Supplementary Information

Highly selective recognition of fluoride using a trapezoidal cage

Ruiye Wu,^{†,a} Caihong Mao,^{†,a} Feiying Ruan,^a Yan Cai,^a Xiaobo Hu^{a,*}

^a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China

[†] These authors contributed equally to this work.

* Corresponding author. E-mail: xiaobo.hu@zjnu.edu.cn

Table of contents

Materials, methods, and abbreviations	S2
NMR, fluorescence, and HRMS studies	S4
References	- S31

Materials, methods, and abbreviations

Materials

All salts were purchased from commercial sources and used without further purification. All anions are tetrabutylammonium (TBA) salts. The trapezoidal cage **1** was produced according to the previously reported protocol.^[1] Solvents were obtained from commercial sources. Analytical thin layer chromatography (TLC) was performed on silica gel plates (Merck 60F254) visualized with a UV lamp (254 nm). Column chromatography was performed with commercial glass columns using silica gel 200-300 mesh (particle size 0.045-0.075 mm).

NMR spectroscopy

¹H NMR spectra were recorded on a Bruker AVANCE III HD 400 or a Bruker AVANCE III HD 600 in DMSO- d_6 . Chemical shifts are reported in ppm relative to residual solvent signal of DMSO- d_6 ($\delta = 2.50$ ppm). Spectra of nuclear overhauser effect spectroscopy (NOESY) and correlation spectroscopy (COSY) experiments were recorded on a Bruker AVANCE III HD 400 by means of a BBO (BB-H/F-D) probe, or a Bruker AVANCE III HD 600 by means of a 5 mm BBFO probe with z gradient. Data processing was performed with Topspin software. ¹H-¹H NOESY acquisitions were performed with a time domain size of 2048 (F2) × 256(F1), 32 scans per increment, a pulse program of noesygpphpp or noesygpph, and a mixing time of 300 ms. ¹H-¹H COSY acquisitions were performed with a time domain size of 2048 (F2) × 128(F1), 4 scans per increment, and a pulse program of cosygpppgf.

Fluorescence spectroscopy

Fluorescence spectra were recorded on an Edinburgh Instruments FLS 980 spectrometer with Xenon Xe1+400 nm lamp and visible PMT detector under following conditions: Dwell time = 0.1s, step = 1 nm, number of scans = 1, without polarizers. Stock solutions of anions were prepared with concentrations of 5 mM, 50 mM or 250 mM (all containing 50 μ M 1) in DMSO. The detailed conditions for each sample are

as follows: excitation wavelength (Ex) = 303 nm, excitation bandwidth (ExBW) = 2.0 nm and emission bandwidth (EmBW) = 1.5 nm with a 330 nm filter for the emission spectra of F^+ +1; Ex = 300 nm, ExBW = 2.7 nm and EmBW = 2.65 nm with a 330 nm filter for the emission spectra of Cl⁺+1, Br⁺+1, I⁺+1, NO₃⁻+1, SCN⁻+1, HSO₄⁻+1, HCO₃⁻+1, Ex = 300 nm, ExBW = 2.2 nm and EmBW = 2.2 nm with a 330 nm filter for the emission spectra of ClO₄⁻+1, BF₄⁻+1, PF₆⁻+1. Organic solvents for spectroscopic studies were of spectroscopic grade and all anions were prepared as tetrabutylammonium (TBA) salts. Cuvette specification: 10 mm × 10 mm.

Mass spectrometry

High resolution electrospray ionization time-of-flight (HRESI-TOF) mass spectra were measured in the positive/negative ion mode on a Bruler Daltonic microTOF focus spectrometer.

Abbreviations

DMSO = dimethyl sulfoxide, TBA = tetrabutylammonium.

NMR, fluorescence, and HRMS studies

Figure S1. ¹H NMR spectrum (600 MHz) of **1** in DMSO- d_6 at 298K.

Assessing binding constants through NMR titration (Figure S3):

$$[H] + [G] \xrightarrow{K_1} [HG] \qquad K_1 = [HG]/([H][G])$$
$$[HG] + [G] \xrightarrow{K_2} [HG_2] \qquad K_2 = [HG_2]/([HG][G])$$
$$[HG_2] + [HG] + [H] = [H_0]$$
$$2[HG_2] + [HG] + [G] = [G_0]$$

