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Materials, methods, and abbreviations 

Materials 

All salts were purchased from commercial sources and used without further 

purification. All anions are tetrabutylammonium (TBA) salts. The trapezoidal cage 1 

was produced according to the previously reported protocol.
[1]

 Solvents were obtained 

from commercial sources. Analytical thin layer chromatography (TLC) was performed 

on silica gel plates (Merck 60F254) visualized with a UV lamp (254 nm). Column 

chromatography was performed with commercial glass columns using silica gel 

200-300 mesh (particle size 0.045-0.075 mm).  

 

NMR spectroscopy 

1
H NMR spectra were recorded on a Bruker AVANCE III HD 400 or a Bruker 

AVANCE III HD 600 in DMSO-d6. Chemical shifts are reported in ppm relative to 

residual solvent signal of DMSO-d6 (δ = 2.50 ppm). Spectra of nuclear overhauser 

effect spectroscopy (NOESY) and correlation spectroscopy (COSY) experiments were 

recorded on a Bruker AVANCE III HD 400 by means of a BBO (BB-H/F-D) probe, or a 

Bruker AVANCE III HD 600 by means of a 5 mm BBFO probe with z gradient. Data 

processing was performed with Topspin software. 
1
H-

1
H NOESY acquisitions were 

performed with a time domain size of 2048 (F2) × 256(F1), 32 scans per increment, a 

pulse program of noesygpphpp or noesygpph, and a mixing time of 300 ms. 
1
H-

1
H 

COSY acquisitions were performed with a time domain size of 2048(F2) × 128(F1), 4 

scans per increment, and a pulse program of cosygpppgf. 

 

Fluorescence spectroscopy 

Fluorescence spectra were recorded on an Edinburgh Instruments FLS 980 

spectrometer with Xenon Xe1+400 nm lamp and visible PMT detector under following 

conditions: Dwell time = 0.1s, step = 1 nm, number of scans = 1, without polarizers. 

Stock solutions of anions were prepared with concentrations of 5 mM, 50 mM or 250 

mM (all containing 50 μM 1) in DMSO. The detailed conditions for each sample are 
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as follows: excitation wavelength (Ex) = 303 nm, excitation bandwidth (ExBW) = 2.0 

nm and emission bandwidth (EmBW) = 1.5 nm with a 330 nm filter for the emission 

spectra of F
-
+1; Ex = 300 nm, ExBW = 2.7 nm and EmBW = 2.65 nm with a 330 nm 

filter for the emission spectra of Cl
-
+1, Br

-
+1, I

-
+1, NO3

-
+1, SCN

-
+1, HSO4

-
+1, 

HCO3
-
+1, Ex = 300 nm, ExBW = 2.2 nm and EmBW = 2.2 nm with a 330 nm filter 

for the emission spectra of ClO4
-
+1, BF4

-
+1, PF6

-
+1. Organic solvents for 

spectroscopic studies were of spectroscopic grade and all anions were prepared as 

tetrabutylammonium (TBA) salts. Cuvette specification: 10 mm × 10 mm. 

 

Mass spectrometry 

High resolution electrospray ionization time-of-flight (HRESI-TOF) mass spectra were 

measured in the positive/negative ion mode on a Bruler Daltonic microTOF focus 

spectrometer. 

 

Abbreviations 

DMSO = dimethyl sulfoxide, TBA = tetrabutylammonium. 
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NMR, fluorescence, and HRMS studies 

 

 

Figure S1. 
1
H NMR spectrum (600 MHz) of 1 in DMSO-d6 at 298K. 
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Figure S2. 
1
H NMR (400 MHz) titration of 1 (1 mM) with F

-
 in DMSO-d6. 
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Assessing binding constants through NMR titration (Figure S3): 

[H] + [G]
K1

[HG]        K1 = [HG]/([H][G]) 

[HG] + [G]
K2

[HG2]      K2 = [HG2]/([HG][G]) 

[HG2] + [HG] + [H] = [H0] 

2[HG2] + [HG] + [G] = [G0] 

The initial concentrations of 1 ([H0]) and F
-
 ([G0]) are known and the distribution of H 

can be calculated by integration. Therefore, [HG2] = [H0] * I[HG2]/(I[HG2] + I[HG] + I[H]), 

[HG] = [H0] * I[HG]/(I[HG2] + I[HG] + I[H]), [H] = [H0] * I[H]/(I[HG2] + I[HG] + I[H]). Further, 

the concentration of [G] can be determined as [G] = [G0] – 2[HG2] - [HG]. Thereby, 

K1 can be obtained as 3.3×10
3
 M

-1
 from the spectrum of 1+1eqF

-
 (the signal of [H] in 

other spectra is too weak, which may cause significant errors in calculating K1), K2 = 

1.1(±0.3)×10
4
 M

-1
 (from three independent measurements, 1.4×10

4
 M

-1
, 1.2×10

4
 M

-1
 

and 7.2×10
3
 M

-1
, respectively.), and β2 = K1×K2 = 3.6×10

7
 M

-2
. Considering that 

signal broadening can lead to integration errors, it is more appropriate to consider 

these binding constants as approximate values. 

