6.98 (m, 2H) 5.88 (d, J = 7.2Hz, 1H), 4.70-4.80 (m, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 193.50, 158.58, 134.11, 130.12, 129.54, 128.83, 124.68, 123.68, 121.94, 110.52, 85.16, 77.28, 41.89, 29.71; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₆H₁₃NO₄ + H]⁺ 284.0917, found 284.0920.

(3-(Nitromethyl)-2,3-dihydrobenzofuran-2-yl)(*p*-tolyl)methanone (3ab). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a light yellow oil in 81% yield (240 mg); ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, *J* = 7.5 Hz, 2H), 7.31 (d, *J* = 8.1,Hz, 2H), 7.20 (d, *J* = 7.5Hz, 2H), 6.85-6.96 (m, 2H), 5.84 (d, *J* = 5.4 Hz, 1H) 4.69-4.79 (m, 3H), 2.44 (s,3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 193.05, 158.64, 145.21, 130.07, 129.64, 129.56, 124.69, 123.78, 121.86, 110.46, 85.07, 77.30, 41.92, 21.83; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₇H₁₅NO₄ + H]⁺ 298.1074, found 298.1078.

(4-Methoxyphenyl)(3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3ac). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, $R_f = 0.5$) to afford a light yellow oil in 88% yield (275 mg); ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, J = 9.0Hz, 2H), 7.19-7.26 (m, 2H), 6.86-7.01 (m, 4H), 5.83 (d, J = 7.5Hz, 1H), 4.69-4.81 (m, 3H), 3.90 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 191.82, 164.28, 158.63, 131.97, 130.04, 127.27, 124.65, 123.84, 121.83, 114.07, 110.43, 85.09, 77.33, 55.60, 41.94; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₇H₁₅NO₅ + H]⁺ 314.1023, found 314.1018.

(4-Fluorophenyl)(3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3ad). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 10, R_f = 0.5) to afford a light yellow oil in 63% yield (190 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.21–8.09 (m, 2H), 7.25–7.16 (m, 4H), 7.01–6.92 (m, 1H), 6.87 (d, *J* = 8.0 Hz, 1H), 5.82 (d, *J* = 5.0 Hz, 1H), 4.84 – 4.80 (m, 1H), 4.80 – 4.66 (m, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 192.1, 166.4 (d, *J*_{C-F} = 255.1 Hz), 158.5, 132.5 (d, *J*_{C-F} = 9.3 Hz), 130.9 (d, *J*_{C-F} = 2.7 Hz), 130.2, 124.8, 123.7, 122.1, 116.1 (d, *J*_{C-F} = 21.8 Hz), 110.6, 85.4, 77.3, 41.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -102.99; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₆H₁₃FNO₄ 302.0823, found 302.0826.

(4-Chlorophenyl)(3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3ae). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 10, R_f = 0.5) to afford a yellow oil in 75% yield (237 mg); ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, J = 8.7 Hz, 2H), 7.49 (d, J = 8.7 Hz, 2H), 7.21(d, J = 7.5 Hz, 2H), 6.93-6.98 (m, 1H), 6.86 (d, J = 8.1Hz, 1H), 5.81 (d, J = 4.8 Hz, 1H), 4.64-4.84 (m, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.27, 158.10, 140.37, 132.44, 130.78, 129.91, 128.90, 124.45, 123.31, 121.81, 110.25, 85.01, 76.92, 41.46; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for [C₁₆H₁₂ClNO₄ + H]⁺ 318.0528, found 318.0525.

(4-Bromophenyl)(3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3af). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 10, R_f = 0.5) to afford a light yellow liquid in 63% yield (227 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.97–7.93 (m, 2H), 7.69–7.63 (m, 2H), 7.25–7.19 (m, 2H), 6.98–6.93 (m, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 5.81 (d, *J* = 5.0 Hz, 1H), 4.82–4.78 (m, 1H), 4.78–4.64 (m, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 192.8, 158.4, 133.2, 132.2, 131.2, 130.2, 129.6, 124.8, 123.6, 122.2, 110.6, 85.4, 77.2, 41.8; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₆H₁₃BrNO₄ 362.0022, found 362.0021.

