Supporting Information

Anion Recognition Using meta-Substituted Ureidocalix[4]arene Receptors

A. Surina,^a J. Čejka,^b K. Salvadori,^{c,d} and P. Lhoták^{a*}

^eDepartment of Organic Chemistry, University of Chemistry and Technology, Prague (UCTP), Technicka 5, 166 28 Prague 6, Czech Republic. E-mail: <u>lhotakp@vscht.cz;</u> Fax: +420-22044288; Tel: +420-220445055.

^c Institute of chemical process fundamentals of Czech Academy of Sciences v.v.i., Rozvojová 135, Prague 6, 16502, Czech Republic.

^d J. Heyrovský Institute of Physical Chemistry of Czech Academy of Sciences v.v.i., Dolejškova 2155/3, 182 23 Prague 8, Czech Republic.

Table of Contents

1.	Spectral characterization of compounds	2
2.	Association constants <i>K</i> _{As}	20
3.	Dilution study of nitro-substituted ureas in DMSO	21
4.	Job plot analysis	24
5.	Titration experiments	25
6.	Electrochemistry	41
7.	Crystallographic data	55

^b. Department of Solid State Chemistry, UCTP, 166 28 Prague 6, Czech Republic.

1. Spectral characterization of compounds

Fig. S1: ¹H NMR of compound 3a (DMSO, 500 MHz, 298 K)

Fig. S2: ¹H NMR of compound 3a, aliphatic region (DMSO, 500 MHz, 298 K)

Fig. S3: ¹H NMR of compound 3a, aromatic region (DMSO, 500 MHz, 298 K)

Fig. S4: ¹³C(APT) NMR of compound 3a (DMSO, 125 MHz, 298 K)

Fig. S5: HRMS (ESI) of compound **3a** calcd for $C_{47}H_{53}N_3O_7$ 794.3776 [M+Na]⁺, found m/z 794.3783 [M+Na]⁺.

Fig. S6: IR spectrum of compound 3a (ATR).

Fig. S7: ¹H NMR of compound **3b** (DMSO, 500 MHz, 298 K)

Fig. S8: ¹H NMR of compound 3b, aliphatic region (DMSO, 500 MHz, 298 K)

Fig. S9: ¹H NMR of compound **3b**, aromatic region (DMSO, 500 MHz, 298 K)

Fig. S10: ¹³C(APT) NMR of compound 3b (DMSO, 125 MHz, 298 K)

Fig. S11: HRMS (ESI) of compound **3b** calcd for $C_{47}H_{53}N_3O_7$ 794.3776 [M+Na]⁺, found m/z 794.3783 [M+Na]⁺.

Fig. S12: IR spectrum of compound 3b (ATR).

Fig. S13: ¹H NMR of compound 3c (DMSO, 500 MHz, 298 K)

Fig. S14: ¹H NMR of compound 3c, aliphatic region (DMSO, 500 MHz, 298 K)

Fig. S15: ¹H NMR of compound 3c, aromatic region (DMSO, 500 MHz, 298 K)

Fig. S16: ¹³C(APT) NMR of compound 3c (DMSO, 125 MHz, 298 K)

Fig. S17: HRMS (ESI) of compound **3c** calcld. $[C_{51}H_{62}N_2O_5+Na]^+$ 805.4551; found *m/z* 805.4539 $[M+Na]^+$.

Fig. S18: IR spectrum of compound 3c (ATR).

Fig. S19: ¹H NMR of compound 3d (DMSO, 500 MHz, 298 K)

Fig. S20: ¹H NMR of compound 3d, aliphatic region (DMSO, 500 MHz, 298 K)

Fig. S21: ¹H NMR of compound 3d, aromatic region (DMSO, 500 MHz, 298 K)

Fig. S22: ¹³C(APT) NMR of compound 3d (DMSO, 125 MHz, 298 K)

Fig. S23: HRMS (ESI) of compound **3d** calcld. $[C_{48}H_{56}N_2O_6+Na]^+$ 779.4030; found *m/z* 779.4026 [M+Na]+.

Fig. S24: IR spectrum of compound 3d (ATR).

