Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

1 0

1 . .

..

Supporting Information

Sodium trifluoromethanesulfinate-mediated photocatalytic aerobic oxidative esterification of aromatic aldehydes and alcohols

Yong Liu,^a Xianjin Zhu,^a Yue Zhang,^a Zhengyi Yi,^a Xiaobo Yang^{*b} and Hua Fu^{*a}

^{*a*}Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. E-mail: fuhua@mail.tsinghua.edu.cn

^bInstitute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, 110034, P. R. China. E-mail: bxy1223@gmail.com; yangxb@synu.edu.cn

Table of Contents

DA

1. General information	P2
2. Investigations of the reaction conditions	P3
3. General Experimental procedures	P7
4. Investigations on the reaction mechanism	P8
5. Characterization data of the products	P14
6. References	P28
7. NMR spectra of products 3a-3al	P30

1. General information

A. Materials and general procedures

All reagents and solvents were purchased from commercial suppliers Adamas, Bide, TCI, J&K Chemical, Energy Chemical and Meryer, and they were directly used without further purification. CF₃SO₂Na (purity \geq 99%) was purchased from Shandong xiya reagents, PhSO₂Na (purity \geq 99%) and EtSO₂Na (purity \geq 99%) were purchased from Bide. All reactions were conducted in oven-dried reaction vessel under O₂ atmosphere (purity \geq 99.99%) unless otherwise mentioned.

B. Analytical methods

Gas chromatographic-mass spectrometric (GC-MS) analysis was acquired on a JEOL JMS-Q1050GC system equipped with a flame-ionization detector. ¹H NMR and ¹³C NMR spectra were recorded on a JEOL ECS-400 or JNM-ECA 600 spectrometers. Chemical shifts were reported in parts per million (ppm), ¹H NMR chemical shifts were internally referenced to tetramethylsilane (TMS) (¹H NMR: TMS references at 0.00 ppm) and residual proton signals of solvents (¹H NMR: CDCl₃ at 7.26 ppm, and DMSO-*d*₆ at 2.50 ppm), and ¹³C NMR chemical shifts were internally referenced to carbon signals of solvents (¹H NMR: CDCl₃ at 7.26 ppm, and DMSO-*d*₆ at 2.50 ppm), and ¹³C NMR chemical shifts were internally referenced to carbon signals of solvents (¹C NMR: CDCl₃ at 77.16 ppm, DMSO-*d*₆ at 39.52 ppm). Coupling constants (*J*) were reported in Hz with the following splitting abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, and br = broad. High resolution mass spectroscopic data of the products were collected on an Agilent Technologies 6540 UHD Accurate-Mass Q-TOF LC/MS (ESI). Chromatographic purification of products was accomplished by column chromatography on silica gel (Qingdao Haiyang, 200-300 mesh).

2. Investigations of the reaction conditions

СНО	CF ₃ SO ₂ Na (25 mol%) MeOH (15 eq)	OMe
1a	hv (X nm) EA (0.5 mL) O ₂ , rt, 12 h	2a
Entry	Light source (X nm)	Yield (%) ^b
1	400	84
2	dark	nr
3	360	46
4	380	73
5	420	np
6	450	np
7	White light	trace

Table S1 Different light sources for the esterification reaction^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), CF₃SO₂Na (25 mol%), MeOH (15 eq), ethyl acetate (EA) (0.5 mL) under O₂ atmosphere and 3 W light irradiation at room temperature for 12 h. The yields were determined by ¹H NMR using *p*-nitrotoluene as the internal standard

СНО	CF ₃ SO ₂ Na (25 mol%) MeOH (15 eq)	OMe
1a	LED (400-405 nm) Solvent (0.5 mL) O ₂ , rt, 12 h	2a
Entry	Solvent	Yield (%) ^b
1	EA	84
2	MeCN	59
3	CH_2Cl_2	74
4	THF	76
5	DCE	73
6	Acetone	np
7	Dioxane	np
8	DMF	nr
9	DMSO	nr

Table S2 Different solvents for the esterification reaction^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), CF_3SO_2Na (25 mol%), MeOH (15 eq), solvent (0.5 mL) under O_2 atmosphere and 3 W light irradiation at room temperature for 12 h. The yields were determined by ¹H NMR using *p*-nitrotoluene as the internal standard.

СНО	CF ₃ SO ₂ Na (25 mol%) MeOH (15 eq)	OMa	
1a	LED (400-405 nm) EA (X mL) O ₂ , rt, 12 h	2a	
Entry	Solvent dosage (X mL)	Yield (%) ^b	
1	0.25	78	
2	0.5	84	
3	0.75	79	
4	1.0	72	

Table S3 Different solvent dosages for the esterification reaction^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), CF₃SO₂Na (25 mol%), MeOH (15 eq), EA (X mL) under O₂ atmosphere and 3 W light irradiation at room temperature for 12 h. The yields were determined by ¹H NMR using *p*-nitrotoluene as the internal standard

СНО	CF ₃ SO ₂ Na (25 mol%) MeOH (X eq)	OMe
1a	LED (400-405 nm) EA (0.5 mL) O ₂ , rt, 12 h	2a
Entry	MeOH dosage (X eq)	Yield (%) ^b
1	9	59
2	12	75
3	15	84
4	18	76
5	21	77
6	24	57

Table S4 Different methanol dosages for the esterification reaction^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), CF₃SO₂Na (25 mol%), MeOH (X eq), EA (0.5 mL) under O₂ atmosphere and 3 W light irradiation at room temperature for 12 h. The yields were determined by ¹H NMR using *p*-nitrotoluene as the internal standard

	CHO CF ₃ SO ₂ Na (X mol%) MeOH (15 eq)	OMe
1a	LED (400-405 nm) EA (0.5 mL) O ₂ , rt, 12 h	2a
Entry	CF ₃ SO ₂ Na loading (X mol %)	Yield (%) ^b
1	5	23
2	10	36
3	25	84
4	50	76
5	75	53
6	100	37

Table S5 Different CF₃SO₂Na loadings for the esterification reaction^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), CF₃SO₂Na (X mol%), MeOH (15 eq), EA (0.5 mL) under O₂ atmosphere and 3 W light irradiation at room temperature for 12 h. The yields were determined by ¹H NMR using *p*-nitrotoluene as the internal standard.