 

 

Figure S3. 
1
H NMR (400 MHz) titration of 1 (1 mM) with F

-
 in DMSO-d6. 
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Figure S4. 
19

F NMR (600 MHz) spectrum of 1 (1 mM) with F
-
 (5 mM) in DMSO-d6. 

 

 

 

 

Figure S5. 
1
H NMR (600 MHz) spectra of 1+F

-
 (1 mM + 5 mM) and F

-
 alone (3 mM) 

in DMSO-d6. 
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Figure S6. Binding analysis curves of the fluorescence titration between 1 (150 μΜ) 

and F
-
 in DMSO. The analysis was conducted with the help of the website 

“http://supramolecular.org/”. The (a) 1:1, (b) full 1:2 (K1 ≠ 4K2, δΔHG2 ≠ 2δΔHG), (c) 

non-cooperative 1:2 (K1 = 4K2, δΔHG2 ≠ 2δΔHG), (d) additive 1:2 (K1 ≠ 4K2, δΔHG2 = 

2δΔHG), and (e) statistical 1:2 (K1 = 4K2, δΔHG2 = 2δΔHG) binding models 

(receptor-substrate) are used for the analysis.
[2-4]

 Detailed information on these binding 

models can be found in references [2-4]. 
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Table S1. Summary of the binding analysis of the fluorescence titration between 1 and 

F
-
 in DMSO. 

Binding model 

(host:guest) 
K1 (M

-1
) K2 (M

-1
) 

β2 (M
-2

) 

(K1×K2) 
Covariance Conclusion

[a]
 

1:1 8.5(±94.8%)×10
4
 - 8.5×10

4
 0.05  

Full (1:2) 2.7(±16%)×10
3
 1.4(±20%)×10

4
 3.8×10

7
 9.5×10

-3
 √ 

Non-cooperative 

(1:2) 
8.7(±15%)×10

3
 2.2×10

3
 1.9×10

7
 0.01  

Additive (1:2) 2.2(±26%)×10
4
 -185(±18%) -4.1×10

6
 0.02  

Statistical (1:2) 1.3(±1×10
11

%)×10
20

 3.3×10
19

 4.3×10
39

 0.1  

[a] 
According to the covariance values and the physical possibility, the full (1:2) binding 

model should be more appropriate to describe the data. Specifically, to select a more 

complex model, the covariance value should be at least 3 times lower than a simpler 

one.
[2]

 Thus, the full, non-cooperative and additive models are better than 1:1 and 

statistical modes. Since the negative value is physically impossible, the additive 

model can also be excluded. At last, combined with the NMR titration results which 

clearly indicate K2 > K1, the results of the full binding model are therefore chosen.  
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Figure S7. 
1
H NMR (400 MHz) titration of 1 (1 mM) with Cl

-
 in DMSO-d6. 

 

 

 

 

Figure S8. Fluorescence (λex = 300 nm) titration of 1 (50 μΜ) with Cl
-
 in DMSO. 
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Figure S9. 
1
H NMR (400 MHz) titration of 1 (1 mM) with Br

-
 in DMSO-d6. 

 

 

 

 

Figure S10. Fluorescence (λex = 300 nm) titration of 1 (50 μΜ) with Br
-
 in DMSO. 
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Figure S11. 
1
H NMR (400 MHz) titration of 1 (1 mM) with I

-
 in DMSO-d6. 

 

 

 

 

Figure S12. Fluorescence (λex = 300 nm) titration of 1 (50 μΜ) with I
-
 in DMSO. 
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Figure S13. 
1
H NMR (400 MHz) titration of 1 (1 mM) with NO3

-
 in DMSO-d6. 

 

 

 

 

Figure S14. Fluorescence (λex = 300 nm) titration of 1 (50 μΜ) with NO3
-
 in DMSO. 
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Figure S15. 
1
H NMR (400 MHz) titration of 1 (1 mM) with SCN

-
 in DMSO-d6. 

 

 

 

 

Figure S16. Fluorescence (λex = 300 nm) titration of 1 (50 μΜ) with SCN
-
 in DMSO. 
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Figure S17. 
1
H NMR (400 MHz) titration of 1 (1 mM) with HSO4

-
 in DMSO-d6. 

 

 

 

 

Figure S18. Fluorescence (λex = 300 nm) titration of 1 (50 μΜ) with HSO4
-
 in DMSO. 
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Figure S19. 
1
H NMR (400 MHz) titration of 1 (1 mM) with HCO3

-
 in DMSO-d6. 