[1,1'-Biphenyl]-4-yl(3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3ag). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 10, R_f = 0.5) to afford a light yellow oil in 71% yield (255 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.65 (d, J = 7.5 Hz, 2H), 7.49 (d, J = 7.5 Hz, 2H), 7.46–7.39 (m, 1H), 7.26–7.19 (m, 2H), 6.97 (d, J = 7.5 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 5.90 (d, J = 5.0 Hz, 1H), 4.86–4.81 (m, 1H), 4.81–4.68 (m, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 193.1, 158.7, 146.9, 139.8, 133.2, 130.29, 130.27, 129.2, 128.6, 127.6, 127.5, 124.8, 123.8, 122.1, 110.7, 85.4, 77.4, 42.0; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for C₂₂H₁₈NO₄ 360.1230, found 360.1232.

(3-(Nitromethyl)-2,3-dihydrobenzofuran-2-yl)(*m*-tolyl)methanone (3ah). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 10, R_f = 0.5) to afford a light yellow oil in 70% yield (208 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.91–7.83 (m, 2H), 7.47–7.38 (m, 2H), 7.25–7.18 (m, 2H), 6.95 (d, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 5.87 (d, *J* = 4.5 Hz, 1H), 4.79–4.75 (m, 1H), 4.75–4.66 (m, 2H), 2.44 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 193.7, 158.8, 138.9, 135.0, 134.5, 130.3, 130.1, 128.8, 126.8, 124.8, 123.8, 122.0, 110.7, 85.2, 77.5, 42.1, 21.5; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₇H₁₆NO₄ 298.1074, found 298.1073.

(3-Fluorophenyl)(3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3ai). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 10, R_f = 0.5) to afford a light yellow oil in 60% yield (180 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.94–7.87 (m, 1H), 7.83–7.75 (m, 1H), 7.56–7.47 (m, 1H), 7.39–7.31 (m, 1H), 7.26–7.20 (m, 2H), 6.96 (d, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 5.81 (d, *J* = 4.5 Hz, 1H), 4.85–4.80 (m, 1H), 4.80–4.66 (m, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 192.5, 162.9 (d, *J*_{C-F} = 247.0 Hz), 158.5, 136.5 (d, *J*_{C-F} = 6.8 Hz), 130.6 (d, *J*_{C-F} = 7.5 Hz), 130.3, 125.5 (d, *J*_{C-F} = 3.1 Hz), 124.8, 123.6, 122.2, 121.3 (d, *J*_{C-F} = 21.2 Hz), 116.5 (d, *J*_{C-F} = 22.6 Hz), 110.7, 85.5, 77.3, 41.9; ¹⁹F NMR (471 MHz, CDCl₃) δ -111.68; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₆H₁₃FNO₄ 302.0823, found 302.0815.

(3-Chlorophenyl)(3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3aj). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 10, R_f = 0.5) to afford a light yellow oil in 66% yield (209 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J = 2.0 Hz, 1H), 8.01–7.95 (m, 1H), 7.64–7.58 (m, 1H), 7.47 (d, J = 8.0 Hz, 1H), 7.25–7.19 (m, 2H), 7.01–6.92 (m, 1H), 6.87 (d, J = 8.0 Hz, 1H), 5.82 (d, J = 4.5 Hz, 1H), 4.84–4.79 (m, 1H), 4.79–4.65 (m, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 193.1, 158.4, 136.0, 135.2, 134.1, 130.3, 130.2, 129.7, 127.8, 124.8, 123.6, 122.2, 110.7, 85.4, 77.3, 41.8; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₆H₁₃ClNO₄ 318.0528, found 318.0525.