CHC	Cat. (25 mol%) MeOH (15 eq)	OMe
	۔ blue LED (400-405 nm) EA (0.5 mL)	
1a	O ₂ , rt, 12 h	2a
Entry	Cat. (25 mol %)	Yield (%) ^b
1	MeSO ₂ Na	nr
2	CF ₃ SO ₃ Na	nr
3	PhSO ₂ Na	np
4	EtSO ₂ Na	np
5	CF ₃ SOC1	np

Table S6 Different catalyst for the esterification reaction^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), CF₃SO₂Na (25 mol%), MeOH (15 eq), EA (0.5 mL) under O₂ atmosphere and 3 W light irradiation at room temperature for 12 h. The yields were determined by ¹H NMR using *p*-nitrotoluene as the internal standard.

СНО	CF ₃ SO ₂ Na (25 mol%) MeOH (15 eq)	OMe
1a	LED (400-405 nm) EA (0.5 mL) O ₂ , rt, X h	2a
Entry	Reaction time (X h)	Yield (%) ^b
1	4	64
2	8	79
3	12	84
4	24	85

Table S7 Different reaction time for the esterification reaction^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), Cat. (25 mol%), MeOH (15 eq), EA (0.5 mL) under O₂ atmosphere and 3 W light irradiation at room temperature. The yields were determined by ¹H NMR using *p*-nitrotoluene as the internal standard.

3. General experimental procedures

3.1 Experimental procedures

General procedure A

Aromatic aldehyde (0.2 mmol, 1.0 equiv), sodium trifluoromethanesulfinate (25 mol%), MeOH (120 uL, 15 equiv) and ethyl acetate (0.5 mL) were added to an oven-dried reaction tube equipped with magnetic stirring bar, and the reaction tube was irradiated with 3 W LED (400-405 nm) for 12 h under O₂ atmosphere (1 atm). After the reaction was completed, solution was concentrated under reduced pressure, and the residue was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1-1:2) to give the corresponding ester.

General procedure B

Aromatic aldehyde (0.2 mmol, 1.0 equiv), sodium trifluoromethanesulfinate (25 mol%), R'OH (2.0 mmol, 10 equiv) and ethyl acetate (0.5 mL) were added to an oven-dried reaction tube equipped with magnetic stirring bar, and the reaction tube was irradiated with 3 W LED (400-405 nm) for 12 h under O_2 atmosphere (1 atm). After the reaction was completed, solution was concentrated under reduced pressure, and the residue was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give the corresponding ester.

3.2 Scale-up reaction for the oxidative esterification

4-Bromobenzaldehyde (5.0 mmol, 925 mg, 1.0 equiv), sodium trifluoromethanesulfinate

(25 mol%, 195 mg), MeOH (75 mmol, 2.4 g, 15 equiv) and ethyl acetate (12.5 mL) were added to an oven-dried reaction vessel (50 mL) equipped with magnetic stirring bar, and the reaction vessel was irradiated with 3 W LED (400-405 nm) for 24 h under O_2 atmosphere (1 atm). After the reaction was completed, the resulting solution was concentrated under reduced pressure, and the residue was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give product **3l** in 61% yield.

Figure S1 Scale-up reaction for the esterification of 4-bromobenzaldehyde and MeOH

4. Investigations on the reaction mechanism

4.1 Control experiments

In order to explore the possible mechanism of the present transformation, some control experiments were conducted as follows.

4.1.1 Investigation of atmosphere

Benzaldehyde (**1a**, 0.2 mmol, 1.0 equiv), sodium trifluoromethanesulfinate (25 mol%), MeOH (3.0 mmol, 15 equiv) and ethyl acetate (0.5 mL) were added to an oven-dried reaction tube equipped with magnetic stirring bar, and the reaction tube was irradiated with 3 W LED (400-405 nm) for 12 h under Ar atmosphere. GCMS showed that only trace amount of (dimethoxymethyl)benzene (**4a**) was found without **3a** appearing.

Benzoic acid (5, 0.2 mmol, 1.0 equiv), sodium trifluoromethanesulfinate (25 mol%), MeOH (3.0 mmol, 15 equiv) and ethyl acetate (0.5 mL) were added to an oven-dried reaction tube equipped with magnetic stirring bar, and the reaction tube was irradiated with 3 W LED (400-405 nm) for 12 h under O₂ atmosphere. GCMS showed that no **3a** was foundd. When benzaldehyde dimethyl acetal (**4a**) was used as the reactant, 60% yield of **3a** was obtained, which showed that benzaldehyde dimethyl acetal (**4a**) maybe an intermediate in the reaction.

