Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting information

For

PIDA-mediated oxidative annulation of aryl methyl ketone;

A Facile Approach for the chemoselective synthesis of 5-substituted Oxazoles

Mohankumar Devaraju and Jagadeesh Prasad Dasappa*

Department of Chemistry, Mangalore University, Karnataka State, India-574199

Contents

1.	General Discussion	2
2.	Single crystal X-ray crystallographic data of compounds (2e, 2p)	2-4
3.	Experimental procedure for the synthesis of 5-substituted oxazole derivatives	5
4.	Spectral data of 5-disubstituted oxazole derivatives	5-13
5.	Copies of ¹ H-NMR and ¹³ C-NMR of 5-substituted oxazole derivatives	14-45

1. General Discussion:

All the materials used were purchased from commercial supplier i.e Sigma Aldrich and they were used in the reaction without further purification. The reaction completion was confirmed by using TLC (Thin layer Chromatography) plate precoated with silica gel. All the synthesized compounds were purified by column chromatography using silica gel (60-120 mesh size). The characterization of synthesized compounds was done by ¹H NMR, ¹³C NMR, and HRMS (ESI) characterization techniques. The NMR spectra were recorded by the JEOL-NMR Spectrometer instrument (JNM-ECZ400S/L1, 400 MHz) using DMSO-d₆ as a solvent with residual peaks at δ 3.3 and 2.5 ppm and at 7.25 (CDCl₃). Chemical shift (δ) values of compounds were recorded relative to internal standard TMS (tetramethylsilane). The multiplicity of NMR signals was expressed with abbreviations like s-singlet, d-doublet, t-triplet, q-quartet, dd-doublet of the doublet, m-multiplet, etc and Coupling constants (J -values) expressed in terms of Hz.

2. Crystallographic data and molecular structure

2.1 Crystal structure of 5-(3,4-dimethoxyphenyl)oxazole (2e)

Figure 1. X-ray crystal structure of compound (2e)

Figure 2. Crystal packing of compound 2e along b-axis

Table 1 Crystal data and structure refinement for (2e).				
CCDC No	2291745			
Identification code	AG16-R			
Empirical formula	$C_{11}H_{11}NO_3$			
Formula weight	406.44			
Temperature/K	298.15			
Crystal system	monoclinic			
Space group	P21			
a/Å	5.6243(2)			
b/Å	8.6813(4)			
c/Å	20.6205(9)			
α/°	90			
β/°	91.817(2)			
γ/°	90			
Volume/Å ³	1006.32(7)			
Z	2			
$\rho_{calc}g/cm^3$	1.341			
μ/mm^{-1}	0.094			
F(000)	430.0			
Crystal size/mm ³	$0.342\times0.179\times0.097$			
Radiation	MoKa ($\lambda = 0.71073$)			
2Θ range for data collection/° 5.092 to 59.268				
Index ranges	$-7 \le h \le 6, -12 \le k \le 12, -28 \le l \le 28$			
Reflections collected	26669			
Independent reflections	5642 [$R_{int} = 0.0227, R_{sigma} = 0.0184$]			
Data/restraints/parameters	5642/1/275			
Goodness-of-fit on F ²	1.151			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0414, wR_2 = 0.1193$			
Final R indexes [all data]	$R_1 = 0.0485, wR_2 = 0.1343$			
Largest diff. peak/hole / e Å ⁻³ 0.29/-0.42				
Flack parameter	-0.04(17)			

2.1 Crystal structure of 5-(4-(methylsulfonyl)phenyl)oxazole (2p)

Figure 3. X-ray crystal structure of compound (2p)

Figure 4. Crystal packing of compound **2p** along b-axis

Table.2 Crystal Data and structure refinement for compound 2p				
CCDC No	2354099			
Identification code	AG11			
Empirical formula	$C_{10}H_9NO_3S$			
Formula weight	223.65			
Temperature/K	298.15			
Crystal system	monoclinic			
Space group	C2/c			
a/Å	22.6755(9)			
b/Å	7.0600(3)			
c/Å	16.2241(7)			
$\alpha/^{\circ}$	90			
β/°	129.1550(10)			
γ/°	90			
Volume/Å ³	2014.05(15)			
Z	8			
$ ho_{calc}g/cm^3$	1.475			
μ/mm^{-1}	0.356			
F(000)	928.0			
Crystal size/mm ³	$0.32\times0.193\times0.112$			
Radiation	MoKa ($\lambda = 0.71073$)			
2Θ range for data collection/° 5.05 to 61.12				
Index ranges	$-32 \le h \le 32, -10 \le k \le 10, -23 \le l \le 23$			
Reflections collected	32079			