(3-Bromophenyl)(3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3ak). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 10, R_f = 0.5) to afford a light yellow oil in 64% yield (231 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.25–8.19 (m, 1H), 8.06–7.98 (m, 1H), 7.79–7.73 (m, 1H), 7.44–7.37 (m, 1H), 7.26–7.19 (m, 2H), 6.96 (d, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 8.0 Hz, 1H), 5.81 (d, *J* = 4.5 Hz, 1H), 4.84–4.79 (m, 1H), 4.79–4.65 (m, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 192.4, 158.4, 137.0, 136.2, 132.6, 130.5, 130.3, 128.2, 124.8, 123.5, 123.2, 122.2, 110.7, 85.4, 77.27, 41.8; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₆H₁₃BrNO₄ 362.0022, found 362.0019.

(3-(Nitromethyl)-2,3-dihydrobenzofuran-2-yl)(3-(trifluoromethyl)phenyl)methanone (3a). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 10, R_f = 0.5) to afford a light yellow oil in 55% yield (193 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.36 (s, 1H), 8.29 (d, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 7.5 Hz, 1H), 7.26–7.20 (m, 2H), 6.97 (d, *J* = 7.5 Hz, 1H), 6.87 (d, *J* = 9.0 Hz, 1H), 5.86 (d, *J* = 4.5 Hz, 1H), 4.89–4.83 (m, 1H), 4.82–4.67 (m, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 192.6, 158.3, 135.1, 132.9, 131.5 (d, *J*_{C-F} = 33.0 Hz), 130.5 (d, *J*_{C-F} = 3.8 Hz), 130.4, 129.6, 126.6 (q, *J*_{C-F} = 3.9 Hz), 124.8, 123.5, 122.3, 110.6, 85.6, 77.3, 41.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -62.83; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₇H₁₃F₃NO₄ 352.0791, found 352.0789.

(3-(Nitromethyl)-2,3-dihydrobenzofuran-2-yl)(*o*-tolyl)methanone (3am). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 10, R_f = 0.5) to afford a light yellow oil in 74% yield (220 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.49–7.41 (m, 1H), 7.37–7.27 (m, 2H), 7.26–7.17 (m, 2H), 6.99–6.92 (m, 1H), 6.87 (d, *J* = 8.0 Hz, 1H), 5.79–5.72 (m, 1H), 4.77–4.71 (m, 1H), 4.71–4.61 (m, 2H), 2.46 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 197.8, 158.8, 139.8, 134.7, 132.4, 132.3, 130.3, 129.5, 125.8, 124.7, 123.6, 122.0, 110.7, 86.3, 77.6, 42.3, 21.3; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₁₇H₁₆NO₄ 298.1074, found 298.1072.

Naphthalen-2-yl(3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3an). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 10, R_f = 0.5) to afford a light yellow oil in 69% yield (229 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.72–8.63 (m,

1H), 8.13–8.00 (m, 2H), 7.98–7.87 (m, 2H), 7.71–7.55 (m, 2H), 7.26–7.19 (m, 2H), 6.97 (d, J = 7.5 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.04 (d, J = 4.5 Hz, 1H), 4.90–4.84 (m, 1H), 4.84–4.68 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 193.5, 158.8, 136.1, 132.6, 132.1, 131.8, 130.3, 130.1, 129.3, 128.9, 128.0, 127.2, 124.8, 124.7, 123.8, 122.1, 110.7, 85.4, 77.4, 42.2; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₂H₁₈NO₄ 334.1074, found 334.1079.

(5-Methyl-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(phenyl)methanone (3ba). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a yellow oil in 75% yield (222 mg); ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, J = 6.9 Hz, 2H), 7.57-7.63 (m, 1H), 7.45-7.50 (m, 2H), 6.97 (d, J = 7.2 Hz, 2H), 6.72 (d, J = 8.7 Hz, 1H), 5.80 (d, J = 3.6 Hz, 1H), 4.63-4.72(m, 3H), 2.25 (s,3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 193.68, 156.51, 134.37, 134.04, 131.44, 130.58, 129.51, 128.80, 125.06, 123.63, 110.05, 85.27, 77.32, 42.00, 20.79; HRMS (ESI) m/z: [M + H]⁺ calcd for [C₁₇H₁₅NO₄ + H]⁺ 298.1074, found 298.1076.

