Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Mechanochemical Silver-Catalyzed Direct H/D Exchange on Heteroarenes

Yun Jia,^{*a,b,†*} Zhi-Jiang Jiang,^{*b,†,**} Jiawei Han,^{*b,c*} Kenan Wang,^{*b*} Si-Han Xu^{*b,c*} Jian-Fei Bai,^{*b*} Jia Chen,^{*b,d*} Yifeng Han,^{*a,**} Zhanghua Gao^{*b,d,**}

- a. School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
- b. NingboTech-Cuiying Joint Laboratory of Stable Isotope Technology, School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
- c. School of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- d. Ningbo Cuiying Chemical Technology Co. Ltd., Ningbo 315100, P. R. China

(E-mail: zj.jiang@nbt.edu.cn; hanyf@zstu.edu.cn; z.gao@nbt.edu.cn)

Contents

1.	General Information	S2
2.	Experimental procedures	S3
3.	Condition Optimization	S4
4.	Additional Experiments	S6
5.	Results of Substrate deuteration	S9
6.	References	.S72

1. General Information

1) Experiments and Reagents

Unless otherwise stated, all experiments were carried out in an air atmosphere using oven-dried glassware and a magnetic stirring bar. The ball milling reaction was carried out on a Retsch MM 400 hybrid ball mill, and a MITR QM-QX planetary ball mill was used for gram-scale experiment and iterative deuteration. Stainless steel grinding jars and stainless steel grinding balls were used unless otherwise stated. Temperature is reported as the temperature of the digital display of a heat gun apparatus.

Commercially available reagents were purchased from Aladdin, Bidepharm and Leyan Chemicals and used directly without further purification unless otherwise stated. Deuterated solvents were supplied by Ningbo Cuiying Chemicals. The D_2O for the reaction was collected and transferred to the reaction in a glove box with a nitrogen atmosphere.

2) TLC and Chromatography

Analytic thin-layer chromatography (Leyan chemicals) was used for checking the formation of unexpected side reactions. Visualization was achieved by ultraviolet light (254 nm and 365 nm) and iodine staining. Flash chromatography was performed on silica gel (200-300 mesh) with the indicated solvent systems.

3) Spectroscopy Analysis

¹H NMR (400 MHz) and ¹³C-NMR (100 MHz) are recorded on a Bruker Ascend 400 spectrometer and chemical shifts are reported in ppm down field from TMS and are referenced to residual proton in CDCl₃ or DMSO-*d*₆. The spectra for deuterated substrates are reported as observed, while the integration difference less than 5% are ignored. The NMR data are reported as: s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet with *J* = coupling constant in Hz, and the deuterated position are marked as "Labelled".

The gas chromatography-mass spectroscopy (GC-MS) are recorded on an Agilent 6890N GC-system with an Agilent 5973Network Mass Selective Detector (electron ionization), and a HP-5MS column (30 m, 0.25 mm \times 0.25 μ m).

4) <u>Calculation of Deuterium Incorporation</u>

The degree of deuterium-incorporation was calculated based on both GC-MS and ¹H-NMR methods, which had been described in our previous work¹. The theoretical deuterium degree was calculated as follow.

$$D_{theo} = \frac{2 \times n(D_2 O)}{2 \times n(D_2 O) + n(thiophene)} = \frac{2 \times 5 \ mmol}{2 \times 5 \ mmol + 1 \ mmol} = 0.91$$

2. Experimental procedures

1) <u>General procedure for the mechanochemical H/D exchange of thiophenes</u>

An oven-dried 10 mL stainless steel vessel was charged with a substrate (1.0 mmol), Ag₂CO₃ (27.6 mg, 10 mol%), Johnphos **L12** (59.7 mg, 20 mol%), K₂CO₃ (138.2 mg, 1.0 equiv.) and D₂O (91 μ L, 5.0 equiv.). The stainless steel vessel was sealed with a circular silicone gasket and placed in the robotic arm of the Retsch MM 400 hybrid ball mill and ground at 30 Hz for 1 hour in a room temperature air environment. After grinding, the mixture was filtered over Celite and the residue was washed with dichloromethane (2 x 5 mL). The mixture was diluted with saturated NaCl solution (10 mL) and extracted with dichloromethane (20 mL). The combined organic phase was dried over anhydrous Na₂SO₄, sampled for GC-MS analysis and then concentrated under reduced pressure. The crude product was then purified by chromatography to afford purified product.

Figure S1 Thermo-grinding setup according to Browne's work.²

3. Condition Optimization

1) Table S1 Optimization of catalytic system.^a

entry	Ag-source	Ligand	Base	D _{MS} ^b	%Recov. ^c
1	Ag ₂ CO ₃	L12	/	0.78	71
2	/	L12	/	0.05	94
3	Ag ₂ CO ₃	Ι	/	0.02	95
4	Ag ₂ O	L12	/	0.29	93
5	AgOAc	L12	K ₂ CO ₃	0.02	70
6	AgF	L12	K ₂ CO ₃	n.d.	/
7	AgTFA	L12	K ₂ CO ₃	n.d.	/
8	AgBF ₄	L12	K ₂ CO ₃	n.d.	/
9	Ag_2SO_4	L12	K ₂ CO ₃	n.d.	/
10	Ag ₂ O	L12	K ₂ CO ₃	0.48	78
11	Ag ₂ O	L12	Na ₂ CO ₃	0.36	/
12	Ag ₂ O	L12	NaOAc	0.03	/
13	Ag ₂ O	L12	NaOH	0.02	/
14	Ag ₂ CO ₃	L12	K ₂ CO ₃	0.84	93
15	Ag ₂ CO ₃	L12	Na ₂ CO ₃	0.60	71
16	Ag ₂ CO ₃	L12	NaOH	0.43	85
17	Ag ₂ CO ₃	L12	NaOAc	0.03	88
18	Ag ₂ CO ₃	L12	K ₃ PO ₄	0.79	91
19	Ag ₂ CO ₃	L12	t-BuOK	0.35	87
20 ^d	Ag ₂ CO ₃	L12	K ₂ CO ₃	0.66	91