Table 2 Crystal Data and structure refinement for compound 2n

 $\begin{array}{ll} \mbox{Independent reflections} & 3075 \ [R_{int} = 0.0288, \ R_{sigma} = 0.0150] \\ \mbox{Data/restraints/parameters} & 3075/0/137 \\ \mbox{Goodness-of-fit on } F^2 & 1.209 \\ \mbox{Final R indexes [I>=2σ (I)]} & R_1 = 0.0550, \ wR_2 = 0.1476 \\ \mbox{Final R indexes [all data]} & R_1 = 0.0659, \ wR_2 = 0.1648 \\ \mbox{Largest diff. peak/hole / e Å^{-3} 0.40/-0.29} \\ \end{array}$

3. Experimental procedure for the synthesis of 5-substituted Oxazole derivatives:

A well-dried round bottom flask was charged with substituted acetophenone (1, 1.0 mmol), PIDA (3.0 mmol), acetic acid (10 equiv, 0.6 mL), and DMSO (10 mL) and heated at 120 °C for 2h. After the confirmation of the formation of α -acylated acetophenone, NH₄OAc(1.5 equiv) was added to the mixture and heated at 120 °C for 6h. The reaction completion was confirmed by TLC followed by the reaction mixture quenched with saturated brine solution and extracted twice by using ethyl acetate. After the solvent evaporation by using a rotary evaporator, the obtained crude product was purified by column chromatography by using silica gel (60-120 mesh size) (eluting solvent hexane: ethyl acetate; 10:2).

4. Spectral data of 5-disubstituted oxazole derivatives:

i) 5-(4-methoxyphenyl)oxazole (2a)^{1,2}

Yield: 161mg, 92%; Colourless solid; m.p. 58-60 °C; ¹H-NMR (400 MHz, DMSO-d₆) δ 8.39 (s, 1H), 7.68 (d, J = 8.7 Hz, 2H), 7.55 (s, 1H), 7.06 (d, J = 8.9 Hz, 2H), 3.82 (s, 3H); ¹³C-NMR (101 MHz, DMSO-d₆) δ 159.5, 151.1, 150.7, 125.7, 120.3, 120.2, 114.6, 55.3;

LCMS (ESI) Calcd for C₁₀H₉NO₂ [M+H]⁺, 176.0706; found, 176.8379.

ii) 4-(oxazol-5-yl)phenol (2b)

Yield: 136mg, 85%; Colourless solid; m.p. 140-142 °C;

¹**H NMR** (400 MHz, DMSO-d₆) δ 9.83 (s, 1H), 8.30 (s, 1H), 7.52 (d, J = 8.7 Hz, 2H), 7.42 (s, 1H), 6.84 (d, J = 8.7 Hz, 2H);¹³**C NMR** (101 MHz, DMSO-d₆) δ 158.0, 151.0, 150.9, 125.9, 119.6, 118.7, 115.9;

LCMS (ESI) Calcd for C₉H₇NO₂ [M+H]⁺, 162.055; found, 162.131.

iii) 5-([1,1'-biphenyl]-4-yl)oxazole (2c)

Yield: 98 mg, 88%; Colourless solid; m.p. 90-94 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.63 (d, *J* = 8.6 Hz, 2H), 7.58-7.52 (m, 4H), 7.39-7.35 (m, 2H), 7.28 (t, *J* = 7.2 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 151.3, 150.5, 141.3, 140.2, 128.8, 127.6, 127.5, 126.9, 126.6, 124.8, 121.5,

LCMS (ESI) Calcd for $C_{15}H_{11}NO$ [M+H]⁺, 222.0914; found, 222.050.