Fig. S25: ¹H NMR of compound 7a (DMSO, 500 MHz, 298 K)

Fig. S26: ¹H NMR of compound 7a, aliphatic region (DMSO, 500 MHz, 298 K)

Fig. S27: ¹H NMR of compound 7a, aromatic region (DMSO, 500 MHz, 298 K)

Fig. S28: ¹³C(APT) NMR of compound 7a (DMSO, 125 MHz, 333 K)

Fig. S29: HRMS (ESI) of compound **7a** calcld. $[C_{54}H_{58}N_6O_{10}+Na]^+$ 973.4106; found *m/z* 973.4101 [M+Na]+.

Fig. S30: IR spectrum of compound 7a (ATR).

Fig. S31: ¹H NMR of compound 8a (DMSO, 500 MHz, 298 K)

Fig. S32: ¹H NMR of compound 8a, aliphatic region (DMSO, 500 MHz, 298 K)

Fig. S33: ¹H NMR of compound 8a, aromatic region (DMSO, 500 MHz, 298 K)

Fig. S34: ¹³C(APT) NMR of compound 8a (DMSO, 125 MHz, 298 K)

Fig. S35: HRMS (ESI) of compound **8a** calcld. $[C_{54}H_{58}N_6O_{10}+Na]^+$ 973.4106; found *m/z* 973.4110 [M+Na]+.

Fig. S36: IR spectrum of compound 8a (ATR).

2. Association constants K_{As}

Table S1: Comparison of association constants K_{As} for a series of mono *m*- substituted urea receptors **3** during recognition of TBAH₂PO₄, determined by UV-Vis^[b] (in DMSO) or ¹H NMR^[c] titrations (in DMSO-*d*₆) at 25 °C, reported together with chemical shift of receptor urea N*H* proton (highlighted in Fig. 23 by orange colour).

Receptor (R-)	3a (-NO ₂) ^[b]	3b (-CF3) ^[c]	3c (- <i>n</i> Bu) ^[c]	3d (-OCH ₃) ^[c]
$K_{\rm As}$ ^[a]	1 060	750	470	300
$\delta_{ m NH1}$ (ppm)	9.56	9.21	8.73	8.61
[-] =				

^[a] Error, when estimated, was < 15 %.

Table S2: Comparison of association constants K_{As} (1:1)^[a] for nitro-substituted mono-urea receptors **3a** and **4** with a series of anions in the form of TBA salts at 25 °C.

	4 (mono <i>p</i> -)	3a (mono <i>m</i> -)
$H_2PO_4^{-[c]}$	2 020	1 060
BzO ⁻	845 ^[b]	830 ^[c]
Cl ^{-[b]}	35	50
HSO4 ^{- [b]}	6	4

[a] Error, when estimated, was < 10 %. ^[b]Determined by ¹H NMR in DMSO-*d*₆. ^[c]Determined by UV-Vis in DMSO.

Table S3: Association constants K_{As} (1:1)^[a] and overall association constants β of receptors 7a were determined by ¹H NMR with a series of anions in the form of TBA salts in DMSO- d_6 at 25 °C.

Anion/ Constant	$K_{\rm As}$ (1:1) ^[a]	β
H ₂ PO ₄ -	1 660	$6.89 \cdot 10^{5}$
BzO ⁻	1 440	$5.18 \cdot 10^{5}$
AcO	1 160	$3.36 \cdot 10^{5}$

[a] Error, when estimated, was < 5 %. Evaluated by the non-cooperative model: $\beta = K_{As}(1) \times K_{As}(2)$, and $K_{As}(2) = K_{As}(1)/4$.

Table S4: Association constants K_{As} (1:1) and overall association constants β of receptors **8a** were determined by ¹H NMR^[a] (or UV-Vis^[b]) in DMSO- d_6 (DMSO) with a series of anions in the form of TBA salts at 25 °C.

	Utilised	K As (1:1) ^[c]	β
	stoichiometry		
$H_2PO_4^{-[b]}$	1:1	13 600	-
BzO ^{- [b, *]}	1:1	2 450	-
AcO ^{-[b]}	1:1	4 170	-
Cl ^{-[a,d]}	1:2	60	900
HSO ₄ - ^[a,d]	1:2	15	56

[c] Error, when estimated, was < 5 %. [d] Were evaluated by the non-cooperative model: : $\beta = K_{As}(1) \times K_{As}(2)$, and $K_{As}(2) = K_{As}(1)/4$. * The results might also be fitted by 1:2 stoichiometry.