^a Reaction condition: Substrate (1.0 mmol), Ag-source (10 mol%), Ligand (20 mol%), Base (1.0 equiv.) and D₂O (5.0 equiv.), room temperature in 10 mL Stainless-Steel vessel with 1 ball (1.5 cm) for 30 Hz and 1 h. ^b D_{MS} was determined by GC-MS analysis. ^c %Recov. Determined by HPLC analysis. ^dSilica gel (0.2 g) added.

Ligand Examination

2) Table S2 Detailed optimization of components loading.^a

entry	Ag ₂ CO ₃ (mol%)	L12 (mol%)	K ₂ CO ₃ (equiv.)	D₂O (equiv.)	D _{MS} ^b	%Recov. ^c
1	5	20	1.0	5.0	0.82	95
2	10	20	1.0	5.0	0.84	93
3	15	20	1.0	5.0	0.83	96
4	20	20	1.0	5.0	0.82	90
5	10	5	1.0	5.0	0.79	80
6	10	10	1.0	5.0	0.78	83
7	10	15	1.0	5.0	0.82	88
8	10	20	1.0	5.0	0.84	93
9	10	30	1.0	5.0	0.82	83
10	10	50	1.0	5.0	0.84	90
11	10	20	0.5	5.0	0.80	94
12	10	20	0.8	5.0	0.80	95
13	10	20	1.0	5.0	0.84	93
14	10	20	1.2	5.0	0.81	86
15	10	20	1.5	5.0	0.81	84
16	10	20	2.0	5.0	0.79	88
17	10	20	3.0	5.0	0.74	92
18	10	20	1.0	2.0	0.59	79
19	10	20	1.0	3.0	0.68	87
20	10	20	1.0	5.0	0.84	93
21	10	20	1.0	10.0	0.84	84
22	10	20	1.0	15.0	0.83	85
23	10	20	1.0	20.0	0.87	82

^a Reaction condition: Substrate (1.0 mmol), Ag₂CO₃ (10 mol%), Johnphos (20 mol%), K₂CO₃ (1.0 equiv.), and D₂O (5.0 equiv.), r.t. in Ball-milling for 30 Hz and 1 h. ^b D_{MS} was determined by GC-MS analysis. ^c %Recov. Determined by HPLC analysis.

3) Table S3 Optimization of mechanochemical parameters.^a

entry	diameter (cm)	ball number	freq. (Hz)	t (min)	D _{MS} ^b	%Recov. ^c
1	1.5	1	30	60	0.84	93
2	1.2	1	30	60	0.76	83
3	1.2	2	30	60	0.80	88
4	1.0	2	30	60	0.74	87
5	1.0	3	30	60	0.75	90
6	1.5	1	15	60	0.56	95
7	1.5	1	15	99	0.64	91
8	1.5	1	20	60	0.72	92
9	1.5	1	20	99	0.75	88
10	1.5	1	25	60	0.77	95
11	1.5	1	25	99	0.79	89
12	1.5	1	30	45	0.75	95
13	1.5	1	30	60	0.84	93
14	1.5	1	30	99	0.84	84

^a Reaction condition: Substrate (1.0 mmol), Ag₂CO₃ (10 mol%), Johnphos (20 mol%), K₂CO₃ (1.0 equiv.), and D₂O (5.0 equiv.), r.t. under specific Ball-milling condition. ^b D_{MS} was determined by GC-MS analysis. ^c %Recov. Determined by HPLC analysis.

4. Additional Experiments

1) Gram-scale preparation in planetary miller

An oven-dried 50 mL stainless steel bowl was charged with substrate 1 (2.41 g, 15.0 mmol, 1.0 equiv.), Ag_2CO_3 (413.7 mg, 10 mol%), Johnphos (895.0 mg, 20 mol%), K_2CO_3 (2.08 g, 1.0 equiv.) and D_2O (1.36 mL, 5.0 equiv.). The stainless steel bowl was sealed with a round silicone pad and placed in the planetary ball mill and grind for 2 hours at 750 rpm under room temperature. After the grinding finished, the mixture was filtered over Celite and the residue was washed with dichloromethane (4 x 20 mL). The mixture was diluted with saturated NaCl solution (50 mL) and extracted with dichloromethane (100 mL). The combined organic phase was dried over anhydrous Na₂SO₄, sampled for GC-MS analysis and then concentrated under reduced pressure. The crude product was purified with column chromatography on silica gel, eluting with petroleum ether to afford the product 1-[d] as a white crystals (1.89 g, 79% yield).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.69 – 7.62 (m, 2H), 7.54 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.51 (dd, *J* = 3.6, 1.2 Hz, 1H), 7.41 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.34 – 7.27 (m, 1H), 7.14 (dd, *J* = 5.1, 3.6 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO- d_6) δ 7.69 – 7.63 (m, 2H), <u>7.55 (dd, J = 5.1, 1.2 Hz, 0.19H, Labelled)</u>, 7.51 (d, J = 3.6 Hz, 1H), 7.45 – 7.37 (m, 2H), 7.34 – 7.27 (m, 1H), 7.14 (t, J = 3.6 Hz, 1H).