v) 5-(2,4-dimethoxyphenyl)oxazole(2d)¹

Yield: 157 mg, 77%; Colourless liquid;

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.53 (d, J = 8.6 Hz, 1H), 6.43 (dd, J = 8.6, 2.3 Hz, 1H), 6.38 (d, J = 2.4 Hz, 1H), 3.76 (s, 3H), 3.69 (s, 3H);¹³**C NMR** (101 MHz, CDCl₃) δ 160.7, 156.7, 148.7, 147.8, 126.6, 123.3, 110.1, 104.7, 98.3, 55.1;

iv) 5-(3,4-dimethoxyphenyl)oxazole (2e)

Yield: 196 mg, 96%; Colourless solid; m.p. 98-100 °C;

¹**H** NMR (400 MHz, DMSO-d₆) δ 8.32 (s, 1H), 7.54 (s, 1H), 7.24-7.21 (m, 2H), 7.00 (d, J = 8.3 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆) δ 151.2, 150.9, 149.4, 149.3, 120.7, 120.4, 117.0, 112.2, 107.9, 55.7, 55.7;

LCMS(ESI) Calcd for $C_{11}H_{11}NO_3$ [M+H]⁺, 206.0812; found, 206.95.

7

vi) **5-(4-chlorophenyl)oxazole (2f)**^{1,2}

Yield: 103 mg, 58%; Colourless solid; m.p. 80-82 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.49 (s, 1H), 7.76 (t, *J* = 4.2 Hz, 3H), 7.55 (d, *J*=8.6 Hz, 2H); ¹³C NMR (101 MHz, DMSO-d₆) δ 152.0, 149.6, 133.1, 129.1, 126.3, 125.8, 122.6; LCMS (ESI) Calcd for C₉H₆CINO [M+H]⁺, 180.0211; found, 180.050.

vii) 5-(4-bromophenyl)oxazole (2g)^{1,2}

Yield: 182 mg, 82%; Colourless solid; m.p. 76-78 °C;

¹**H-NMR** (400 MHz, DMSO-d₆) δ 8.48 (s, 1H), 7.75 (s, 1H), 7.68 (s, 4H); ¹³**C-NMR** (101 MHz, DMSO-d₆) δ 152.2, 149.7, 132.2, 126.7, 126.2, 122.7, 121.8; LCMS(ESI) Calcd for C₉H₆BrNO [M+H]⁺, 223.9706; found, 223.60, 225.3 (M+H+2)⁺, 227.2(M+H+4)⁺.

viii) 5-(4-fluorophenyl)oxazole (2h)^{1,2}

Yield: 147 mg, 91%; Colourless liquid;

¹**H NMR** (400 MHz, DMSO-d₆) δ 8.43 (s, 1H), 7.81-7.77 (m, 2H), 7.67 (s, 1H), 7.34 (t, *J* = 8.9 Hz, 2H); ¹³**C NMR** (101 MHz, DMSOd₆) δ 163.4, 161.0, 151.9, 149.9, 126.6, 126.5, 124.2, 121.9, 116.5, 116.2;

LCMS (ESI) Calcd for C₉H₁₀O₃ [M]⁺, 163.0433; found,163.0857.

ix) 5-(2,4-dichlorophenyl)oxazole (2i)

Yield: 122 mg, 58%; Colourless solid; m.p. 68-70 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.60 (s, 1H), 7.83-7.74 (m, 3H), 7.56 (dd, J = 8.5, 2.2 Hz, 1H); ¹³C NMR (101 MHz, DMSO-d₆) δ 152.2, 146.3, 133.6, 130.5, 130.0, 129.1, 128.0, 126.3, 124.9; LCMS (ESI) Calcd for C₉H₅Cl₂NO [M+H]⁺, 213.9821; found, 213.800.

x) **5-(3,4-dichlorophenyl)oxazole (2j)**

Yield: 97 mg, 46%; Yellow liquid;
¹H NMR (400 MHz, DMSO-d₆) δ 8.44 (s, 1H), 7.87 (d, J = 1.7 Hz, 1H), 7.77 (s, 1H), 7.61 (t, J = 2.0 Hz, 2H);
¹³C NMR (101 MHz, DMSO-d₆) δ 152.4, 148.3, 132.0, 131.2, 130.9, 127.9, 125.6, 124.0, 123.7;
LCMS(ESI) Calcd for C₉H₅Cl₂NO [M+H]⁺, 213.9821; found, 213.8.