4.1.3 Control experiment of precatalyst CF₃SO₂Na

Benzaldehyde (**1a**, 0.2 mmol, 1.0 equiv), MeOH (3.0 mmol, 15 equiv) and ethyl acetate (0.5 mL) were added to an oven-dried reaction tube equipped with magnetic stirring bar, and the reaction tube was irradiated with 3 W LED (400-405 nm) for 12 h under O₂ atmosphere. GCMS showed that no **3a** and **4a** were found. The result indicated that precatalyst CF₃SO₂Na was indispensable in this transformation. The UV-vis absorption spectrum of CF₃SO₂Na and CF₃SO₄Na was recorded in our previous work.¹

4.1.4 Control experiment in the absence of alcohol

Benzaldehyde (**1a**, 0.2 mmol, 1.0 equiv), sodium trifluoromethanesulfinate (25 mol%) and ethyl acetate (0.5 mL) were added to an oven-dried reaction tube equipped with magnetic stirring bar, and the reaction tube was irradiated with 3 W LED (400-405 nm) for 12 h under O₂ atmosphere. GCMS showed that benzoic acid (**5**) was obtained in 71% yield.

4.1.5 Other control experiments

(i) Benzaldehyde (**1a**, 0.2 mmol, 1.0 equiv), MeOH (3.0 mmol, 15 equiv) sodium trifluoromethanesulfinate (25 mol%) and ethyl acetate (0.5 mL) were added to an ovendried reaction tube equipped with magnetic stirring bar, and the reaction tube was stirred without light for 12 h under O_2 atmosphere. GCMS showed that only trace amount of **4a** was detected.

(ii) Sodium trifluoromethanesulfinate (0.05 mmol) and ethyl acetate (0.5 mL) were added to an oven-dried reaction vessel equipped with magnetic stirring bar, and the reaction vessel was irradiated with 3 W LED (400-405 nm) for 8 h under O₂ atmosphere. After the reaction was completed, the resulting solution was detected by ¹⁹F NMR spectrometer. The result showed that the CF₃SO₂Na (**A**) converted into pentacoordinate sulfide **B**. When benzaldehyde (1a, 0.2 mmol) was added to the above resulting solution, and the solution was treated without light for another 12 h under O_2 atmosphere, GCMS showed that only trace amount of **4a** was detected. (iii) When the reaction system was irradiated with 3 W LED (400-405 nm) for another 12 h under O_2 atmosphere, 86% yield of **3a** was found. The result indicates light is essential for formation of **3a**.

C 1a	HO + MeC 2a	(0H (15 eq) — 1	CF ₃ SO ₂ Na (25 r LED (400-405 MeCOOEt (0.4 O ₂ (x equiv), rf	mol%) nm) 5 mL) c, 12 h	OMe OMe 4a	O OMe 3a	
O ₂ (equiv)	1	2	4	10	20	30	40
Yield of 4a	9%	23%	37%	40%	23%	10%	0
Yield of 3a	0%	0%	0%	0%	20%	41%	65%

4.2 Investigation of oxygen dosage

Benzaldehyde (**1a**) (0.2 mmol, 1.0 equiv), MeOH (**2a**) (3.0 mmol, 15 equiv), sodium trifluoromethanesulfinate (25 mol%) and ethyl acetate (0.5 mL) were added to an ovendried reaction tube equipped with magnetic stirring bar, and the reaction tube was irradiated with 3 W LED (400-405 nm) for 12 h with different O₂ dosage. Acetal (**4a**) gradually reduced and ester (**3a**) gradually increased with further increase of O₂ dosage. Note: Inject oxygen into the tube with a syringe after vacuumizing a reaction tube (Calculation method of the oxygen dosage: At first calculated the molar amount of oxygen, and then calculated the mass of oxygen. According to the density of oxygen (about 1.429 mg/mL under one atmosphere), the corresponding volume of oxygen under one atmosphere was calculated under one atmosphere. Finally, oxygen was extracted with a syringe under one atmosphere and injected into the tube.)

4.3 Radical quenching experiment

Benzaldehyde (**1a**, 0.2 mmol, 1.0 equiv), sodium trifluoromethanesulfinate (25 mol%), MeOH (3.0 mmol, 15 equiv), 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO, 3.0 equiv) and ethyl acetate (0.5 mL) were added to an oven-dried reaction vessel equipped with

magnetic stirring bar, and the reaction vessel was irradiated with 3 W LED (400-405 nm) for 12 h under O_2 atmosphere. No desired product **3a** or intermediate **4a** was detected by TLC and GC-MS, indicating that the reaction was completely inhibited, and a radical progress was involved in this transformation.

4.4 Singlet oxygen inhibition experiment

Benzaldehyde (**1a**, 0.2 mmol, 1.0 equiv), sodium trifluoromethanesulfinate (25 mol%), MeOH (120 uL,15 equiv), triethylenediamine (DABCO) (2.0 equiv) and ethyl acetate (0.5 mL) were added to an oven-dried reaction vessel equipped with magnetic stirring bar, and the reaction vessel was irradiated with 3 W LED (400-405 nm) for 12 h under O_2 atmosphere. No desired product **3a** or intermediate **4a** was detected by TLC and GC-MS, DABCO as a singlet oxygen quencher successfully suppressed the reaction, indicating the presence of singlet oxygen species in the reaction.

4.5 Superoxide radical anion inhibition experiment

Benzaldehyde (**1a**, 0.2 mmol, 1.0 equiv), sodium trifluoromethanesulfinate (25 mol%), MeOH (3.0 mmol, 15 equiv), 1,4-benzoquinone (2.0 equiv) and ethyl acetate (0.5 mL) were added to an oven-dried reaction vessel equipped with magnetic stirring bar, and the reaction vessel was irradiated with 3 W LED (400-405 nm) for 12 h under O_2 atmosphere. No desired product **3a** or intermediate **4a** was detected by TLC and GC-MS, 1,4benzoquinone as a superoxide radical anion inhibitor successfully suppressed the reaction, indicating the presence of superoxide radical anion species in the reaction.