Figure S3 ¹H NMR of 1 in DMSO-d₆

. 0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0. f1 (ppm)

2) Iterative deuteration of 1 in planetary miller

An oven-dried 50 mL stainless steel bowl was charged with a substrate 1 (0.80 g, 5.0 mmol, 1.0 equiv.), Ag_2CO_3 (137.9 mg, 10 mol%), Johnphos (298.4 mg, 20 mol%), K_2CO_3 (691.1 mg, 1.0 equiv.) and D_2O (181.0 µL, 2.0 equiv.). The stainless steel bowl was sealed with a round silicone pad and placed in the planetary ball mill and grind for 2 hours at 750 rpm under room temperature. The mixture was washed with DCM, and the solvent in filtrate was removed under vacuum. The reaction was then repeated with crude product obtained with with fresh D_2O (2.0 equiv.). After the grinding, the mixture was filtered over Celite and the residue was washed with dichloromethane (4 x 20 mL). The mixture was diluted with saturated NaCl solution (50 mL) and extracted with dichloromethane (100 mL). The combined organic phase was dried over anhydrous Na₂SO₄, sampled for GC-MS analysis and then concentrated under reduced pressure. The crude product use purified with column chromatography on silica gel, eluting with petroleum ether to afford the product 1-[d] as a white crystals (688.4 mg, 86% yield).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.69 – 7.62 (m, 2H), 7.54 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.51 (dd, *J* = 3.6, 1.2 Hz, 1H), 7.41 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.34 – 7.27 (m, 1H), 7.14 (dd, *J* = 5.1, 3.6 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.69 – 7.63 (m, 2H), <u>7.55 (d, *J* = 5.1</u> <u>Hz, 0.22H, Labelled)</u>, 7.51 (d, *J* = 3.5 Hz, 1H), 7.42 (dd, *J* = 8.5, 7.0 Hz, 2H), 7.34 – 7.27 (m, 1H), 7.15 (t, *J* = 3.6 Hz, 1H).

Figure S5 ¹H NMR spectrum comparison

5. Results of Substrate deuteration

Deuteration of 2-Phenylthiophene (1)⁴

The corresponding substrate was ground under standard condition to afford **1-[d]** as white crystals (148.5 mg, 93%) with D-incorporation 83% for 5-position by ¹H NMR; 0.84 D by GC-MS; $R_f = 0.70$ (Petroleum ether).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.69 – 7.62 (m, 2H), 7.54 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.51 (dd, *J* = 3.6, 1.2 Hz, 1H), 7.41 (dd, *J* = 8.4, 7.0 Hz, 2H), 7.34 – 7.27 (m, 1H), 7.14 (dd, *J* = 5.1, 3.6 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO- d_6) δ 7.69 – 7.63 (m, 2H), <u>7.55 (dd, J = 5.1, 1.2 Hz, 0.17H, Labelled)</u>, 7.51 (d, J = 3.6 Hz, 1H), 7.45 – 7.37 (m, 2H), 7.34 – 7.27 (m, 1H), 7.14 (t, J = 3.6 Hz, 1H).

Figure S6 ¹H NMR spectrum comparison

Figure S8 ¹H NMR of 1 in DMSO-d₆

Deuteration of 2,3-Dihydrothieno[3,4-b][1,4]dioxine (2) 4

The corresponding substrate was ground under standard condition for 99 minutes to afford **2-[d]** as transparent liquid (96.1 mg, 68%) with D-incorporation 75% for 2,5-position by ¹H NMR; 1.48 D by GC-MS; $R_f = 0.30$ (Petroleum ether/Ethyl acetate = 50/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 6.32 (s, 2H), 4.20 (s, 4H). **NMR** data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>6.32 (d, *J* = 2.0 Hz, 0.51H, Labelled)</u>, 4.20 (s, 4H).

Figure S10 ¹H NMR spectrum comparison

Figure S12 ¹H NMR of 2 in Chloroform-d

Figure S13 ¹H NMR of 2-[d] in Chloroform-d

Deuteration of Ethyl 2-thiophenecarboxylate (3) 4

The corresponding substrate was ground under standard condition to afford **3-[d]** as yellow liquid (51.2 mg, 33%) with D-incorporation 81% for 5-position by ¹H NMR; 0.81 D by GC-MS; $R_f = 0.45$ (Petroleum ether/Ethyl acetate = 25/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (dd, *J* = 3.7, 1.3 Hz, 1H), 7.54 (dd, *J* = 5.0, 1.3 Hz, 1H), 7.09 (dd, *J* = 5.0, 3.7 Hz, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H). **NMR** data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 (d, *J* = 3.7 Hz, 1H), <u>7.54</u> (dd, *J* = 5.0, 1.2 Hz, 0.19H, Labelled), 7.09 (d, *J* = 3.7 Hz, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H). Hz, 3H).

Figure S16 ¹H NMR of 3 in Chloroform-d

Figure S17 ¹H NMR of 3-[d] in Chloroform-d

Deuteration of Diethyl thiophene-3,4-dicarboxylate (4) 5

The corresponding substrate was ground under 100 °C heating for 99 minutes to afford **4-[d]** as transparent liquid (86.4 mg, 82%) with D-incorporation 62% for 2,5-position by ¹H NMR; 1.14 D by GC-MS; $R_f = 0.20$ (Petroleum ether/Ethyl acetate = 20/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (s, 2H), 4.33 (q, *J* = 7.1 Hz, 4H), 1.34 (t, *J* = 7.1 Hz, 6H).–

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>7.83 (d, *J* = 1.6 Hz, 0.76H,</u> <u>Labelled</u>), 4.33 (q, *J* = 7.1 Hz, 4H), 1.35 (t, *J* = 7.1 Hz, 6H).