3. Dilution study of nitro-substituted ureas in DMSO

Fig. S37: Part of ¹H NMR spectra for urea's hydrogen N*H* and aromatic region of **3a** in DMSO- d_6 . The studied concentration range corresponds to 5.8 - 0.8 mM. The higher concentration was not obtained as the compound did not dissolve.

I M	M	
	M	
I M	M	MM
<u>ر</u> ال	M	M M
۸ M	μ	M M
N M	M	M W
		an all

Fig. S38: Part of ¹H NMR spectra for urea's hydrogen N*H* and aromatic region of 4 in DMSO- d_6 . The studied concentration range corresponds to 26 - 0.6 mM.

Fig. S39: Part of ¹H NMR spectra for urea's hydrogen NH and aromatic region of 7a in DMSO- d_6 . The studied concentration range corresponds to 2.6 - 0.5 mM. The higher concentration was not obtained as the compound did not dissolve.

Fig. S40: Part of ¹H NMR spectra for urea's hydrogen NH and aromatic region of **8a** in DMSO- d_6 . The studied concentration range corresponds to 26.6 - 0.8 mM.

Fig. S41: Part of ¹H NMR spectra for urea's hydrogen NH and aromatic region of receptor 9 in DMSO- d_6 . The studied concentration range corresponds to 16.6 - 0.5 mM.

Fig. S42: Records of UV-Vis spectra collected in cuvette with 2-mm pathlength obtained for: a) blue nitro substituted urea receptor 3a (0.31 mM in DMSO); b) green nitro substituted urea receptor 3a (0.31 mM in DMSO) with TBAAcO; c) orange nitro substituted urea receptor 3a (0.31 mM in DMSO) with TBAOH as an example of deprotonation.

4. Job plot analysis

Fig. S43 a-e): Representative Job-plot records, obtained for several different urea-based receptors (built on calix[4]arene skeletons) *via* ¹H NMR (400 MHz) titrations with corresponding TBA salts in DMSO- d_6 . Arrows indicate the position of their maxima.

5. Titration experiments

Fig. S44: Records of UV-Vis obtained for nitro substituted urea receptor **3a** (0.27 mM in DMSO) titrated with TBAH₂PO₄ (final concentration 2.14 mM) in a cuvette with 2-mm pathlength. The arrow indicates the direction of a bathochromic shift. There is a diagnostic window of representative fit exported from BindFit.

Link: http://app.supramolecular.org/bindfit/view/97cc9d00-1891-4ec4-b5d8-58bb0e96fb5e

(c (3a) mM	c (AcO) mM	A_{400} (A.U.)	0.59					
	0.306	0	0.185	0.58					
	0.306	0.197	0.265	0.53				•	• •
	0.306	0.390	0.317	0.48		•	•		
	0.306	0.580	0.354	• 0.43					
	0.306	0.948	0.405		•				
	0.306	1.30	0.436	3 0.38	•				
	0.306	1.81	0.466	4 0.33	•				
	0.306	2.60	0.488	0.28					
	0.306	3.32	0.504	0.22	•				
	0.306	4.59	0.52	0.25					
	0.306	5.69	0.526	0.18					
	0.306	6.18	0.529	0.	.0	/.0	14	4.0	21.0
				=	Nur	nber of a	added e	eqv. Aq	:0-

Fig. S45: Records of UV-Vis obtained for nitro substituted urea receptor **3a** (0.31 mM in DMSO) titrated with TBAAcO (final concentration 6.18 mM) in a cuvette with 2-mm pathlength. The arrow indicates the direction of a bathochromic shift.

Fig. S46: Records of UV-Vis obtained for nitro substituted urea receptor **3a** (0.27 mM in DMSO) titrated with TBABzO (final concentration 2.54 mM) in a cuvette with 2-mm pathlength. The arrow indicates the direction of a bathochromic shift. There is a diagnostic window of representative fit exported from BindFit.