xi) 5-(naphthalen-2-yl)oxazole (2k)

Yield: 163 mg, 84%; Colourless solid; m.p. 122-124 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.52 (s, 1H), 8.28 (s, 1H), 8.04-7.83 (m, 5H), 7.61-7.55 (m, 2H); ¹³C NMR (101 MHz, DMSO-d₆) δ 151.6, 150.9, 138.5, 129.8, 124.8, 124.2, 121.3; LCMS (ESI) Calcd for C₁₃H₉NO [M+H]⁺, 196.0757; found, 196.000.

xii) 5-(naphthalen-1-yl)oxazole (2l)²

Yield: 198 mg, 78%; Colourless liquid; m.p. 122-126 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 7.6 Hz, 1H), 8.07 (s, 1H), 7.90-7.88 (m, 2H), 7.73 (d, *J* = 7.2 Hz, 1H), 7.59-7.46 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 150.6, 133.7, 130.0, 129.7, 128.6, 127.0, 126.6, 126.2, 125.1, 125.0, 124.8, 124.7. LCMS(ESI) Calcd for C₁₃H₉NO [M+H]⁺, 196.0757; found, 197.50

xiii) 5-(4-nitrophenyl)oxazole (2m)^{1,2}

Yield: 98 mg, 52%; Colourless solid; m.p. 134-136 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.60 (s, 1H), 8.32 (d, *J* = 9.0 Hz, 2H), 8.00 (d, *J* = 2.3 Hz, 2H), 7.97 (s, 1H);¹³C NMR (101 MHz, DMSO-d₆) δ 153.5, 148.8, 146.8, 133.3, 125.7, 125.0, 124.6; LCMS (ESI) Calcd for C₉H₆N₂O₃ [M+H]⁺, 191.0451; found, 190.90.

xiv) 5-(4-methoxy-3-nitrophenyl)oxazole (2n)

Yield: 114 mg, 52%; Colourless solid; m.p. 138-140 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.47 (s, 1H), 8.22 (d, *J* = 2.3 Hz, 1H), 8.00 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.75 (s, 1H), 7.49 (d, *J* = 8.9 Hz, 1H), 3.98 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆) δ 152.0, 151.8, 148.6, 139.6, 129.8, 122.4, 120.5, 120.1, 115.3, 57.0; LCMS (ESI) Calcd for C₁₀H₈N₂O₄ [M+H]⁺, 221.0557; found, 222.000.

xv) 4-(oxazol-5-yl)benzonitrile (20)

Yield: 198 mg, 75%; Colourless solid; m.p. 70-72 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.57 (s, 1H), 7.96-7.91 (m, 5H); ¹³C NMR (101 MHz, DMSO-d₆) δ 153.1, 149.1, 133.2, 131.5, 125.0, 124.7, 118.7, 110.7; LCMS (ESI) Calcd for C₁₀H₆N₂O [M+H]⁺, 171.0553; found, 171.90.

xvi) 5-(4-(methylsulfonyl)phenyl)oxazole (2p)¹

Yield: 136 mg, 61%; Colourless solid; m.p. 120-122 °C;

¹**H NMR** (400 MHz, DMSO-d₆) δ 8.59 (s, 1H), 8.06 (d, *J* = 8.7 Hz, 2H), 8.00 (d, *J* = 8.7 Hz, 2H), 7.96 (s, 1H), 3.43 (s, 3H); ¹³**C NMR** (101 MHz, DMSO-d₆) δ 152.9, 149.1, 140.2, 131.9, 127.9, 124.7, 124.6, 43.5;

LCMS (ESI) Calcd for $C_{10}H_9NO_3S$ [M+H]⁺, 224.0376; found,224.1209 .

xvii) **5-phenyloxazole** (2q)^{1,2}

Yield: 137mg, 95%; Colourless liquid; m.p. 82-84 °C;

¹H NMR (400 MHz, DMSO-d₆) δ 8.40 (s, 1H), 7.63 (d, *J* = 8.3 Hz, 4H), 7. 30 (d, *J* = 7.9 Hz, 2H);

¹³C NMR (101 MHz, DMSO-d₆) δ 151.6, 150.9, 138.5, 129.8, 124.8, 124.2, 121.3;

LCMS(ESI) Calcd for C₉H₇NO [M+H]⁺, 146.0601; found, 146.1329.