Figure S20 ¹H NMR of 4 in Chloroform-d

Deuteration of Phenyl(thiophen-2-yl)methanone (5) 4

The corresponding substrate was ground under standard condition for 99 minutes to afford 5**-[d]** as yellow solid (171.0 mg, 91%) with D-incorporation 79% for 5-position by ¹H NMR; 0.72 D by GC-MS; $R_f = 0.80$ (Petroleum ether/Ethyl acetate = 10/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.83 (m, 2H), 7.73 (dd, *J* = 4.9, 1.1 Hz, 1H), 7.65 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.63 – 7.55 (m, 1H), 7.54 – 7.43 (m, 2H), 7.17 (dd, *J* = 4.9, 3.8 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.83 (m, 2H), <u>7.73 (dd, J</u> <u>= 4.9, 1.1 Hz, 0.21H, Labelled)</u>, 7.65 (d, *J* = 3.8 Hz, 1H), 7.63 – 7.54 (m, 1H), 7.54 – 7.46 (m, 2H), 7.16 (d, *J* = 3.7 Hz, 1H).

Figure S22 ¹H NMR spectrum comparison

86.0 186.4 186.8 187.2 187.6 188.0 188.4 188.8 189.2 189.6 190.0 190.4 190.8 191.2 191.6 192.0 m/z. (Da)

Figure S24 ¹H NMR of 5 in Chloroform-d

Deuteration of 2-Thiophenecarbonitrile (6) ⁶

The corresponding substrate was ground under standard condition for 99 minutes to afford **6-[d]** as yellow liquid (65.8 mg, 60%) with D-incorporation 81% for 5-position by ¹H NMR; 0.90 D by GC-MS; $R_f = 0.30$ (Petroleum ether/Ethyl acetate = 50/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) *δ* 7.67 – 7.63 (m, 1H), 7.61 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.14 (dd, *J* = 5.1, 3.7 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 (d, *J* = 3.7 Hz, 1H), <u>7.61</u> (dd, *J* = 5.1, 1.2 Hz, 0.19H, Labelled), 7.14 (t, *J* = 3.6 Hz, 1H).

Figure S26 ¹H NMR spectrum comparison

106.6 107.0 111.8 112.2 109.0 109.8 110.2 111.0 113.0 107.4 107.8 108.2 108.6 109.4 110.6 111.4 112.6

Figure S28 ¹H NMR of 6 in Chloroform-d

Deuteration of 2-Bromo-3-methylthiophene (7) 7

The corresponding substrate was ground under standard condition to afford **7-[d]** as yellow liquid (121.0 mg, 68%) with D-incorporation 81% for 5-position by ¹H NMR; 0.86 D by GC-MS; $R_f = 0.80$ (Petroleum ether).

NMR data for starting material: ¹H NMR (400 MHz, DMSO- d_6) δ 7.50 (d, J = 5.6 Hz, 1H), 6.91 (d, J = 5.6 Hz, 1H), 2.14 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO-*d*₆) δ <u>7.51 (d, *J* = 5.5 Hz, 0.19H, Labelled)</u>, 6.91 (d, *J* = 1.7 Hz, 1H), 2.15 (s, 3H).

Figure S30 ¹H NMR spectrum comparison

Figure S32 ¹H NMR of 7 in Chloroform-d

.0 10.5 10.0 9.5 7.5 7.0 -0. 6.5 5.5 5.0 f1 (ppm) 2.5 2.0 1.5 0.0 9.0 8.5 8.0 6.0 4.5 4.0 3, 5 3.0 1.0 0.5

Deuteration of Morpholino(thiophen-2-yl)methanone (9)

The corresponding substrate was ground under 150 °C heating for 99 minutes to afford **9-[d]** as transparent liquid (91.0mg, 92%) with D-incorporation 76% for 5-position by ¹H NMR; 0.82 D by GC-MS; $R_f = 0.30$ (Petroleum ether/Ethyl acetate = 2/1).

Characterization of starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 (dd, *J* = 5.1, 1.1 Hz, 1H), 7.28 (dd, *J* = 3.7, 1.1 Hz, 1H), 7.04 (dd, *J* = 5.0, 3.6 Hz, 1H), 3.79 – 3.67 (m, 8H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.67, 136.61, 128.96, 128.86, 126.77, 66.87; HRMS (ESI): calcd. for C₉H₁₁NO₂SNa⁺ (M + Na)⁺: 220.0408, found: 220.0412.

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>7.46 (dd, *J* = 5.0, 1.2 Hz, 0.24H,</u> <u>Labelled</u>), 7.29 (d, *J* = 3.6 Hz, 1H), 7.04 (d, *J* = 3.5 Hz, 1H), 3.80 – 3.69 (m, 8H).