The initial concentrations of **1** ([H₀]) and F⁻ ([G₀]) are known and the distribution of H can be calculated by integration. Therefore, $[HG_2] = [H_0] * I_{[HG2]}/(I_{[HG2]} + I_{[HG]} + I_{[H]})$, $[HG] = [H_0] * I_{[HG]}/(I_{[HG2]} + I_{[HG]} + I_{[H]})$, $[H] = [H_0] * I_{[H]}/(I_{[HG2]} + I_{[HG]} + I_{[H]})$. Further, the concentration of [G] can be determined as $[G] = [G_0] - 2[HG_2] - [HG]$. Thereby, K_I can be obtained as $3.3 \times 10^3 \text{ M}^{-1}$ from the spectrum of **1**+1eqF⁻ (the signal of [H] in other spectra is too weak, which may cause significant errors in calculating K_I), $K_2 = 1.1(\pm 0.3) \times 10^4 \text{ M}^{-1}$ (from three independent measurements, $1.4 \times 10^4 \text{ M}^{-1}$, $1.2 \times 10^4 \text{ M}^{-1}$ and $7.2 \times 10^3 \text{ M}^{-1}$, respectively.), and $\beta_2 = K_I \times K_2 = 3.6 \times 10^7 \text{ M}^{-2}$. Considering that signal broadening can lead to integration errors, it is more appropriate to consider these binding constants as approximate values.

Figure S3. ¹H NMR (400 MHz) titration of 1 (1 mM) with F in DMSO- d_6 .

Figure S4. ¹⁹F NMR (600 MHz) spectrum of $\mathbf{1}$ (1 mM) with F⁻ (5 mM) in DMSO- d_6 .

Figure S5. ¹H NMR (600 MHz) spectra of 1+F (1 mM + 5 mM) and F alone (3 mM) in DMSO- d_6 .

Figure S6. Binding analysis curves of the fluorescence titration between **1** (150 μ M) and F in DMSO. The analysis was conducted with the help of the website "http://supramolecular.org/". The (a) 1:1, (b) full 1:2 ($K_1 \neq 4K_2$, $\delta_{\Delta HG2} \neq 2\delta_{\Delta HG}$), (c) non-cooperative 1:2 ($K_1 = 4K_2$, $\delta_{\Delta HG2} \neq 2\delta_{\Delta HG}$), (d) additive 1:2 ($K_1 \neq 4K_2$, $\delta_{\Delta HG2} = 2\delta_{\Delta HG}$), and (e) statistical 1:2 ($K_1 = 4K_2$, $\delta_{\Delta HG2} = 2\delta_{\Delta HG}$) binding models (receptor-substrate) are used for the analysis.^[2-4] Detailed information on these binding models can be found in references [2-4].

Binding model (host:guest)	K_1 (M ⁻¹)	$K_2 (\mathrm{M}^{-1})$	$\beta_2 (\mathbf{M}^{-2}) \\ (K_1 \times K_2)$	Covariance	Conclusion ^[a]
1:1	8.5(±94.8%)×10 ⁴	-	8.5×10^4	0.05	
Full (1:2)	$2.7(\pm 16\%) \times 10^3$	1.4(±20%)×10 ⁴	3.8×10 ⁷	9.5×10 ⁻³	\checkmark
Non-cooperative (1:2)	8.7(±15%)×10 ³	2.2×10 ³	1.9×10 ⁷	0.01	
Additive (1:2)	2.2(±26%)×10 ⁴	-185(±18%)	-4.1×10 ⁶	0.02	
Statistical (1:2)	$1.3(\pm 1\times 10^{11}\%)\times 10^{20}$	3.3×10 ¹⁹	4.3×10 ³⁹	0.1	

Table S1. Summary of the binding analysis of the fluorescence titration between 1 and F in DMSO.

^[a] According to the covariance values and the physical possibility, the full (1:2) binding model should be more appropriate to describe the data. Specifically, to select a more complex model, the covariance value should be at least 3 times lower than a simpler one.^[2] Thus, the full, non-cooperative and additive models are better than 1:1 and statistical modes. Since the negative value is physically impossible, the additive model can also be excluded. At last, combined with the NMR titration results which clearly indicate $K_2 > K_1$, the results of the full binding model are therefore chosen.

Figure S7. ¹H NMR (400 MHz) titration of $\mathbf{1}$ (1 mM) with Cl⁻ in DMSO- d_6 .

Figure S8. Fluorescence ($\lambda_{ex} = 300 \text{ nm}$) titration of **1** (50 µM) with Cl⁻ in DMSO.

Figure S10. Fluorescence ($\lambda_{ex} = 300 \text{ nm}$) titration of **1** (50 µM) with Br⁻ in DMSO.

Figure S12. Fluorescence ($\lambda_{ex} = 300 \text{ nm}$) titration of **1** (50 μ M) with Γ in DMSO.

Figure S14. Fluorescence ($\lambda_{ex} = 300 \text{ nm}$) titration of **1** (50 µM) with NO₃⁻ in DMSO.

Figure S15. ¹H NMR (400 MHz) titration of **1** (1 mM) with SCN⁻ in DMSO- d_6 .

Figure S16. Fluorescence ($\lambda_{ex} = 300 \text{ nm}$) titration of **1** (50 µM) with SCN⁻ in DMSO.

12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0[ppm Figure S17. ¹H NMR (400 MHz) titration of $\mathbf{1}$ (1 mM) with HSO₄⁻ in DMSO- d_6 .