NC

xviii) 5-(p-tolyl)oxazole (2r)^{1,2}

Yield: 128 mg, 81%; Colourless solid; m.p. 64-66 °C;

¹**H NMR** (400 MHz, DMSO-d₆) δ 8.40 (s, 1H), 7.63 (d, J = 8.3 Hz, 3H), 7.30 (d, J = 7.9 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (101 MHz, DMSO-d₆) δ 151.6, 150.9, 138.5, 129.8, 124.8, 124.2, 121.3, 21.0;

xix) 3-(oxazol-5-yl)phenol (2s)1

Yield: 120 mg, 75%; Colourless solid; m.p. 102-104 °C;

¹H NMR (400 MHz, DMSO-d₆) δ 9.73 (s, 1H), 8.42 (s, 1H), 7.63 (s, 1H), 7.29 (t, *J* = 7.9 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 1H), 7.13 (t, *J* = 2.0 Hz, 1H), 6.81 (m, 1H); ¹³C NMR (101 MHz, DMSO-d₆) δ 157.9, 151.7, 150.6, 130.3, 128.6, 121.9, 115.8, 115.0, 110.7; LCMS (ESI) Calcd for C₉H₇NO₂ [M+H]⁺, 162.055; found, 161.90.

xx) 5-(benzo[d][1,3]dioxol-5-yl)oxazole (2t)

Yield: 128 mg, 68%; Colourless solid; m.p. 88-90 °C;

¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.20 (s, 1H), 7.15 (dd, J =8.1, 1.7 Hz, 1H), 7.09 (d, J = 1.7 Hz, 1H), 6.85 (d, J = 8.1 Hz, 1H), 5.99 (s, 2H);¹³C NMR (101 MHz, CDCl₃) δ 151.3, 149.9, 148.1, 147.9, 121.9, 120.3, 118.5, 108.7, 104.9, 101.3; LCMS (ESI) Calcd for C₁₀H₇NO₃ [M+H]⁺, 190.0499; found, 190.900.

xxi) 3-(oxazol-5-yl)-2H-chromen-2-one (2u)

214.0497.

Yield: 132 mg, 62%; Colourless solid; m.p. 98-100 °C;

¹**H NMR** (400 MHz, DMSO-d₆) δ 8.55 (s, 1H), 8.39 (s, 1H), 7.88-7.84 (m, 1H), 7.71-7.59 (m, 2H), 7.44-7.36 (m, 2H); ¹³C NMR (101 MHz, DMSO-d₆) δ 157.2, 152.6, 152.4, 145.2, 136.7, 132.5, 129.2, 126.8, 125.1, 118.7, 116.2, 115.1;

2t

2s

10

¹³C NMR (101 MHz, DMSO-d₆) δ 148.4, 138.4, 129.8, 124.8, 124.2,

121.3, 36.2, 18.2, 13.6;

LCMS (ESI) Calcd for C₁₂H₁₃NO [M+H]⁺, 188.0997; found, 188.0990.

xxii) 5-(thiophen-2-yl)oxazole (2v)

Yield: 124 mg, 82%; Colourless solid; m.p. 78-82 °C;

¹H NMR (400 MHz, DMSO-d₆) δ 8.55 (s, 1H), 7.95 (s, 1H), 7.73-7.72 (d, J=2.8 Hz, 1H), 7.37-7.35 (m, 1H), 7.28-7.26 (m, 1H); ¹³C NMR (101 MHz, DMSO-d₆) δ 149.4, 137.5, 133.2, 129.3, 129.0, 127.4, 124.0;

LCMS (ESI) Calcd for C₇H₅NOS [M+H]⁺, 152.0922; found, 152.0898

xxiii) 5-(1H-indol-2-yl)oxazole (2w)