Figure S34 ¹H NMR spectrum comparison

192. 5 193. ο 193. 5 194. ο 194. 5 195. ο 195. 5 196. ο 196. 5 197. ο 197. 5 198. ο 198. 5 199. ο 199. 5 200. ο 200. 5 201. ο 201. 5 202. ο 202. 5 203. ο 203. 5 204. ο 204. 5 205 m/z (Da)

Figure S36 ¹H NMR of 9 in Chloroform-d

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S38 ¹H NMR of 9-[d] in Chloroform-d

. 0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -(f1 (ppm)

Deuteration of 2-(2-Thienyl)benzothiazole (10) 8

The corresponding substrate was ground under 100 °C heating for 99 minutes to afford **10-[d]** as white solid (202.7 mg, 93%) with D-incorporation 79% for 5-position of Thiophene, 14% for 3-position of Thiophene by ¹H NMR; $R_f = 0.45$ (Petroleum ether/Ethyl acetate = 50/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.11 (dd, *J* = 8.0, 1.3 Hz, 1H), 8.00 (d, *J* = 8.1 Hz, 1H), 7.87 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.85 (dd, *J* = 3.7, 1.2 Hz, 1H), 7.53 (td, *J* = 8.2, 7.7, 1.3 Hz, 1H), 7.44 (td, *J* = 7.7, 1.2 Hz, 1H), 7.25 (dd, *J* = 5.0, 3.7 Hz, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.13 – 8.06 (m, 1H), 8.03 – 7.96 (m, 1H), **<u>7.87 (dd, J = 5.0, 1.2 Hz, 0.21H, Labelled)</u>**, **<u>7.84 (d, J = 3.7 Hz, 0.86H)</u>**, 7.52 (ddd, *J* = 8.2, 7.2, 1.3 Hz, 1H), 7.44 (ddd, *J* = 8.4, 7.3, 1.2 Hz, 1H), 7.25 (dd, *J* = 4.4, 2.9 Hz, 1H).

Figure S39 ¹H NMR spectrum comparison

Figure S40 ¹H NMR of 10 in DMSO-d₆

1.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -(f1 (ppm)

Deuteration of 2-(Thiophen-2-yl)pyridine (11) 4

The corresponding substrate was ground under standard condition for 99 minutes to afford **11-[d]** as white solid (130.0 mg, 81%) with D-incorporation 80% for 5-position by ¹H NMR; 0.79 D by GC-MS; $R_f = 0.80$ (Petroleum ether/Ethyl acetate = 10/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.57 (dt, *J* = 4.9, 1.4 Hz, 1H), 7.73 – 7.62 (m, 2H), 7.60 (dd, *J* = 3.7, 1.1 Hz, 1H), 7.40 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.20 – 7.08 (m, 2H).– **NMR data for deuterated product:** ¹H NMR (400 MHz, Chloroform-*d*) δ 8.57 (dt, *J* = 5.0, 1.4 Hz, 1H), 7.73 – 7.63 (m, 2H), 7.60 (d, *J* = 3.7 Hz, 1H), <u>7.40 (dd, *J* = 5.1, 1.1 Hz, 0.20H, Labelled)</u>, 7.20 – 7.08 (m, 2H).

Figure S42 ¹H NMR spectrum comparison

Figure S44 ¹H NMR of 11 in Chloroform-d

Figure S45 ¹H NMR of 11-[d] in Chloroform-d

Deuteration of 2,2':5',2"-Terthiophene (12) 9

The corresponding substrate was ground under 100 °C heating for 99 minutes to afford **12-[d]** as yellow solid (175.4 mg, 71%) with D-incorporation 52% for 5-position by ¹H NMR; $R_f = 0.50$ (Petroleum ether).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 (dd, *J* = 5.1, 1.1 Hz, 2H), 7.18 (dd, *J* = 3.6, 1.1 Hz, 2H), 7.08 (s, 2H), 7.05 – 7.01 (dd, *J* = 5.1, 3.6 Hz, 2H). **NMR** data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>7.22 (dd, *J* = 5.1, 1.1 Hz, 0.96H, Labelled)</u>, 7.18 (dd, *J* = 3.6, 1.1 Hz, 2H), 7.08 (s, 2H), 7.05 – 7.01 (m, 2H).

Figure S46 ¹H NMR spectrum comparison

Figure S47 ¹H NMR of 12 in Chloroform-d

Deuteration of 1,3,5-Tri(2-thienyl)benzene (13) 10

The corresponding substrate was ground under standard condition to afford **13-[d]** as white solid (124.5 mg, 77%) with D-incorporation 67% for 5-position by ¹H NMR; 2.13 D by GC-MS; $R_f = 0.70$ (Petroleum ether).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) *δ* 7.75 (s, 3H), 7.42 (dd, *J* = 3.6, 1.2 Hz, 3H), 7.34 (dd, *J* = 5.1, 1.1 Hz, 3H), 7.13 (dd, *J* = 5.1, 3.6 Hz, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 (s, 3H), 7.42 (dd, *J* = 3.6, 1.2 Hz, 3H), <u>7.35 (dd, *J* = 5.1, 1.2 Hz, 0.99H, Labelled)</u>, 7.13 (dd, *J* = 5.1, 3.5 Hz, 3H).

Figure S49 ¹H NMR spectrum comparison

Figure S51 ¹H NMR of 13 in Chloroform-d

Figure S52 ¹H NMR of 13-[d] in Chloroform-d

Deuteration of Thianaphthene (14) 6

The corresponding substrate was ground under standard condition for 99 minutes to afford **14-[d]** as white solid (80.1 mg, 60%) with D-incorporation 83% for 2-position by ¹H NMR; 0.84 D by GC-MS; $R_f = 0.70$ (Petroleum ether).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 (ddd, *J* = 6.8, 2.3, 0.9 Hz, 1H), 7.87 – 7.81 (m, 1H), 7.45 (d, *J* = 5.5 Hz, 1H), 7.41 – 7.32 (m, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.85 (m, 1H), 7.85 – 7.79 (m, 1H), 7.44 (d, *J* = 5.5 Hz, 0.17H, Labelled), 7.40 – 7.28 (m, 3H).