4.6 The on/off experiments with LED (400-405 nm)

Benzaldehyde (**1a**) (0.2 mmol, 1.0 equiv), sodium trifluoromethanesulfinate (25 mol%), MeOH (**2a**) (3.0 mmol, 15 equiv) and ethyl acetate (0.5 mL) were added to an oven-dried reaction vessel equipped with magnetic stirring bar, and the reaction vessel was irradiated with 3 W LED (400-405 nm) under O_2 atmosphere. The process of photocatalytic reaction with and without light was monitored by GC-MS (Figure S2).

Figure S2 Time profile of the photocatalytic reaction with and without visible light using 1a and 2a as the substrates under the standard conditions.

4.7 Synthesis of benzocaine (3al)

tert-Butyl (4-formylphenyl)carbamate (**1ac**) (0.2 mmol, 44.2 mg, 1.0 equiv), EtOH (3.0 mmol, 10 equiv) and ethyl acetate (0.5 mL) were added to an oven-dried reaction tube equipped with magnetic stirring bar, and the reaction tube was irradiated with 3 W LED (400-405 nm) for 12 h under O₂ atmosphere. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3ak** as a white solid (32.9 mg, 62%).

Trifluoroacetic acid (141 mg, 2.0 mmol, 10 equiv) was added to a solution of ethyl 4-((*tert*-butoxycarbonyl) amino) benzoate (**3ak**) (0.124 mmol, 32.9 mg, 1.0 equiv) in CH₂Cl₂ (0.1M) at 0 °C and stir for 2 h. The excess reagent and solvent were removed under reduced pressure, and the solution was extracted with dichloromethane (2×3 mL) after neutralizing with sat. NaHCO₃ solution. The organic phase was dried over anhydrous Na₂SO₄ and concentrated, and the residue was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 6:1) to give **3al** (19.6 mg) in 96% yield.

5. Characteriation data of products 3a-3aj

Benzoic acid methyl ester (**3a**):² Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3a** as a colorless oil (19.9 mg, 73%). ¹H and ¹³C NMR of **3a** is identical with the spectra of the known compound. ¹H NMR (400 MHz, chloroform-*d*) δ 8.05 - 8.02 (m, 2H), 7.56 - 7.49 (m, 1H), 7.45 - 7.39 (q, J = 7.1 Hz, 2H), 3.90 (s, 3H).¹³C NMR (100 MHz, chloroform-*d*) δ 167.19, 133.01, 130.23, 129.65, 128.45, 52.18. EI-MS of C₈H₈O₂ (**3a**): M⁺ m/z 136.

Methyl 2-methylbenzoate (**3b**):³ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3b** as a colorless oil (18.9 mg, 63%). ¹H and ¹³C NMR of **3b** is identical with the spectra of the known compound.

¹H NMR (400 MHz, chloroform-*d*) δ 7.93 – 7.87 (m, 1H), 7.38 (td, J = 7.8, 1.6 Hz, 1H), 7.23 (m, 2H), 3.88 (s, 3H), 2.59 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 168.15, 140.28, 132.06, 131.78, 130.66, 129.61, 125.78, 51.88, 21.82. EI-MS of C₉H₁₀O₂ (**3b**): M⁺ m/z 150.

Methyl 3-methylbenzoate (3c):³ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give 3c as a white solid (21.3 mg, 71%). ¹H and ¹³C NMR of 3c is identical with the spectra of the known compound.

¹H NMR (400 MHz, chloroform-*d*) δ 7.89 – 7.79 (m, 2H), 7.31 (dt, J = 15.0, 7.6 Hz, 2H), 3.89 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 167.21, 138.12, 133.55, 130.39, 130.15, 128.23, 126.75, 51.81, 21.12.

EI-MS of C₉H₁₀O₂ (**3c**): M^+ m/z 150.0.

Methyl 4-methylbenzoate (3d):² Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3d** as a white solid (19.8 mg, 66%). ¹H and ¹³C NMR of **3d** is identical with the spectra of the known compound.

¹H NMR (400 MHz, chloroform-*d*) δ 7.94 – 7.90 (m, 2H), 7.24 – 7.19 (m, 2H), 3.88 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 168.16, 140.29, 132.06, 131.78, 130.66, 129.61, 125.79, 51.89, 21.83.

EI-MS of C₉H₁₀O₂ (**3d**): M⁺ m/z 150.0.

Methyl 4-*(tert-butyl)* benzoate (3e):⁴ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give 3e as a colorless oil (28.8 mg, 75%). ¹H and ¹³C NMR of 3e is identical with the spectra of the known compound.

¹H NMR (400 MHz, chloroform-*d*) δ 7.96 (dd, J = 8.5, 4.8 Hz, 2H), 7.45 (dd, J = 8.8, 4.7 Hz, 2H), 3.89 (s, 3H), 1.33 (s, 9H). ¹³C NMR (100 MHz, chloroform-*d*) δ 167.27, 156.64, 129.53, 127.45, 125.44, 52.06, 35.16, 31.21. EI-MS of C₁₂H₁₆O₂ (**3e**): M⁺ m/z 1 192.

Methyl 4-methoxybenzoate (**3f**):² Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3f** as a colorless oil (27.9 mg, 84%). ¹H and ¹³C NMR of **3f** is identical with the spectra of the known compound.

¹H NMR (400 MHz, chloroform-*d*) δ 8.03–7.93 (m, 2H), 6.97 – 6.84 (m, 2H), 3.88 – 3.86 (m, 3H), 3.86–3.83 (m, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 166.97, 163.41, 131.68, 122.67, 113.68, 55.50, 51.97.

EI-MS of $C_9H_{10}O_3$ (**3f**): M⁺ m/z 166.