<i>c</i> (3a) mM	<i>c</i> (Cl ⁻) mM	$\delta_{ m NH}(m ppm)$	
3.40	0	9.5560	- 11.4
3.40	2.01	9.6924	11.2
3.40	3.95	9.8229	11.0
3.40	5.82	9.9349	
3.40	9.34	10.1142	10.6
3.40	12.6	10.2504	<u>4</u> 10.4
3.40	17.1	10.4025	^{رم} 10.2
3.40	23.7	10.5688	10.0
3.40	29.4	10.6781	9.8
3.40	38.5	10.8102	9.6
3.40	45.7	10.8858	9.4
3.40	103	11.1917	_ 0 5 10 15 20 25 30 35
			Number of added eqv. Cl ⁻

http://app.supramolecular.org/bindfit/view/cd0ada6e-6738-4fe5-a1ac-877367e024dd

<i>c</i> (3a) mM	c (HSO4 ⁻)	$\delta_{ m NH}(m ppm)$	10.0	1					
	mM		_						•
4.39	0	9.5494	9.0						
4.39	5.97	9.5640	5.5						
4.39	11.7	9.5825	~			•			
4.39	17.2	9.5964	E 9.8			•			
4.39	27.7	9.6217	ц) н		•				
4.39	37.4	9.6440	° 9.7		•				
4.39	50.7	9.6733			•				
4.39	70.2	9.7108	9.6						
4.39	86.9	9.7413							
4.39	114	9.7852	9.5						
4.39	149	9.8294		0	15	30	45	60	75
4.39	304	9.9560	_		Numl	ber of ad	ded eqv.	HSO₄ ⁻	

Link:

http://app.supramolecular.org/bindfit/view/1bbdaa74-e561-4c7c-b6e4-c83c8f331828

<i>c</i> (3b) mM	$c (H_2 PO_4)$	$\delta_{ m NH}(m ppm)$									
	mM		11.2								
0.185	0	9.21	11.2								
0.185	0.0982	9.27									
0.185	0.193	9.39	10.7			•					
0.185	0.285	9.51				•					
0.185	0.461	9.77	(u								
0.185	0.626	9.96	d ^{10.2}								
0.185	0.856	10.18	δ _{NH}	•							
0.185	1.20	10.41	9.7	•							
0.185	1.50	10.57		•							
0.185	2.00	10.73		•							
0.185	2.40	10.80	9.2	-	_						
0.185	5.99	11.22	()	5	10	15	20	25	30	35
				N	uml	ber of	adde	d eqv.	H ₂ PO	1 ⁻	

http://app.supramolecular.org/bindfit/view/b34bd805-645d-4b45-a8a1-7c7d88f7fbee

-								
	<i>c</i> (3c) mM	$c (\mathrm{H}_2\mathrm{PO}_4)$	$\delta_{ m NH}$ (ppm)	10.7	I			
		mM		10.5			•	
	3.22	0	8.7269	10.2				
	3.22	0.789	9.0108	10.5		• •		
	3.22	1.55	9.235	10.1	•			
	3.22	2.28	9.399	E 9.9	•			
	3.22	2.98	9.5287	d 9.7				
	3.22	3.66	9.6269	9 .5	•			
	3.22	4.94	9.7737	9.3	•			
	3.22	6.71	9.9020	0.1	•			
	3.22	9.29	10.0324	5.1	•			
	3.22	15.1	10.1992	8.9				
	3.22	17.9	10.2415	8.7			10	
	3.22	40.3	10.5123		0	5	10	15
					Nu	umber of add	led eqv. H ₂ PO ₄	-

Link:

http://app.supramolecular.org/bindfit/view/d0359634-581a-4003-b650-4933808818a0

<i>c</i> (3d) mM	$c (\mathrm{H_2PO_4}^-)$	$\delta_{ m NH}(m ppm)$					
	mM						
4.52	0	8.6105	10.7				
4.52	2.57	9.1741	10.5				٠
4.52	5.04	9.5522			• • •		
4.52	7.41	9.7774	10.3	•			
4.52	9.70	9.9192	– 10.1	•			
4.52	11.9	10.021	nd oo				
4.52	16.1	10.1432	U 9.9				
4.52	20.0	10.2294	% 9.7				
4.52	25.4	10.296	9.5	•			
4.52	33.2	10.364	5.5				
4.52	45.9	10.4369	9.3				
4.52	59.8	10.4693	9.1	•			
4.52	131	10.5562	(D	10	20	30
				Num	ber of adde	ed eqv. H ₂ PO	- L