(5-Methyl-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(*p*-tolyl)methanone (3bb). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a yellow solid in 83% yield (258 mg); mp 90-98 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 6.97 (d, *J* = 7.2 Hz, 2H), 6.72 (d, *J* = 9.0 Hz, 1H), 5.77 (d, *J* = 4.5 Hz, 1H), 4.62-4.71 (m, 3H), 2.40 (s, 3H), 2.24 (s, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃) δ 193.69 · 156.50 · 134.03, 130.58, 129.51, 128.79, 125.06, 110.04, 85.26, 77.31, 41.99, 20.77; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₈H₁₇NO₄ + H]⁺ 312.1230, found 312.1225.

(4-Methoxyphenyl)(5-methyl-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3bc). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a yellow solid in 88% yield (287 mg); mp 75-77 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, J = 9.0 Hz, 2H), 7.00-7.03 (m, 4H), 6.79 (d, J = 8.7 Hz, 1H), 5.83 (d, J = 3.9 Hz, 1H), 4.71-4.79 (m, 3H), 3.93 (s, 3H), 2.31 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.40, 164.63, 156.96, 132.35, 131.73, 130.89, 127.71, 125.42, 124.17, 114.43, 110.38, 85.62, 55.98, 42.48, 21.19; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for [C₁₈H₁₇NO₅ + H]⁺ 328.1179, found 328.1172.

(4-Chlorophenyl)(5-methyl-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3be). This compound was purified by column chromatography (ethyl acetate/petroleum ether = $1: 8, R_f = 1: 8$

0.5) to afford a yellow solid in 71% yield (235 mg); mp 70-73 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 8.1 Hz, 2H), 7.46 (d, J = 8.4 Hz, 2H), 6.99 (s, 2H), 6.73 (d, J = 8.4 Hz, 1H), 5.77 (d, J = 4.2 Hz, 1H), 4.64-4.74 (m, 3H), 2.27 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.68, 156.29, 140.47, 132.70, 131.59, 131.02, 130.63, 129.13, 125.08, 123.52, 85.37, 77.21, 41.80, 20.80; HRMS (ESI-TOF) m/z: [M + H]⁺ calcd for [C₁₇H₁₄ClNO₄ + H]⁺ 332.0684, found 332.0689.

(5-Chloro-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(phenyl)methanone (3ca). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a yellow solid in 83% yield (263 mg); mp 85-89 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 7.6 Hz, 2H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 2H), 7.21–7.14 (m, 2H), 6.80 (d, *J* = 9.2 Hz, 1H), 5.90 (d, *J* = 4.7 Hz, 1H), 4.81–4.76 (m, 1H), 4.76–4.64 (m, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.04, 157.36, 134.40, 134.25, 130.27, 129.67, 129.01, 126.91, 125.70, 124.95, 111.68, 85.75, 41.81; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₆H₁₂ClNO₄ + H]⁺ 318.0528, found 318.0520.

(5-Chloro-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(4-chlorophenyl)methanone (3ce). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a yellow oil in 75% yield (264 mg); ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 7.5 Hz, 2H), 6.78 (d, J = 9.0 Hz, 1H), 5.84 (d, J = 4.5 Hz, 1H) , 4.68-4.81 (m, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 192.31, 157.40, 141.26, 131.39, 129.61, 127.32, 125.85, 125.21, 11.93, 86.14, 77.12, 41.93; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₆H₁₁Cl₂NO₄ + H]⁺ 352.0138, found 352.0140.