Figure S53 ¹H NMR spectrum comparison

Figure S54 GC-MS spectrum comparison

130.5 137.5 130.0 131.0 131.5 132.0132.5 133.0 133 34.0 134.5 135. 0 135.5 136.0 136.5 137.0 138.0 138.5 n/z (Da)

Figure S55 ¹H NMR of 14 in Chloroform-d

S36
Deuteration of Thieno[3,2-b]thiophene (15) 11

The corresponding substrate was ground under standard condition for 99 minutes to afford 1**5-[d]** as white solid (115.3 mg, 82%) with D-incorporation 68% for 2-position by ¹H NMR; 1.62 D by GC-MS; $R_f = 0.80$ (Petroleum ether).

NMR data for starting material: ¹H NMR (400 MHz, DMSO- d_6) δ 7.66 (d, J = 5.0 Hz, 2H), 7.44 (d, J = 5.0 Hz, 2H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO- d_6) δ <u>7.66 (d, J = 5.2 Hz, 0.64H, Labelled</u>), 7.44 (d, J = 5.1 Hz, 2H).

Figure S57 ¹H NMR spectrum comparison

36. 5 137. 0 137. 5 138. 0 138. 5 139. 0 139. 5 140. 0 140. 5 141. 0 141. 5 142. 0 142. 5 143. 5 144. 0 144. 5 145. 0 145. 5 146. 0 146. 5 147. 0 147. 5 148. 0 148. 5 m/z (Da)

5.5 5.0 fl (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.

۲ حر 0.64 2.00

. 0 10. 5 10. 0 9. 5 9. 0 8. 5 8. 0 7. 5 7. 0 6. 5 6. 0

The corresponding substrate was ground under standard condition for 99 minutes to afford **18-[d]** as white solid (127.5 mg, 79%) with D-incorporation 81% for 2-position by ¹H NMR; 0.78 D by GC-MS; $R_f = 0.30$ (Petroleum ether/Ethyl acetate = 20/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.77 (s, 1H), 8.09 (s, 1H), 7.62 – 7.54 (m, 2H), 7.46 – 7.37 (m, 2H), 7.39 – 7.31 (m, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>8.76 (s, 0.19H, Labelled)</u>, 8.08 (s, 1H), 7.62 – 7.53 (m, 2H), 7.46 – 7.39 (m, 2H), 7.39 – 7.31 (m, 1H).

Figure S63 ¹H NMR of 18 in Chloroform-d

Deuteration of Ethyl thiazole-4-carboxylate (19) 13

The corresponding substrate was ground under standard condition for 99 minutes to afford **19-[d]** as yellow solid (128.2 mg, 82%) with D-incorporation 69% or 74% for 2,5-position by ¹H NMR; $R_f = 0.3$ (Petroleum ether/Ethyl acetate = 5/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.85 (d, *J* = 2.1 Hz, 1H), 8.24 (d, *J* = 2.1 Hz, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 1.42 (t, *J* = 7.1 Hz, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>8.84 (d, *J* = 2.6 Hz, 0.31H,</u> <u>Labelled</u>), <u>8.24 (d, *J* = 2.2 Hz, 0.26H, Labelled)</u>, 4.43 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H).

Figure S65 ¹H NMR spectrum comparison

Figure S66 ¹H NMR of 19 in Chloroform-d

Figure S67 ¹H NMR of 19-[d] in Chloroform-d

Deuteration of Benzo[d]thiazole (20) 4

The corresponding substrate was ground under standard condition for 99 minutes to afford **20-[d]** as transparent liquid (126.4mg, 93%) with D-incorporation 82% for 2-position by ¹H NMR; 0.80 D by GC-MS; $R_f = 0.30$ (Petroleum ether/Ethyl acetate = 100/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.40 (s, 1H), 8.17 (dd, *J* = 7.9, 1.4 Hz, 1H), 8.10 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.51 (m, *J* = 24.2, 7.2, 1.3 Hz, 2H).–

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO-*d*₆) δ <u>9.40 (s, 0.18H, Labelled)</u>, 8.21 – 8.14 (m, 1H), 8.13 – 8.06 (m, 1H), 7.51 (m, *J* = 24.2, 8.4, 7.2, 1.3 Hz, 2H).

Figure S68 ¹H NMR spectrum comparison

Figure S70 ¹H NMR of 20 in DMSO-d₆

The corresponding substrate was ground under 100 °C heating for 99 minutes to afford **21-[d]** as yellow solid (129.9 mg, 79%) with D-incorporation 83% for 2-position by ¹H NMR; 0.79 D by GC-MS; $R_f = 0.30$ (Petroleum ether/Ethyl acetate = 20/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.91 (s, 1H), 7.53 (dd, *J* = 8.1, 0.9 Hz, 1H), 7.39 (t, *J* = 8.0 Hz, 1H), 6.94 (dd, *J* = 8.0, 0.9 Hz, 1H), 4.06 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>8.88 (s, 0.17H, Labelled)</u>, 7.49 (dd, *J* = 8.2, 0.9 Hz, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 6.90 (d, *J* = 7.9 Hz, 1H), 4.03 (s, 3H).