http://app.supramolecular.org/bindfit/view/f674b4d1-562f-4dab-8311-a163b6b3e6e0

 <i>c</i> (4) mM	<i>c</i> (AcO ⁻)	A_{400} (A.U.)	0.42
	mM		0.42
 0.276	0	0.180	0.37
0.276	0.083	0.200	•
0.276	0.165	0.219	G 0.32
0.276	0.246	0.236	(A.
0.276	0.404	0.265	8 0.27
0.276	0.559	0.29	4
0.276	0.783	0.316	0.22
0.276	1.14	0.346	
0.276	1.47	0.366	0.17
0.276	2.09	0.388	0.0 2.0 4.0 6.0 8.0 10.0
 0.276	2.64	0.399	Number of added eqv. AcO ⁻

Fig. S47: Records of UV-Vis obtained for nitro substituted urea receptor **4** (0.28 mM in DMSO) titrated with TBABzO (final concentration 2.64 mM) in a cuvette with 1-mm pathlength. The arrow indicates the direction of a bathochromic shift. There is a diagnostic window of representative fit exported from BindFit.

 Oeqv.
 0.41 eqv.
 0.81 eav.
 1.18 eqv.
 1.90 eqv.
 2.57 eqv.

 3.49 eqv.
 4.83 eqv.
 5.98 eqv.
 7.85 eqv.
 20.9 eqv.

Fig. S48: Records of UV-Vis obtained for nitro substituted urea receptor **4** (0.28 mM in DMSO) titrated with TBABzO (final concentration 5.78 mM) in a cuvette with 1-mm pathlength. The arrow indicates the direction of a bathochromic shift. There is a diagnostic window of representative fit exported from BindFit.

10.8	_	$\delta_{ m NH}$ (ppm)	<i>c</i> (Cl ⁻) mM	<i>c</i> (4) mM
10.6	_	9.1715	0	3.47
10.4		9.3010	2.05	3.47
10.2		9.4165	4.03	3.47
		9.5093	5.93	3.47
		9.6663	9.52	3.47
H 9.8 ●		9.7905	12.9	3.47
9.6		9.9344	17.5	3.47
9.4		10.1001	24.2	3.47
		10.2091	29.9	3.47
9.2		10.3474	39.3	3.47
9.0		10.4481	49.6	3.47
0 10 20 3		10.7969	105	3.47
Number of added eqv. Cl ⁻	_			-

http://app.supramolecular.org/bindfit/view/35659b87-a2e3-4083-aaa1-970faff60cb0

<i>c</i> (4) mM	c (HSO ₄ ⁻)	$\delta_{ m NH}(m ppm)$	1	LO.0						
	mM			9.9						
5.87	0	9.1686		0.0						
5.87	5.72	9.2203		9.8						
5.87	11.2	9.2549	_	9.7						
5.87	16.5	9.2843	[md	9.6			•			
5.87	26.5	9.3313	d) ^H	05		•				
5.87	35.9	9.3706	$\delta_{\sf N}$	5.5		•				
5.87	48.7	9.4223		9.4						
5.87	67.4	9.4889		9.3						
5.87	83.4	9.5423		9.2						
5.87	109	9.6177		•						
5.87	144	9.7004		9.1		10	20	20	40	EO
5.87	292	9.9040		0		Numbe	r of add	ed eav. H	SO.	50

Link:

http://app.supramolecular.org/bindfit/view/bbd1e8d0-59a5-4d73-9579-d464e7405564

<i>c</i> (7 a) mM	$c (\mathrm{H}_2\mathrm{PO}_4)$	$\delta_{ m NH}(m ppm)$	12.0				
	mM						•
0.229	0	9.6069	11.5		•		
0.229	0.118	9.8349			•		
0.229	0.231	10.0231	~ 11.0	•			
0.229	0.340	10.180	<u>e</u> 11.0	•			
0.229	0.546	10.489	d) ⁺	•			
0.229	0.738	10.708	° 10.5	•			
0.229	1.00	10.934		•			
0.229	1.39	11.166	10.0	•			
0.229	1.72	11.318		•			
0.229	2.25	11.450	95				
0.229	2.67	11.560	5.5 C)	10	20	30
0.229	6.01	11.849		Nun	nber of ad	ded eqv. H ₂ PC) ₄ -