Yield: 143 mg, 78%; Colourless solid; m.p. 110-112 °C;

¹**H NMR** (400 MHz, DMSO-d₆) δ 12.03(s, 1H), 8.09 (s, 1H), 7.78 (d, 2H), 7.55(s, 1H), 7.46-7.42(t, J=6.8 Hz, 1H), 6.98-6.95(m, 2H); ¹³C NMR (101 MHz, DMSO-d₆) δ 167.1, 137.5, 129.3, 128.7, 124.0, 122.5, 121.5, 120.1, 118.8, 112.6, 101.1;

LCMS (ESI) Calcd for C₁₁H₈N₂O [M+H]⁺, 185.0637; found, 185.0629

xxiv) 5-(pyridin-3-yl)oxazole (2x)

Yield: 103 mg, 71%; Colourless solid; m.p. 148-150 °C;

¹**H NMR** (400 MHz, DMSO-d₆) δ 9.06 (s, 1H), 8.78-8.77 (t, *J*=3.2 Hz, 1H), 8.25(s, 1H), 7.59-7.57(t, J=2.4 Hz, 1H), 7.13-7.09 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 150.4, 148.2, 147.0, 134.0, 133.1, 124.7, 121.0;

LCMS (ESI) Calcd for C₈H₆N₂O [M+H]⁺, 147.0480; found, 147.0472.

xxv) 5-phenyl-4-propyloxazole (2y)

Yield: 140 mg, 75%; Colourless solid; m.p. 124-126 °C;

¹**H NMR** (400 MHz, DMSO-d₆): δ 8.35 (s, 1H), 7.93 (d, *J* = 8.0 Hz, 2H), 7.60 (t, J = 2.0 Hz, 2H), 7.49 (t, J = 7.6 Hz, 2H), 2.48 (t, J = 7.2

Hz, 1H), 1.63-1.57 (m, 2H), 0.82 (t, J = 7.6 Hz, 3H);

xxv) 4,5-dihydronaphtho[1,2-d]oxazole (2z)

Yield: 138 mg, 81%; Colourless solid; m.p. 180-182 °C;

1H-NMR (400 MHz, DMSO-d₆) δ 8.60 (s, 1H), 8.32 (dd, *J* = 7.1, 1.9 Hz, 2H), 8.00-7.97 (m, 2H), 2.99 (t, *J* = 7.9 Hz, 2H), 2.84 (t, *J* = 7.8 Hz, 2H);

¹³**C-NMR** (101 MHz, DMSO-d₆) δ 151.1, 138.0, 134.0, 130.1, 128.9, 127.9, 126.4, 124.9, 122.3, 35.0, 27.6;

LCMS (ESI) Calcd for $C_{11}H_9NO [M+H]^+$, 171.0684; found, 171.05.

xxv) 8H-indeno[1,2-d]oxazole (2aa)

Yield: 119 mg, 76%; Colourless solid; m.p. 164-166 °C;

¹H-NMR (400 MHz, DMSO-d₆) δ 8.60 (s, 1H), 7.83-7.74 (m, 3H),

7.56 (dd, *J* = 8.5, 2.2 Hz, 1H), 3.83 (s, 2H);

¹³**C NMR** (101 MHz, DMSO-d₆) δ 150.4, 138.4, 137.0, 128.1, 125.9, 125.3, 125.1, 121.9, 36.1;

LCMS (ESI) Calcd for $C_{10}H_7NO [M+H]^+$, 158.0528; found, 158.01.

xxvi) **5-(4-bromophenyl)oxazole (2g-d)**

Yield: 70 mg, 63%; Colourless solid; m.p. 98-102 °C;

¹H NMR (400 MHz, DMSO-d₆): δ 7.72 (s, 1H), 7.30-7.28 (m, 4H);
¹³C NMR (101 MHz, DMSO-d₆): δ 153.1, 149.1, 133.2, 124.7, 122.0, 121.0;

LCMS (ESI) Calcd for C_9H_5DBrNO [M+H]⁺, 224.9696; found, 224.9560

xxii) 2-(4-nitrophenyl)-2-oxoethyl acetate (3)⁴

Yield: 207 mg, 92%; Colourless solid; m.p. 120-122 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.9 Hz, 2H), 6.92 (d, J = 9.0 Hz, 2H), 5.36 (s, 2H), 3.85 (s, 3H), 2.29 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 163.4, 131.6, 122.0, 113.5, 68.3, 55.3, 15.3; LCMS(ESI) Calcd for C₁₀H₉NO₅ [M+H]⁺, 224.0481; found, 224.1209.