(5-Bromo-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(phenyl)methanone (3da). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, $R_f = 0.5$) to afford a yellow oil in 80% yield (288 mg); ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d, J = 7.2 Hz, 2H), 7.62-7.67 (m, 1H), 7.50-7.55 (m, 2H), 7.30-7.33 (m, 2H), 6.75 (d, J = 8.7 Hz, 1H), 5.89 (d, J = 4.5 Hz, 1H), 4.69-4.76 (m, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.90, 157.76, 134.28, 134.11, 133.02, 129.54, 128.89, 127.71, 126.15, 113.73, 112.12, 85.55, 76.82, 41.60; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₆H₁₂BrNO₄ + H]⁺ 362.0022, found 362.0026.

(5-Bromo-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(p-tolyl)methanone (3db). This

compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, $R_f = 0.5$) to afford a yellow solid in 83% yield (311 mg); mp 105-110 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.96 (d, J = 8.4 Hz, 2H), 7.31-7.34 (m, 4H), 6.75 (d, J = 9.3 Hz, 1H), 5.87 (d, J = 4.5 Hz, 1H), 4.68-4.79 (m, 3H), 2.45 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.43, 157.82, 145.45, 132.96, 131.56, 129.63, 127.69, 126.22, 113.64, 112.07, 85.47, 77.08, 41.62, 21.86; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₇H₁₄BrNO₄ + H]⁺ 376.0179, found 376.0189.

(5-Bromo-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(4-methoxyphenyl)methanone (3dc). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a yellow solid in 88% yield (344 mg); mp 120 -125 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, J = 9.0 Hz, 2H), 7.29-7.31 (m, 2H), 6.98 (d, J = 8.7 Hz, 2H), 6.74 (d, J = 9.0 Hz, 1H), 5.84 (d, J = 4.8 Hz, 1H), 4.69-4.78 (m, 3H), 3.89 (s,3H); ¹³C {¹H} NMR (75 MHz, CDCl₃) δ 191.23, 164.42, 157.83, 132.91, 131.99, 127.68, 126.33, 114.13, 113.59, 112.02, 85.46, 76.86, 55.63, 41.63; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₇H₁₄BrNO₅ + H]⁺ 392.0128, found 392.0123.

(5-Bromo-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(4-chlorophenyl)methanone (3de). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a yellow oil in 75% yield (295 mg); ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.7 Hz, 2H), 7.31-7.34 (m, 2H), 6.74 (d, J = 9.0 Hz, 1H), 5.84 (d, J = 4.8 Hz, 1H), 4.68-4.82 (m, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃) δ 191.90, 157.53, 140.85, 131.01, 129.22, 127.71, 126.01, 113.86, 112.10, 85.65, 76.71, 41.39; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₆H₁₁ClBrNO₄ + H]⁺ 395.9633, found 395.9635.

(6-Methoxy-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(phenyl)methanone (3ea). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, $R_f = 0.5$) to afford a yellow oil in 70% yield (219 mg); ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d, J = 7.2Hz, 2H), 7.61-7.66 (m, 1H), 7.49-7.54 (m, 2H), 7.07 (d, J = 8.1 Hz, 1H), 6.45-6.50 (m, 2H), 5.88 (d, J = 3Hz, 1H), 4.64-4.70 (m, 3H), 3.74 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 193.62, 161.77, 160.03, 134.09, 129.44, 128.84, 124.89, 115.43, 107.93, 96.76, 85.91, 77.48, 55.55, 41.60; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₇H₁₅NO₅ + H]⁺ 314.1023, found 314.1017.

(6-Methoxy-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(p-tolyl)methanone (3eb). This

compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, $R_f = 0.5$) to afford a yellow oil in 72% yield (235 mg); ¹H NMR (300 MHz, CDCl₃) δ 7.95 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.07 (d, J = 8.1 Hz, 1H), 6.46-6.50 (m, 2H) , 5.87 (d, J = 3.6 Hz, 1H) 4.64-4.70 (m, 3H), 3.75 (s, 3H), 2.44 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 193.14, 161.75, 160.10, 145.18, 131.76, 129.55, 124.86, 115.50, 107.85, 96.73, 85.84, 77.52, 55.54, 41.66, 21.81; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₈H₁₇NO₅ + H]⁺ 328.1179, found 328.1174.