http://app.supramolecular.org/bindfit/view/a332e095-ef92-499b-a074-dd18aa318dc9

			12.5				
<i>c</i> (7a) mM	<i>c</i> (BzO ⁻)	$\delta_{ m NH}(m ppm)$					•
	mM		12				
0.344	0	9.5989			•		
0.344	0.133	9.8239	- ^{11.5}				
0.344	0.260	9.9989	ud d	•			
0.344	0.383	10.1819	<u>d</u> 11	٠			
0.344	0.615	10.4920	Ŷ	•			
0.344	0.831	10.7139	10.5	•			
0.344	1.13	10.9677	10	•			
0.344	1.56	11.2622	10				
0.344	1.93	11.4650	95 •				
0.344	2.54	11.7044	0	5	10	15	20
0.344	3.01	11.8315		Nun	ber of add	ed eav. BzO [.]	
0.344	6.77	12.4318	_				

Link:

http://app.supramolecular.org/bindfit/view/32b2bbd9-4e94-49f7-ba0b-b95f207b116c

<i>c</i> (7a) mM	<i>c</i> (AcO ⁻)	$\delta_{ m NH}(m ppm)$	-
	mM		13.0
0.229	0	9.6305	12 5
0.229	0.163	10.0071	
0.229	0.319	10.3405	12.0
0.229	0.469	10.6211	
0.229	0.754	11.1409	
0.229	1.02	11.4883	→ 11.0
0.229	1.38	11.8202	o
0.229	1.91	12.0981	10.5
0.229	2.37	12.2701	10.0
0.229	3.11	12.4516	
0.229	3.69	12.5395	9.5
0.229	8.29	12.8357	0 10 20 30 40
			Number of added eqv. AcO ⁻

http://app.supramolecular.org/bindfit/view/a086255e-be72-43c2-a274-ca5c4e64690c

<i>c</i> (8a) mM	$c (\mathrm{H}_2\mathrm{PO}_4)$ mM	A ₃₉₀ (A.U.)	0.71				
0.214	0	0.368	0.66		•	•	• •
0.214	0.0700	0.434	0.64	•	•		
0.214	0.139	0.505	0.61	•			
0.214	0.206	0.54	(.56				
0.214	0.337	0.595	(A	•			
0.214	0.463	0.614	ອີຍ 0.51 V	•			
0.214	0.643	0.632	0.46				
0.214	0.922	0.642	•)			
0.214	1.18	0.652	0.41				
0.214	1.63	0.661	0.26				
0.214	2.02	0.668	0.30		5.0		10.0
0.214	2.19	0.670	0.0	Number	r of added	eav. Ha	PO.

Fig. S49: Records of UV-Vis obtained for nitro substituted urea receptor **8a** (0.21 mM in DMSO) titrated with TBAH₂PO₄ (final concentration 2.19 mM) in a cuvette with 1-mm pathlength. The arrow indicates the direction of a bathochromic shift. There is a diagnostic window of representative fit exported from BindFit.

Fig. S50: Records of UV-Vis obtained for nitro substituted urea receptor 8a (0.21 mM in DMSO) titrated with TBAAcO (final concentration 2.63 mM) in a cuvette with 1-mm pathlength. The arrow indicates the direction of a bathochromic shift. There is a diagnostic window of representative fit exported from BindFit.

 — 0 eqv.
 0.29 eqv.
 0.57 eqv.
 0.85 eqv.
 1.38 eqv.
 1.90 eqv.
 λ (nm)

 — 2.64 eqv.
 3.79 eqv.
 4.85 eqv.
 6.71 eqv.
 8.31 eqv.
 9.02 eqv.

Fig. S51: Records of UV-Vis obtained for nitro substituted urea receptor 8a (0.21 mM in DMSO) titrated with TBABzO (final concentration 1.88 mM) in a cuvette with 1-mm pathlength. The arrow indicates the direction of a bathochromic shift. There is a diagnostic window of representative fit exported from BindFit.