Methyl 3,4-dimethoxybenzoate (**3g**):³ Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3g** as a white solid (29.8 mg, 76%). ¹H and ¹³C NMR of **3g** is identical with the spectra of the known compound.

¹H NMR (400 MHz, chloroform-*d*) δ 7.67 (dt, J = 8.5, 1.8 Hz, 1H), 7.53 (t, J = 1.8 Hz, 1H), 6.87 (dd, J = 8.4, 1.4 Hz, 1H), 3.92 (t, J = 1.6 Hz, 6H), 3.88 (d, J = 1.5 Hz, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 166.98, 153.01, 148.66, 123.66, 122.75, 111.99, 110.30, 56.09, 52.09.

EI-MS of $C_{10}H_{12}O_4$ (**3g**): M⁺ m/z 196.

Methyl 4-fluorobenzoate (**3h**):² Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3h** as a colorless oil (24.4 mg, 79%). ¹H and ¹³C NMR of **3h** is identical with the spectra of the known compound.

¹H NMR (400 MHz, chloroform-*d*) δ 8.04–8.00 (m, 2H), 7.10 – 7.05 (m, 2H), 3.88 (d, J = 2.7 Hz, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 167.07, 166.20, 164.55, 132.23, 132.14, 126.47, 126.44, 115.68, 115.46, 52.25. ¹⁹F NMR (400 MHz, chloroform-*d*) δ - 105.73.

EI-MS of C₈H₇FO₂ (**3h**): M⁺ m/z 154.

Methyl 4-chlorobenzoate (3i):² Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3i** as a white solid (31.7 mg, 93%). ¹H and ¹³C NMR of **3i** is identical with the spectra of the known compound.

¹H NMR (400 MHz, chloroform-*d*) δ 8.08 – 7.83 (m, 2H), 7.48 – 7.29 (m, 2H), 3.89 (s, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 166.32, 139.46, 131.07, 128.80, 128.66, 52.37. EI-MS of C₈H₇ClO₂ (**3i**): M⁺ m/z 170.

Methyl 2-bromobenzoate (**3j**):⁵ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3j** as a white solid (35.7 mg, 83%). ¹H and ¹³C NMR of **3j** is identical with the spectra of the known compound.

¹H NMR (400 MHz, chloroform-*d*) δ 7.78 (td, J =7.3, 2.2 Hz, 1H), 7.68 – 7.59 (m, 1H),

7.41 – 7.28 (m, 2H), 3.92 (d, J =7.1 Hz, 3H). ¹³C NMR (100 MHz, chloroform-*d*) δ 166.73, 134.44, 132.68, 132.21, 131.40, 127.25, 121.75, 52.58. EI-MS of C₈H₇BrO₂ (**3j**): M⁺ m/z 214, 216.

Methyl 3-bromobenzoate (3k):³ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3k** as a white solid (34.0 mg, 79%). ¹H and ¹³C NMR of **3k** is identical with the spectra of the known compound.

¹H NMR (400 MHz, chloroform-*d*) δ 8.19 (d, J = 31.6 Hz, 1H), 8.04 – 7.87 (m, 1H), 7.69 (d, J =25.9 Hz, 1H), 7.44 – 7.11 (m, 1H), 4.23–3.56 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.90, 136.00 (d, J =6.5 Hz), 132.73 (d, J =6.1 Hz), 132.16, 130.11, 128.28 (d, J =6.7 Hz), 122.54, 52.58.

EI-MS of C₈H₇BrO₂ (**3k**): M⁺ m/z 214, 216.

Methyl 4-bromobenzoate (**31**):² Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **31** as a white solid (32.3 mg, 75%). ¹H and ¹³C NMR of **31** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 – 7.76 (m, 1H), 7.69 – 7.61 (m, 1H), 7.39 – 7.26 (m, 1H), 3.92 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.73, 134.44, 132.68, 132.21, 131.40, 127.25, 121.75, 52.58. EI-MS of C₈H₇BrO₂ (**3**I): M⁺ m/z 214, 216.

Methyl 2-iodobenzoate (3m):⁵ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3m** as a white solid (44.0 mg, 84%). ¹H and ¹³C NMR of **3m** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.98 – 7.94 (m, 1H), 7.83 – 7.73 (m, 1H), 7.42 – 7.34 (m, 1H), 7.19 – 7.09 (m, 1H), 3.91 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.05, 141.41, 135.14, 132.77, 131.04, 128.00, 94.20, 52.61.

EI-MS of C₈H₇IO₂ (**3m**): M⁺ m/z 262.

Methyl 4-iodobenzoate (**3n**):⁵ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3n** as a white solid (45.1 mg, 86%). ¹H and ¹³C NMR of **3n** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.76 (m, 2H), 7.73 (t, J = 6.2 Hz, 2H), 3.89 (s, 3H).¹³C NMR (100 MHz, Chloroform-*d*) δ 166.70, 137.81, 131.13, 129.69, 100.84, 52.40.

EI-MS of C₈H₇IO₂ (**3n**): M⁺ m/z 262.

Methyl 3-iodo-4-methylbenzoate (30):⁶ Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **30** as a white solid (34.2 mg, 62%). ¹H and ¹³C NMR of **30** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.65 – 8.27 (m, 1H), 8.12 – 7.66 (m, 1H), 7.28 (dt, J = 13.4, 6.7 Hz, 1H), 4.14 – 3.42 (m, 3H), 2.84 – 1.96 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.69, 146.89, 140.11, 129.61, 129.38, 100.58, 52.33, 28.45 EI-MS of C₉H₉IO₂ (**3o**): M⁺ m/z 276.