^{9. 5 160. 0 160. 5 161. 0 161. 5 162. 0 162. 5 163. 0 163. 5 164. 0 164. 5 165. 0 165. 5 166. 0 166. 5 167. 0 167. 5 168. 0 168. 5 169. 0 169. 5 170. 0 170. 5} m/z (Da)

Figure S74 ¹H NMR of 21 in Chloroform-d

Figure S75 ¹H NMR of 21-[d] in Chloroform-d

Deuteration of ethyl benzothiazole-5-carboxylate (22) 15

The corresponding substrate was ground under 150 °C heating for 99 minutes to afford **22-[d]** as white solid (164.9 mg, 79%) with D-incorporation 79% for 2-position by ¹H NMR; 0.62 D by GC-MS; $R_f = 0.25$ (Petroleum ether/Ethyl acetate = 20/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.53 (s, 1H), 8.59 (d, *J* = 1.6 Hz, 1H), 8.32 (d, *J* = 8.4 Hz, 1H), 8.04 (dd, *J* = 8.5, 1.7 Hz, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.1 Hz, 3H). **NMR data for deuterated product:** ¹H NMR (400 MHz, DMSO-*d*₆) δ <u>9.53 (s, 0.21H, Labelled)</u>, 8.60 (d, *J* = 1.6 Hz, 1H), 8.32 (d, *J* = 8.4 Hz, 1H), 8.04 (dd, *J* = 8.5, 1.6 Hz, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 1.37 (t, *J* = 7.1 Hz, 3H).

Figure S76 ¹H NMR spectrum comparison

Figure S78 ¹H NMR of 22 in DMSO-d₆

Figure S79 ¹H NMR of 22-[d] in DMSO-d₆

The corresponding substrate was ground under standard condition for 99 minutes to afford 23-[d] as white solid (193.7 mg, 90%) with D-incorporation 40% for 2-position by ¹H NMR; 0.30 D by GC-MS; $R_f = 0.30$ (Petroleum ether/Ethyl acetate = 20/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO- d_6) δ 9.49 (s, 1H), 8.20 (dd, J = 8.1, 1.0 Hz, 1H), 7.80 (dd, J = 7.7, 1.0 Hz, 1H), 7.41 (t, J = 7.9 Hz, 1H).-

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.49 (s, 0.60H, Labelled), 8.19 (dd, J = 8.1, 1.0 Hz, 1H), 7.79 (dd, J = 7.8, 1.0 Hz, 1H), 7.40 (t, J = 7.9 Hz, 1H).

Figure S82 ¹H NMR of 23 in DMSO-d₆

ہطے کو ہو 1.00 0.99 1.06

번 0.60

The corresponding substrate was ground under 100 °C heating for 99 minutes to afford **24-[d]** as yellow solid (143.7 mg, 84%) with D-incorporation 76% for 2-position by ¹H NMR; 0.83 D by GC-MS; $R_f = 0.30$ (Petroleum ether/Ethyl acetate = 20/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.49 (s, 1H), 8.15 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.64 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.48 (t, *J* = 7.9 Hz, 1H).–

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO-*d*₆) δ <u>9.49 (s, 0.24H, Labelled)</u>, 8.15 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.64 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.48 (t, *J* = 7.9 Hz, 1H).

Figure S86 ¹H NMR of 24 in DMSO-d₆

Figure S87 ¹H NMR of 24-[d] in DMSO-d₆

Deuteration of Methyl 2-phenyloxazole-4-carboxylate (27) 18

The corresponding substrate was ground under 100 °C heating for 99 minutes to afford **27-[d]** as white solid (174.1 mg, 86%) with D-incorporation 80% for 5-position by ¹H NMR; 0.76 D by GC-MS; $R_f = 0.20$ (Petroleum ether/Ethyl acetate = 20/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.29 (s, 1H), 8.17 – 8.07 (m, 2H), 7.57 – 7.43 (m, 3H), 3.96 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>8.29 (s, 0.20H, Labelled)</u>, 8.17 – 8.07 (m, 2H), 7.57 – 7.43 (m, 3H), 3.96 (s, 3H).

Figure S88 ¹H NMR spectrum comparison

Figure S90 ¹H NMR of 27 in Chloroform-d

Figure S91 ¹H NMR of 27-[d] in Chloroform-d

The corresponding substrate was ground under standard condition for 99 minutes to afford **28-[d]** as yellow liquid (120.3 mg, 83%) with D-incorporation 78% for 2,5-position by ¹H NMR; 1.39 D by GC-MS; $R_f = 0.35$ (Petroleum ether/Ethyl acetate = 100/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 (s, 2H), 7.79 – 7.72 (m, 2H), 7.55 – 7.38 (m, 2H), 7.37 – 7.29 (m, 1H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>**7.94 (d, J = 2.0 Hz, 0.44H,**</u> <u>Labelled</u>), 7.79 – 7.72 (m, 2H), 7.42 (dd, *J* = 8.4, 6.9 Hz, 2H), 7.37 – 7.29 (m, 1H).

Figure S92 ¹H NMR spectrum comparison

10.5 141. 6 141. 5 142. 6 142. 5 143. 6 143. 5 144. 6 144. 5 145. 6 145. 5 146. 6 146. 5 147. 6 147. 5 148. 6 148. 5 149. 6 149. 5 150. 6 150. 5 151. 6 151. 5 152. 6 152. 5 153. 6 m/z (Da)

Figure S94 ¹H NMR of 28 in Chloroform-d

Deuteration of Benzoxazole (29) 6

The corresponding substrate was ground under 100 °C heating for 99 minutes to afford **29-[d]** as white solid (76.0 mg, 64%) with D-incorporation 81% for 2-position by ¹H NMR; 0.77 D by GC-MS; $R_f = 0.30$ (Petroleum ether/Ethyl acetate = 100/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 (s, 1H), 7.85 – 7.75 (m, 1H), 7.64 – 7.54 (m, 1H), 7.44 – 7.33 (m, 2H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>8.10 (s, 0.19H, Labelled)</u>, 7.86 – 7.74 (m, 1H), 7.63 – 7.51 (m, 1H), 7.44 – 7.32 (m, 2H).