<i>c</i> (8a) mM	<i>c</i> (Cl ⁻) mM	$\delta_{ m NH}(m ppm)$	11.6							
5.85	0	9.5559								
5.85	3.55	9.7047								
5.85	6.97	9.8449	11.1			•				
5.85	10.3	9.9711	Ê		•)				
5.85	16.5	10.1512	ud 10.6		•					
5.85	22.3	10.2839	U HN	•						
5.85	30.2	10.4275	Ŷ	•						
5.85	41.8	10.5931	10.1	•						
5.85	51.8	10.7029		•						
5.85	68.0	10.8422								
5.85	87.8	10.9573	9.6 🖕							
5.85	181	11.2648	0	5	10	15	20	25	30	35
				Number of added eqv. Cl ⁻						

http://app.supramolecular.org/bindfit/view/21850989-9fe4-4348-a105-814e830ff6c1

<i>c</i> (8a) mM	<i>c</i> (HSO ₄ ⁻)	$\delta_{ m NH}(m ppm)$							
	mM		9.9						
7.18	0	9.5555	0.8						•
7.18	3.24	9.5676	5.0						
7.18	6.36	9.5789	9.8						
7.18	9.36	9.5883	Ê						
7.18	15.0	9.6032	d 9.7			••			
7.18	20.3	9.6157	Бин		•	•			
7.18	27.5	9.6322	9.7		•				
7.18	38.1	9.6491		•					
7.18	47.2	9.6674	9.6						
7.18	62.0	9.6859							
7.18	73.5	9.6995	9.6		_	10	45	20	
7.18	81.0	9.7202	0		5	10	15	20	25
7.18	165	9.8060	_	N	lumb	er of ad	ded eqv.	HSO ₄ -	

Link:

http://app.supramolecular.org/bindfit/view/c7d6567f-0cfe-4084-904b-0d9162ea38c4

<i>c</i> (9) mM	$c (H_2 PO_4)$	A_{390} (A.U.)	0.53					
	mM		0.54				•	
0.210	0.000	0.399	0.51			•		
0.210	0.0642	0.409	0.49			•		
0.210	0.127	0.421	?					
0.210	0.189	0.433	D. 0.47					
0.210	0.309	0.449	ୁ ଟ୍ରୁ 0.45	•				
0.210	0.424	0.462	A					
0.210	0.589	0.474	0.43					
0.210	0.845	0.489	0.41					
0.210	1.08	0.500	•	-				
0.210	1.50	0.512	0.39	2.0	4.0	6.0	0.0	10.0
0.210	1.85	0.519	0.0	2.0	4.0	6.0	ö.Ü	10.0
0.210	2.01	0.523		Numbe	er of add	aea eqv	. н ₂ РО ₄ -	

Fig. S52: Records of UV-Vis obtained for nitro substituted urea receptor **9** (0.21 mM in DMSO) titrated with TBAH₂PO₄ (final concentration 2.01 mM) in a cuvette with 1-mm pathlength. The arrow indicates the direction of a bathochromic shift.

6. Electrochemistry

Fig. S53: Linear sweep voltammetry of receptor **4** ($1.1 \cdot 10^{-3}$ M) in DMSO (0.1 M TBAPF₆) (W = RDE = glassy carbon - \emptyset 1 mm, Ref = SCE, Aux = Pt) was recorded with a scan rate of 10 mV·s⁻¹ using several rotating rates.

Fig. S54: Linear sweep voltammetry of **7a** ($8.6 \cdot 10^{-4}$ M) in DMSO (0.1 M TBAPF₆) (W = RDE = glassy carbon - \emptyset 1 mm, Ref = SCE, Aux = Pt) was recorded with a scan rate of 10 mV·s⁻¹ using several rotating rates.

Fig. S55: Linear sweep voltammetry of **8a** ($4.9 \cdot 10^{-4}$ M) in DMSO (0.1 M TBAPF₆) (W = RDE = glassy carbon - \emptyset 1 mm, Ref = SCE, Aux = Pt) was recorded with a scan rate of 10 mV·s⁻¹ using several rotating rates.