Methyl 2-chloro-6-fluorobenzoate (3p):⁷ Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give 3p as a white solid (20.4 mg, 54%). ¹H and ¹³C NMR of 3p is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (dd, J = 8.8, 1.9 Hz, 1H), 7.69 (dd, J = 8.3, 1.9 Hz, 1H), 7.62 (dd, J = 8.2, 6.6 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.30, 160.33, 157.86, 133.74, 131.66, 131.60, 126.21, 126.17, 117.56, 117.32, 114.89, 114.68, 52.38. ¹⁹F NMR (400 MHz, Chloroform-*d*) δ -105.92.

EI-MS of C₈H₆ClFO₂ (**3p**): M⁺ m/z 188.

Methyl 2-bromo-6-fluorobenzoate (**3q**):⁷ Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3q** as a light yellow solid (28.0 mg, 60%). ¹H and ¹³C NMR of **3q** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (dd, J = 8.8, 6.0 Hz, 1H), 7.39 (dd, J = 8.3, 2.5 Hz, 1H), 7.06 (ddd, J = 8.8, 7.6, 2.6 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.64, 165.20, 162.64, 133.52, 133.43, 128.03, 128.00, 123.27, 123.18, 122.11, 121.86, 114.73, 114.52, 52.62. ¹⁹F NMR (400 MHz, Chloroform-*d*) δ -105.66. EI-MS of C₈H₆BrFO₂ (**3q**): M⁺ m/z 232, 234.

Methyl 2-bromo-4-fluorobenzoate (3r):⁷ Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum

ether/ethyl acetate = 9:1) to give $3\mathbf{r}$ as a white solid (27.5 mg, 59%). ¹H and ¹³C NMR of $3\mathbf{r}$ is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 (dd, J = 8.9, 6.1 Hz, 1H), 7.39 (dd, J = 8.4, 2.5 Hz, 1H), 7.12 – 7.02 (m, 1H), 3.91 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.64, 165.20, 162.64, 133.52, 133.43, 128.03, 128.00, 123.27, 123.18, 122.11, 121.86, 114.73, 114.52, 52.62⁻¹⁹F (400 MHz, Chloroform-*d*) δ -105.69.

EI-MS of C₈H₆BrFO₂ (**3r**): M⁺ m/z 232, 234.

Methyl [1,1'-biphenyl]-4-carboxylate (3s):⁸ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3s** as a white solid (36.5 mg, 86%). ¹H and ¹³C NMR of **3s** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 8.06 (m, 2H), 7.72 – 7.58 (m, 4H), 7.46 (m, 2H), 7.42 – 7.36 (m, 1H), 3.94 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.12, 145.73, 140.10, 130.21, 129.04, 128.94, 128.25, 127.39, 127.16, 52.25. EI-MS of C₁₄H₁₂O₂ (**3**s): M⁺ m/z 212.

Methyl 4-(trifluoromethyl)benzoate (3t):² Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give 3t as a white solid (31.0 mg, 76%). ¹H and ¹³C NMR of 3t is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 – 8.24 (m, 2H), 8.21 – 8.17 (m, 2H), 3.96 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.26, 150.64, 135.58, 130.79, 123.62, 52.90. ¹⁹F NMR (400 MHz, Chloroform-*d*) δ -62.91.

EI-MS of C₉H₇F₃O₂ (**3**t): M^+ m/z 204.

Methyl 4-cyanobenzoate (**3u**):² Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3u** as a white solid (28.0 mg, 59%). ¹H and ¹³C NMR of **3u** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 – 8.08 (m, 2H), 7.80 – 7.69 (m, 2H), 3.94 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.53, 134.01, 132.32, 130.19, 118.07, 116.48, 52.83.

EI-MS of C₉H₇NO₂ (**3u**): M⁺ m/z 161.

Methyl 3-nitrobenzoate (**3v**):³ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3v** as a white solid (24.3 mg, 67%). ¹H and ¹³C NMR of **3v** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.88 (d, J = 21.5 Hz, 1H), 8.52 – 8.24 (m, 2H), 7.79 – 7.53 (m, 1H), 4.00 (d, J = 22.5 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.11, 148.37, 135.41 (d, J = 4.7 Hz), 131.97, 129.78 (d, J = 4.5 Hz), 127.53 (d, J = 4.7 Hz), 124.73 (d, J = 4.8 Hz), 52.93.

EI-MS of C₈H₇NO₂ (**3v**): M⁺ m/z 181.

Methyl 4-nitrobenzoate (3w):² Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give 3w as a white solid (32.6 mg, 90%). ¹H and ¹³C NMR of 3w is identical with

the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.27 (d, J = 2.0 Hz, 1H), 8.26 (d, J = 2.2 Hz, 1H), 8.20 (d, J = 2.1 Hz, 1H), 8.18 (d, J = 2.0 Hz, 1H), 3.96 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.26, 150.64, 135.58, 130.79, 123.62, 52.90. EI-MS of C₈H₇NO₂ (**3**w): M⁺ m/z 181.

Dimethyl phthalate (3x):⁵ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give 3x as a white solid (33.0 mg, 85%). ¹H and ¹³C NMR of 3x is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.64 (m, 2H), 2H), 3.97 – 3.66 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.11, 132.01, 131.18, 128.94, 52.68. EI-MS of C₁₀H₁₀O₄ (**3x**): M⁺ m/z 194.

4-(Methoxycarbonyl) benzoic acid (3y):⁹ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate =1:2) to give 3y as a white solid (26.3 mg, 73%). ¹H and ¹³C NMR of 3y is identical with the spectra of the known compound.

1H NMR (400 MHz, DMSO- d_6) δ 8.01 (d, J = 3.9 Hz, 4H), 3.85 (s, 3H). 13C NMR (100 MHz, DMSO- d_6) δ 167.09, 166.15, 135.35, 133.68, 130.10, 129.86, 52.96.