Figure S18. Fluorescence ($\lambda_{ex} = 300 \text{ nm}$) titration of **1** (50 µM) with HSO₄⁻ in DMSO.

Figure S19. ¹H NMR (400 MHz) titration of $\mathbf{1}$ (1 mM) with HCO₃⁻ in DMSO- d_6 .

Figure S20. Fluorescence ($\lambda_{ex} = 300 \text{ nm}$) titration of **1** (50 µM) with HCO₃⁻ in DMSO.

Figure S21. ¹H NMR (400 MHz) titration of **1** (1 mM) with ClO_4^- in DMSO- d_6 .

Figure S22. Fluorescence ($\lambda_{ex} = 300 \text{ nm}$) titration of **1** (50 µM) with ClO₄⁻ in DMSO.

Figure S24. Fluorescence ($\lambda_{ex} = 300 \text{ nm}$) titration of **1** (50 μ M) with BF₄⁻ in DMSO.

Figure S26. Fluorescence ($\lambda_{ex} = 300 \text{ nm}$) titration of **1** (50 µM) with PF₆⁻ in DMSO.

Anion	K_{1} (M ⁻¹)	$K_2 (\mathrm{M}^{-1})$	$\beta_2 (M^{-2})$ $(K_1 \times K_2)$
F(NMR)	3.3×10^3	1.1×10^4	3.6×10 ⁷
F ⁻ (fluorescence)	2.7×10^3	1.4×10^4	3.8×10^7
Cl	_[a]	_[a]	[a]
Br	_[a]	_[a]	_[a]
Г	[a]	[a]	[a]
NO ₃ ⁻	[a]	[a]	[a]
SCN	_[a]	_[a]	[a]
HSO ₄	_[a]	_[a]	[a]
HCO ₃	_[a]	_[a]	_[a]
ClO ₄	_[a]	_[a]	_[a]
BF_{4}^{-}	_[a]	_[a]	_[a]
PF_6^-	_[a]	_[a]	[a]

Table S2. Summary of stability constants of [1-anion] complexes in DMSO.

^[a] Spectral changes are too small to determine the corresponding stability constants, *i.e.* stability constants are extremely small.

•

Figure S27. Full 1 H- 1 H COSY (400 MHz) spectrum of **1** (2 mM) in DMSO- d_{6} at 298 K.

Figure S28. ¹H-¹H COSY (400 MHz) spectrum of **1** (2 mM) in DMSO- d_6 at 298 K, showing the COSY correlations of H₂ \leftrightarrow H₄ and H₁ \leftrightarrow H₅.

Figure S29. Full ¹H-¹H NOESY (400 MHz) spectrum of $\mathbf{1}$ (2 mM) in DMSO- d_6 at 298 K.

Figure S30. ¹H-¹H NOESY (400 MHz) spectrum of **1** (2 mM) in DMSO- d_6 at 298 K, showing the NOE correlation of H₁ \leftrightarrow H₄.

Figure S31. Full ¹H-¹H COSY (600 MHz) spectrum of $1+2eqF^{-}$ (2 mM + 4 mM) in DMSO- d_6 at 298 K.

Figure S32. ¹H-¹H COSY (600 MHz) spectrum of $1+2eqF^-$ (2 mM + 4 mM) in DMSO- d_6 at 298 K, showing the COSY correlations of $H_2 \leftrightarrow H_4$ and $H_1 \leftrightarrow H_5$.

Figure S33. Full ¹H-¹H NOESY (600 MHz) spectrum of $1+2eqF^{-}$ (2 mM + 4 mM) in DMSO- d_6 at 298 K.

Figure S34. HRMS (ESI-TOF) of 1+10eqF (m/z calcd for $C_{100}H_{144}N_8O_{14}F_2^{2-}$ $[1+2F+2H_2O]^{2-} = 859.5391$, found 859.5347. a) full spectrum, b) target signals, c) and d) theoretical isotopic distribution pattern of the target signals. The red text is the translation of the corresponding Chinese characters.

and 1+2.5eqF in DMSO- d_6 .

Figure S36. Full ¹H NMR spectra of **1**, **1**+3eqF⁺+150eq other anions (Cl⁻, Br⁻, I⁻, NO₃⁻, SCN⁻, HCO₃⁻, ClO₄⁻, BF₄⁻, and PF₆⁻), and **1**+2.5eqF⁻ in DMSO- d_6 . The concentration of **1** is 1 mM.

Reference

[1] C. Mao, R. Wu, N. Chen, H. Zheng, Y. Cai, L. Kong and X. Hu, Org. Chem. Front., 2024, **11**, 3348-3357.

- [2] D. B. Hibbert and P. Thordarson, Chem. Commun., 2016, 52, 12792-12805.
- [3] P. Thordarson, Chem. Soc. Rev., 2011, 40, 1305–1323.

[4] E. N., Howe, M. Bhadbhade and P. Thordarson, J. Am. Chem. Soc., 2014, 136, 7505-7516.