Fig. S56: Cyclic voltammogram (W = HMDE) of typical blank of DMSO (0.1 M TBAPF₆) with scan rate 100 mV·s⁻¹ (gradually increasing potential range).

Fig. S57: Cyclic voltammogram (W = HMDE) of compound **3a** ($8.9 \cdot 10^{-4}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 100 mV·s⁻¹ (gradually increasing potential range).

Scheme S58: Self-protonation reduction mechanism describing the reduction of nitro derivatives. The potentials of three reduction steps might be obtained from the cyclic voltammogram above (e.g. Fig. S57).

Fig. S59: Cyclic voltammogram (W = GC) of compound **3a** ($8.9 \cdot 10^{-4}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 200 mV·s⁻¹ (gradually increasing potential range).

Fig. S60: Cyclic voltammogram (W = Pt) of compound **3a** ($8.9 \cdot 10^{-4}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 100 mV·s⁻¹ (gradually increasing potential range).

Fig. S61: Cyclic voltammogram (W = HMDE) of compound 4 ($1.1 \cdot 10^{-3}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 100 mV·s⁻¹ (gradually increasing potential range).

Fig. S62: Cyclic voltammogram (W = GC) of compound 4 ($1.1 \cdot 10^{-3}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 200 mV·s⁻¹ (gradually increasing potential range).

Fig. S63: Cyclic voltammogram (W = Pt) of compound 4 ($1.1 \cdot 10^{-3}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 100 mV·s⁻¹ (gradually increasing potential range).

Fig. S64: Cyclic voltammogram (W = HMDE) of compound **7a** ($8.6 \cdot 10^{-4}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 100 mV·s⁻¹ (gradually increasing potential range).

Fig. S65: Cyclic voltammogram (W = GC) of compound **7a** ($8.6 \cdot 10^{-4}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 200 mV·s⁻¹ (gradually increasing potential range).

Fig. S66: Cyclic voltammogram (W = Pt) of compound **7a** ($8.6 \cdot 10^{-4}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 100 mV·s⁻¹ (gradually increasing potential range).

Fig. S67: Cyclic voltammogram (W = HMDE) of compound **8a** ($4.9 \cdot 10^{-4}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 100 mV·s⁻¹ (gradually increasing potential range).

Fig. S68: Cyclic voltammogram (W = GC) of compound **8a** ($4.9 \cdot 10^{-4}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 200 mV·s⁻¹ (gradually increasing potential range).

Fig. S69: Cyclic voltammogram (W = Pt) of compound **8a** ($4.9 \cdot 10^{-4}$ M) in DMSO (0.1 M TBAPF₆) with scan rate 100 mV·s⁻¹ (gradually increasing potential range).

Fig. S70: Titration of **3a** ($8.9 \cdot 10^{-4}$ M) by TBAH₂PO₄ (final concentration 9.41 mM) in DMSO (0.1M TBAHPF) monitored by CV (W = HMDE) with scan rate 100 mV·s⁻¹; black - with 1 molar equiv. of H₂PO₄⁻.

Fig. S71: Titration of **4** ($1.1 \cdot 10^{-3}$ M) by TBAH₂PO₄ (final concentration 11.8 mM) in DMSO (0.1M TBAHPF) monitored by CV (W = HMDE) with scan rate 100 mV·s⁻¹; black - with 1 molar equiv. of H₂PO₄⁻.

Fig. S72: Titration of **8a** (8.6·10⁻⁴ M) by TBAH₂PO₄ (final concentration 11.7 mM) in DMSO (0.1M TBAHPF) monitored by CV (W = HMDE) with scan rate 100 mV·s⁻¹; black - with 2 molar equiv. of H₂PO₄⁻.

Fig. S73: Titration of **8a** ($4.9 \cdot 10^{-4}$ M) by TBAH₂PO₄ (final concentration 5.89 mM) in DMSO (0.1M TBAHPF) monitored by CV (W = HMDE) with scan rate 100 mV·s⁻¹; black - with 2 molar equiv. of H₂PO₄⁻.

7. Crystallographic data

Fig. S74: Thermal ellipsoid plot (50% probability level) of compound 3a.

Fig. S75: Thermal ellipsoid plot (50% probability level) of compound 3a - view from the opposite side (180 ° rotation).