12

xxiii) (methylthio)methyl 4-methoxybenzoate (4a)

Yield: 157 mg, 74%; Colourless liquid;

¹**H NMR** (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.9 Hz, 2H), 6.92 (d, *J* = 9.0 Hz, 2H), 5.36 (s, 2H), 3.85 (s, 3H), 2.29 (s, 3H);¹³**C NMR** (101 MHz, CDCl₃) δ 165.7, 163.4, 131.6, 122.0, 113.5, 68.3, 55.3, 15.3; LCMS (ESI) Calcd for C₁₀H₁₂O₃S [M+H]⁺, 213.0580; found, 213.1457.

xxiii) (methylthio)methyl 4-(tert-butyl)benzoate (4b)

Yield: 191 mg, 80%; Colourless liquid;

¹**H NMR** (400 MHz, DMSO-d₆) δ 7.90 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 8.6 Hz, 2H), 5.40 (s, 2H), 2.25 (s, 3H), 1.28 (s, 9H);¹³**C NMR** (101 MHz, DMSO-d₆) δ 165.3, 156.7, 129.2, 126.7, 125.7, 68.3, 34.9, 30.8, 14.7; LCMS (ESI) Calcd for C₁₃H₁₈O₂S [M+H]⁺, 239.1101; found, 239.10.

xxiii) methyl (E)-N-(2-(4-chlorophenyl)-2-oxoethyl)methanimidothioate (5)

Yield: 102 mg, 45%; Colourless solid;

¹**H NMR** (400 MHz, DMSO-d₆) δ 7.95 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 8.6 Hz, 2H), 7.01 (s, 1H), 2.80 (s, 3H), 2.68 (s, 2H); ¹³**C NMR** (101 MHz, DMSO-d₆) δ 199.3, 163.1, 134.7, 133.6, 129.0, 127.7, 65.4, 18.2; LCMS (ESI) Calcd for C₁₀H₁₀ClNOS [M+H]⁺, 227.0172; found, 227.10.

5. Copies of ¹H-NMR, ¹³C-NMR and LCMS spectra of 5-substituted oxazole derivatives.

1.6

30.0

20.0

10.0

190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 X : parts per Million : Carbon13

1.0

(thousandths) 0

5

References:

- (1) Mukku, N.; Madivalappa Davanagere, P.; Chanda, K.; Maiti, B. A Facile Microwave-Assisted Synthesis of Oxazoles and Diastereoselective Oxazolines Using Aryl-Aldehydes, p-Toluenesulfonylmethyl Isocyanide under Controlled Basic Conditions. *ACS Omega* **2020**, *5* (43), 28239–28248.
- (2) Zhang, L. J.; Xu, M. C.; Liu, J.; Zhang, X. M. Tandem Cycloaddition-Decarboxylation of α-Keto Acid and Isocyanide under Oxidant-Free Conditions towards Monosubstituted Oxazoles. *RSC Adv.* **2016**, *6* (77), 73450–73453.
- (3) Xue, W. J.; Zhang, W.; Zheng, K. L.; Dai, Y.; Guo, Y. Q.; Li, H. Z.; Gao, F. F.; Wu, A. X. Formation of 2-Acyloxazoles by a Multipathway Coupled Domino Strategy: One-Pot Metal-Free Oxidative Cyclization Applicable to Various Substrates. *Asian J. Org. Chem.* 2013, 2 (8), 638–641.
- (4) Pogaku, N.; Krishna, P. R.; Prapurna, Y. L. Iodine-Mediated Nucleophilic Direct Oxidative α-Acetoxylation and α-Alkoxylation of Ketones. *ChemistrySelect* 2019, 4 (42), 12333–12336.