(6-Methoxy-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(4-methoxyphenyl)methanone (3ec). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a yellow oil in 80% yield (274 mg); ¹H NMR (300 MHz, CDCl₃) δ 7.97 (d, J = 9.0 Hz, 2H), 6.99 (d, J = 8.1 Hz, 1H), 6.91 (d, J = 8.7 Hz, 2H), 6.38-6.43 (m, 2H), 5.77 (d, J = 1.5 Hz, 1H), 4.57-4.64 (m, 3H), 3.82 (s, 3H), 3.68 (s, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 190.87, 163.20, 160.65, 159.03, 130.81, 123.79, 114.56, 113.01, 106.71, 95.65, 84.77, 76.48, 54.52, 40.61; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₈H₁₇NO₆ + H]⁺ 344.1129, found 344.1129.

MeO

(4-Chlorophenyl)(6-methoxy-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3ee). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a yellow oil in 66% yield (229 mg); ¹H NMR (300 MHz, CDCl₃) δ 8.01 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.08 (d, J = 8.1 Hz, 1H), 6.49 (d, J = 8.1 Hz, 1H), 6.44 (d, J = 8.1 Hz, 1H), 5.83 (d, J = 1.8 Hz, 1H), 4.64-4.73 (m, 3H), 3.75 (s, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃) δ 192.62, 161.78, 159.80, 140.57, 132.66, 130.94, 129.14, 124.89, 115.28, 108.02, 96.78, 86.05, 77.37, 55.56, 41.41; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₇H₁₄CINO₅ + H]⁺ 348.0633, found 348.0630.

(4-Chlorophenyl)(3-(nitromethyl)-2,3-dihydronaphtho[2,3-*b*]furan-2-yl)methanone (3fe). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a yellow oil in 60% yield (220 mg); ¹H NMR (300 MHz, CDCl₃) δ 8.02 (d, *J* = 8.7 Hz, 2H), 7.70-7.85 (m, 3H), 7.49-7.56 (m, 3H), 7.36-7.41 (m, 1H), 7.14 (d, *J* = 9.0 Hz, 1H), 6.09 (d, *J* = 2.1 Hz, 1H), 5.15-5.20 (m, 1H), 4.99-5.05 (m, 1H), 4.63-4.71 (m, 1H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 192.31, 156.62, 140.59, 130.02, 129.16, 121.42, 114.46, 112.16, 109.99, 86.12, 75.91, 41.75; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₂₀H₁₄ClNO₄ + H]⁺ 368.0684, found 368.0686.

3-(Nitromethyl)-3*H***-spiro[benzofuran-2,2'-inden]-1'(3'***H***)-one (5). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, R_f = 0.5) to afford a yellow oil in 65% yield (191 mg); ¹H NMR (300 MHz, CDCl₃) \delta 7.86 (d,** *J* **= 7.8 Hz, 1H), 7.66 (d,** *J* **= 7.5 Hz, 1H), 7.43-7.47 (m, 2H), 7.14-7.25 (m, 2H), 6.97 (d,** *J* **= 7.5 Hz, 1H), 6.81 (d,** *J* **= 8.1 Hz, 1H), 4.77-4.81 (m, 2H),4.58-4.62(m, 1H), 3.39 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃) \delta 200.21, 158.33, 150.55, 130.43, 128.91, 126.87, 125.91, 125.05, 124.53, 122.12, 110.72, 91.84, 75.71, 43.67, 35.85; HRMS (ESI-TOF)** *m/z***: [M + H]⁺ calcd for [C₁₇H₁₃NO₄ + H]⁺ 296.0917, found 296.0915.**