EI-MS of C₉H₈O₄ (**3**y): M^+ m/z 180.

Methyl 4-borinobenzoate (3z):¹⁰ Prepared according to general procedure A. The

reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 1:2) to give 3z as a white solid (31.7 mg, 63%). ¹H and ¹³C NMR of 3z is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.42 (dd, J = 8.6, 1.2 Hz, 1H), 7.96 (dd, J = 8.1, 1.7 Hz, 1H), 7.48 (ddd, J = 8.8, 7.2, 1.7 Hz, 1H), 6.96 (ddd, J = 8.2, 7.3, 1.2 Hz, 1H), 3.88 (s, 3H), 1.51 (s, 9H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.64, 152.95, 142.40, 134.58, 130.93, 121.16, 118.81, 114.32, 80.55, 52.25, 28.38.

EI-MS of C₁₃H1₇NO₄ (**3z**): M⁺ m/z 251.

Methyl 3-nitrobenzoate (**3aa**):⁵ Prepared according to general procedure A. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3aa** as a white solid (29.9 mg, 77%). ¹H and ¹³C NMR of **3aa** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.66 (q, J = 2.1 Hz, 1H), 8.25 – 8.13 (m, 2H), 7.59 – 7.44 (m, 1H), 3.92 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.32, 133.89, 130.79, 130.65, 128.72, 52.45.

EI-MS of $C_{10}H_{10}O_4$ (**3aa**): M⁺ m/z 194.

Dimethyl terephthalate (3ab):³ Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3ab** as a white solid (24.3 mg, 67%). ¹H and ¹³C NMR of **3ab** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (s, 4H), 3.93 (s, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.38, 133.98, 129.64, 52.54. EI-MS of C₁₀H₁₀O₄ (**3ab**): M⁺ m/z 194.

Ethyl 4-bromobenzoate (3ac):⁴ Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3ac** as a Colorless oil (33.9 mg, 74%). ¹H and ¹³C NMR of **3ac** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 – 7.72 (m, 2H), 7.73 – 7.44 (m, 2H), 4.36 (q, J = 6.7 Hz, 2H), 1.38 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.99, 131.74, 131.18, 129.47, 127.99, 61.33, 14.38.

EI-MS of C₉H₉BrO₂ (**3ac**): M⁺ m/z 228, 230.

Propyl 4-bromobenzoate (3ad):⁴ Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give 3ad as a Colorless oil (19.9 mg, 41%). ¹H and ¹³C NMR of 3ad is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (d, J = 8.6 Hz, 2H), 7.56 (d, J = 8.5 Hz, 2H), 4.26 (t, J = 6.7 Hz, 2H), 1.77 (h, J = 7.1 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.04, 131.75, 131.18, 129.48, 127.99, 66.89, 22.14, 10.59. EI-MS of C₁₀H₁₁BrO₂ (**3ad**): M⁺ m/z 242, 244.

Isopropyl 4-bromobenzoate (**3ae**):⁴ Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3ae** as a Colorless oil (30.6 mg, 63%). ¹H and ¹³C NMR of **3ae** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.34 – 7.68 (m, 2H), 7.65 – 7.45 (m, 2H), 5.31 –

5.15 (m, 1H), 1.35 (dd, J = 6.4, 1.0 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.47, 131.68, 131.17, 129.88, 127.85, 68.85, 22.00. EI-MS of C₁₀H₁₁BrO₂ (**3ae**): M⁺ m/z 242, 244.

Isobutyl 4-bromobenzoate (**3af**):⁴ Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3af** as a white solid (33.4 mg, 65%). ¹H and ¹³C NMR of **3af** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (d, J = 8.5 Hz, 2H), 7.57 (d, J = 8.3 Hz, 2H), 4.09 (d, J = 6.5 Hz, 2H), 2.07 (dt, J = 13.3, 6.6 Hz, 1H), 1.01 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.00, 131.77, 131.17, 129.49, 128.01, 71.34, 27.95, 19.26

EI-MS of C₁₁H₁₃BrO₂ (**3af**): M⁺ m/z 256, 258

Pentyl 4-bromobenzoate (3ag):¹¹ Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3ag** as a colorless oil (32.0 mg, 59%). ¹H and ¹³C NMR of **3ag** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 – 7.85 (m, 2H), 7.56 (d, J = 8.5 Hz, 2H), 4.31 (t, J = 6.7 Hz, 2H), 1.76 (p, J = 7.0 Hz, 2H), 1.45 – 1.36 (m, 4H), 0.93 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.88, 131.39 (d, J = 59.7 Hz), 129.72, 127.85, 65.38, 28.45, 28.21, 22.30, 13.82.

EI-MS of $C_{12}H_{15}BrO_2$ (**3ag**): M⁺ m/z 270, 272.

Octyl 4-bromobenzoate (**3ah**):¹² Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3ah** as a white solid (37.0 mg, 59%). ¹H and ¹³C NMR of **3ah** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.85 (m, 2H), 7.58 – 7.52 (m, 2H), 4.30 (t, *J* = 6.7 Hz, 2H), 1.83 – 1.69 (m, 2H), 1.50 – 1.38 (m, 2H), 1.38 – 1.23 (m, 8H), 0.95 – 0.79 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.82, 131.68, 131.09, 129.73, 127.83, 65.38, 31.77, 29.22, 29.14, 28.77, 26.04, 22.58, 13.94.

HR-ESIMS: calculated for C₁₅H₂₂BrO₂ [M+H]⁺ m/z 313.0798; found 313.0794

Octan-2-yl 4-bromobenzoate (**3ai**):¹² Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3ai** as a white solid (23.2 mg, 37%). ¹H and ¹³C NMR of **3ai** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 5.14 (h, *J* = 6.2 Hz, 1H), 1.81 – 1.52 (m, 2H), 1.40 – 1.22 (m, 11H), 0.87 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.40, 131.63, 131.07, 130.13, 127.70, 72.16, 36.10, 31.72, 29.12, 25.36, 22.52, 19.97, 13.90.