 

 

 

 

Figure S20. Fluorescence (λex = 300 nm) titration of 1 (50 μΜ) with HCO3
-
 in DMSO. 
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Figure S21. 
1
H NMR (400 MHz) titration of 1 (1 mM) with ClO4

-
 in DMSO-d6. 

 

 

 

 

Figure S22. Fluorescence (λex = 300 nm) titration of 1 (50 μΜ) with ClO4
-
 in DMSO. 
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Figure S23. 
1
H NMR (400 MHz) titration of 1 (1 mM) with BF4

-
 in DMSO-d6. 

 

 

 

 

Figure S24. Fluorescence (λex = 300 nm) titration of 1 (50 μΜ) with BF4
-
 in DMSO. 
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Figure S25. 
1
H NMR (400 MHz) titration of 1 (1 mM) with PF6

-
 in DMSO-d6. 

 

 

Figure S26. Fluorescence (λex = 300 nm) titration of 1 (50 μΜ) with PF6
-
 in DMSO. 
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Table S2. Summary of stability constants of [1-anion] complexes in DMSO. 

Anion K1 (M
-1

) K2 (M
-1

) 
β2 (M

-2
) 

(K1×K2) 

F
-
(NMR) 3.3×10

3
 1.1×10

4
 3.6×10

7
 

F
-
(fluorescence) 2.7×10

3
 1.4×10

4
 3.8×10

7
 

Cl
-
 -

[a]
 -

[a]
 -

[a]
 

Br
-
 -

[a]
 -

[a]
 -

[a]
 

I
-
 -

[a]
 -

[a]
 -

[a]
 

NO3
-
 -

[a]
 -

[a]
 -

[a]
 

SCN
-
 -

[a]
 -

[a]
 -

[a]
 

HSO4
-
 -

[a]
 -

[a]
 -

[a]
 

HCO3
-
 -

[a]
 -

[a]
 -

[a]
 

ClO4
-
 -

[a]
 -

[a]
 -

[a]
 

BF4
-
 -

[a]
 -

[a]
 -

[a]
 

PF6
-
 -

[a]
 -

[a]
 -

[a]
 

[a] 
Spectral changes are too small to determine the corresponding stability constants, 

i.e. stability constants are extremely small. 

 

 

. 
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Figure S27. Full 
1
H-

1
H COSY (400 MHz) spectrum of 1 (2 mM) in DMSO-d6 at 298 K. 
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Figure S28. 
1
H-

1
H COSY (400 MHz) spectrum of 1 (2 mM) in DMSO-d6 at 298 K, 

showing the COSY correlations of H2↔H4 and H1↔H5. 
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Figure S29. Full 
1
H-

1
H NOESY (400 MHz) spectrum of 1 (2 mM) in DMSO-d6 at 298 

K. 
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Figure S30. 
1
H-

1
H NOESY (400 MHz) spectrum of 1 (2 mM) in DMSO-d6 at 298 K, 

showing the NOE correlation of H1↔H4.  
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Figure S31. Full 
1
H-

1
H COSY (600 MHz) spectrum of 1+2eqF

-
 (2 mM + 4 mM) in 

DMSO-d6 at 298 K. 

 



S26 

 

 

 

Figure S32. 
1
H-

1
H COSY (600 MHz) spectrum of 1+2eqF

-
 (2 mM + 4 mM) in 

DMSO-d6 at 298 K, showing the COSY correlations of H2↔H4 and H1↔H5. 
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Figure S33. Full 
1
H-

1
H NOESY (600 MHz) spectrum of 1+2eqF

-
 (2 mM + 4 mM) in 

DMSO-d6 at 298 K. 
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Figure S34. HRMS (ESI-TOF) of 1+10eqF
-
 (m/z calcd for C100H144N8O14F2

2-
 

[1+2F+2H2O]
2-

 = 859.5391, found 859.5347. a) full spectrum, b) target signals, c) and 

d) theoretical isotopic distribution pattern of the target signals. The red text is the 

translation of the corresponding Chinese characters. 
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Figure S35. Full 
1
H NMR spectra of 1 (1 mM), 1+3eqF

-
+794eqCl

-
, 1+3eqF

-
+2039eqCl

-
 

and 1+2.5eqF
-
 in DMSO-d6. 
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Figure S36. Full 
1
H NMR spectra of 1, 1+3eqF

-
+150eq other anions (Cl

-
, Br

-
, I

-
, NO3

-
, 

SCN
-
, HCO3

-
, ClO4

-
, BF4

-
, and PF6

-
), and 1+2.5eqF

-
 in DMSO-d6. The concentration of 

1 is 1 mM. 
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