(*Z*)-2-benzylidene-3-(nitromethyl)-2,3-dihydrobenzofuran (6). This compound was purified by column chromatography (ethyl acetate/petroleum ether = 1: 8, $R_f = 0.5$) to afford a white solid in 73% yield (39 mg); mp 199-201 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.00-7.98 (m, 2H), 7.52-7.49 (m, 3H), 7.34 (d, *J* = 7.4 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 6.90 (t, *J* = 7.9 Hz, 1H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.40 (d, *J* = 8.6 Hz, 1H), 4.52-4.63 (m, 1H), 4.29 (t, *J* = 8.1 Hz, 1H), 4.13 (d, *J* = 16.9 Hz, 1H); ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 169.84, 157.74, 132.82, 131.28, 130.41, 129.11, 129.01, 128.71, 125.48, 121.65, 109.95, 90.88, 68.19, 44.17; HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for [C₁₆H₁₄NO₃ + H]⁺ 268.0974, found 268.0978.

Figure S2. GC-MS spectra of possibly intermediate B

57. X-ray crystallographic data of compound 3q

Figure S1. ORTEP drawing of compound **3bb** (30% probability for the thermal ellipsoid).

The purified compound **3bb** is dissolved in a mixed solvent of dichloromethane and *n*-hexane, and placed in a dark cabinet to slowly evaporate. After several days, a colourless bulk crystal is obtained. The X-ray crystal-structure determinations were obtained on a Bruker Smart CCDC APEX-2 diffractometer (graphite-monochromated Mo $K\alpha$ radiation, λ =0.71073 nm) at 293.15 K.

CCDC number	2375967		
Identification code	131202b_0m		
Empirical formula	$C_{18}H_{17}NO_4$		
Formula weight	311.32		
Temperature	293.15(10) K		
Wavelength	0.71073 Å		
Crystal system	monoclinic		
Space group	C2/c		
Unit cell dimensions	$a = 26.440(2) \text{ Å} \qquad \alpha = 90^{\circ}.$		
	$b = 7.9493(7) \text{ Å} \qquad \beta = 107.7360(10)^{\circ}.$		
	$c = 15.9676(13) \text{ Å} \gamma = 90^{\circ}.$		
Volume	3196.5(5) Å ³		
Z	8		
Density (calculated)	1.294 Mg/m ³		
Absorption coefficient	0.092 mm ⁻¹		
F(000)	1312.0		
Crystal size	$0.14\times0.13\times0.11\ mm^3$		
2Θ range for data collection	3.234 to 55.284°.		
Index ranges	$-34 \le h \le 33, -9 \le k \le 10, -20 \le l \le 20$		
Reflections collected	13429		
Independent reflections	$3708 [R_{int} = 0.0248, R_{sigma} = 0.0212]$		
Data / restraints / parameters	3708/0/209		
Goodness-of-fit on F ²	1.052		
Final R indices [I>2sigma(I)]	$R_1 = 0.0471, wR_2 = 0.1350$		
R indices (all data)	$R_1 = 0.0584, wR_2 = 0.1464$		
Largest diff. peak and hole	0.20 and -0.19 e.Å ⁻³		

Table S1. Crystal data and structure refinement for compound 3bb.

8. ¹H and ¹³C NMR spectra for all compounds

(3-(Nitromethyl)-2,3-dihydrobenzofuran-2-yl)(phenyl)methanone (3aa)

(4-Methoxyphenyl)(3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3ac)

S18

(4-bromophenyl)(3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)methanone (3af)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 δ (ppm)

(5-Bromo-3-(nitromethyl)-2,3-dihydrobenzofuran-2-yl)(4-chlorophenyl)methanone (3de)

(4-Chlorophenyl)(3-(nitromethyl)-2,3-dihydronaphtho[2,3-b]furan-2-yl)methanone (3fe)

8.0391 8.0104 7.8538 7.8538 7.7842 7.7546 7.7546 7.7285	7.5820 7.5585 7.5139 7.5149 7.5149 7.5149 7.5149 7.4863 7.4863 7.3803 7.3803 7.3564	5.1535 5.1979 5.1979 5.1893 5.1893 5.1631 5.1631 5.1545	5.1459 5.0469 5.0368 5.0368 4.9928 4.7127 4.6776 4.6688 4.6688
	THE TAXES THE COMPANY		10