HR-ESIMS: calculated for $C_{15}H_{22}BrO_2$ [M+H]⁺ m/z 313.0798; found 313.0797

Octan-3-yl 4-bromobenzoate (**3aj**): Prepared according to general procedure B. The reaction solution was purified by flash chromatography (silica gel, petroleum ether/ethyl acetate = 9:1) to give **3aj** as a white solid (23.2 mg, 37%). ¹H and ¹³C NMR of **3aj** is identical with the spectra of the known compound.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (dd, *J* = 8.7, 3.4 Hz, 2H), 7.54 (dd, *J* = 8.6, 3.2 Hz, 2H), 5.12 (m, 1H), 1.64 (dtt, *J* = 51.1, 9.5, 4.7 Hz, 2H), 1.49 – 1.16 (m, 11H), 0.97 –

0.68 (m, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 165.51, 131.67, 131.14, 129.92, 127.82, 72.21, 36.09, 31.80, 29.22, 25.47, 22.65, 20.10, 14.13. HR-ESIMS: calculated for C₁₅H₂₂BrO₂ [M+H]⁺ m/z 313.0798; found 313.0793

Ethyl 4-((tert-butoxycarbonyl) amino) benzoate (3ak):¹³ ¹H and ¹³C NMR of **3ak** is identical with the spectra of the known compound. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.96 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.8 Hz, 2H), 6.73 (s, 1H), 4.34 (q, J = 7.1 Hz, 2H), 1.51 (s, 9H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.39, 152.31, 142.72, 130.93, 124.80, 117.40, 81.26, 60.84, 28.36, 14.45.

Ethyl 4-aminobenzoate (**3al**):¹³ ¹H and ¹³C NMR of **3ak** is identical with the spectra of the known compound. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.81 (m, 2H), 6.64 – 6.58 (m, 2H), 4.30 (q, *J* = 7.1 Hz, 2H), 4.07 (s, 2H), 1.34 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 166.87, 150.97, 131.64, 120.04, 113.85, 60.41, 14.51.

6. References

- 1. X. Zhu, C. Liu, Y. Liu, H. Yang and H. Fu, Chem. Commun., 2020, 56, 12443-12446.
- H. Yu, J. Wang, Z. Wu, Q. Zhao, D. Dan, S. Han, J. Tang and Y. Wei, *Green Chem.*, 2019, 21, 4550-4554.
- J. Cheng, M. Zhu, C. Wang, J. Li, X. Jiang, Y. Wei, W. Tang, D. Xue and J. Xiao, *Chem. Sci.*, 2016, 7, 4428-4434.
- 4. Z. Zhou, S. Pi and R. Wang, Chem. Sel., 2022, 7, e202200842.
- W. Zhou, C. Xu, G. Dong, H. Qiao, J. Yang, H. Liu, L. Ding, K. Sun and W. Zhao, J. Org. Chem., 2001, 66, 8127-8134.
- L. Mdin, S. Abdullayev, A. Fnaiche, V. Vu, Gonz dez N. Suárez, H. Zeng, M. M. Szewczyk, F. Li, G. Senisterra, A. Allali-Hassani and I. Chau, *Chem. Med. Chem.*,

2021, 16, 2982-3002.

- Y. Xu, H. Chen, L. Yu, X. Peng, J. Zhang, Z. Xing, Y. Bao, A. Liu, Y. Zhao, C. Tian and Y. Liang, *Nature*, 2024, 625, 74-78.
- H. R. Tan, X. Zhou, T. Gong, H. You, Q. Zheng, S. Y. Zhao, and W. Xuan, *RSC Adv.*, 2024, 14, 364-372.
- 10. U. Streit, F. Birbaum, A. Quattropani, and C. G. Bochet, J. Org. Chem., 2013, 78, 6890-6910.
- Liu, J. Shao, C. Zhang, Y. G. Shi and S. Pan, Org. Biomol. Chem., 2014, 12, 2637– 2640.
- A. S. Pires, J. Batista, D. Murtinho, C. Nogueira, A. Karamysheva, M. Lu śa Ramos,
 B. F. Milne, N. T. Tavares, J. Gon çalves, A. C. Gon çalves and A. M. Abrantes, *Appl Organometal Chem.* 2020, 34, e5569.
- Y.-T. Xia, X. Wang, M.-H. Su, J.-Y. Zhou, D.-X. Guo, B.-P. Zhang, W.-P. Sun, C. Cui, M. Yan and Y.-X. Li, *J. Catal.*, 2024, **437**, 115676.

7. NMR Spectra of products 3a-3al

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2! f1 (ppm)

-105.92

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -24 f1 (ppm)

50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2! f1 (ppm)

Br 3ad

7,789 7,758 7,758 7,758 7,758 7,758 7,758 1,757 1,777 1,775

7.777 38 7.786 5.757 7.786 5.757 7.758 5.757 7.758 5.757 7.758 5.757 7.755 5.757 7.755 5.757 7.755 5.756 7.755 5.757 7.755 5.757 7.755 5.756 7.755 5.756 7.755 5.756 7.755 5.756 7.755 5.757 7.755 5.756 7.757 5.756 7.757 5.756 7.757 5.756 7.757 5.756 7.757 5.756 7.757 5.757 7.757 5.757 7.757 5.757 7.757 5.757 7.757 5.757 7.757 5.757 7.757 5.757 7.757 5.757 7.757 5.757 7.757