Figure S96 ¹H NMR spectrum comparison

Figure S98 ¹H NMR of 29 in Chloroform-d

Deuteration of 1-Methylbenzimidazole (31) 6

The corresponding substrate was ground under standard condition for 99 minutes to afford **31-[d]** as white solid (120.6 mg, 91%) with D-incorporation 84% for 2-position by ¹H NMR; 0.72 D by GC-MS; $R_f = 0.35$ (Ethyl acetate).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.17 (s, 1H), 7.65 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.56 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.31 – 7.16 (m, 2H), 3.84 (s, 3H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO-*d*₆) δ <u>8.17 (s, 0.16H, Labelled)</u>, 7.64 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.56 (dt, *J* = 8.0, 1.0 Hz, 1H), 7.23 (m, *J* = 25.2, 8.3, 7.2, 1.2 Hz, 2H), 3.83 (s, 3H).

Figure S100 ¹H NMR spectrum comparison

29.6 130.0 130.4 130.8 131.2 131.6 132.0 132.4 132.8 m/z (Da) 133.2 133.6 134.0 134.4 134.8 135.2 135.6

Figure S102 ¹H NMR of 31 in DMSO-d₆

Figure S103 ¹H NMR of 31-[d] in DMSO-d₆

Deuteration of tert-butyl (S)-methyl(3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propyl)carbamate (34)

The corresponding substrate was ground under standard condition to afford **34-[d]** as transparent liquid (105.2 mg, 66%) with D-incorporation 80% for 2-position by ¹H NMR; $R_f = 0.15$ (Petroleum ether/Ethyl acetate = 20/1).

Characterization of starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.28 – 8.21 (m, 1H), 7.88 – 7.79 (m, 1H), 7.55 – 7.46 (m, 2H), 7.43 (dd, *J* = 7.0, 1.9 Hz, 2H), 7.32 (t, *J* = 7.9 Hz, 1H), 7.25 (d, J = 3.5 Hz, 1H), 7.04 – 6.94 (m, 2H), 5.87 (s, 1H), 3.42 (s, 1H), 2.78 (s, 3H), 2.41 – 2.31 (m, 1H), 2.19 (s, 1H), 1.43 – 1.13 (m, 9H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.18, 152.97, 145.00, 134.64, 127.90, 127.11, 126.83, 126.35, 126.12, 125.98, 125.87, 125.75, 122.10, 120.72, 107.49, 78.85, 45.51, 28.38, 26.82; **HRMS** (ESI): calcd. for C₂₃H₂₇NO₃SNa⁺ (M+Na)+: 420.1609, found: 420.1615.

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.27 – 8.19 (m, 1H), 7.88 – 7.79 (m, 1H), 7.55 – 7.45 (m, 2H), <u>7.42 (d, *J* = 8.2 Hz, 1.20H, Labelled)</u>, 7.31 (t, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 3.5 Hz, 1H), 7.03 – 6.94 (m, 2H), 5.86 (s, 1H), 3.47 (s, 1H), 2.77 (s, 3H), 2.34 (dt, *J* = 14.1, 7.0 Hz, 1H), 2.18 (s, 1H), 1.40 – 1.10 (m, 9H).

Figure S104 ¹H NMR spectrum comparison

Figure S105 ¹H NMR of 34 in DMSO-d₆

Figure S106 ¹³C NMR of 34 in DMSO-d₆

Figure S107 ¹H NMR of 34-[d] in DMSO-d₆

5.5 5.0 fl (ppm)

Deuteration of Vagistat (37) 4

The corresponding substrate was ground under 150 °C heating for 99 minutes to afford **37-[d]** as white solid (183.9 mg, 95%) with D-incorporation 26% for 2-position of Thiophene, 64%, 21% and 59% for 2,4,5-position of Imidazole, 56% for 3-position of Benzene by ¹H NMR; $R_f = 0.30$ (Dichloromethane/Methanol = 50/1).

NMR data for starting material: ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.66 (d, *J* = 2.1 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.44 – 7.34 (m, 2H), 7.02 (d, *J* = 1.3 Hz, 1H), 6.88 – 6.80 (m, 2H), 4.97 (dd, *J* = 6.9, 3.9 Hz, 1H), 4.41 – 4.14 (m, 4H).

NMR data for deuterated product: ¹H NMR (400 MHz, DMSO- d_6) δ <u>7.65 (d, J = 2.0 Hz, 0.74H, Labelled)</u>, <u>7.51 – 7.44 (m, 1.44H, Labelled)</u>, <u>7.43 – 7.35 (m, 1.41H, Labelled)</u>, <u>7.02 (d, J = 1.4 Hz, 0.36H, Labelled)</u>, <u>6.84 (dd, 1.79H, Labelled)</u>, 4.97 (dd, J = 7.0, 3.9 Hz, 1H), 4.41 – 4.11 (m, 4H).

Figure S108 ¹H NMR spectrum comparison

Figure S109 ¹H NMR of 37 in DMSO-d₆

Figure S110 ¹H NMR of 37-[d] in DMSO-d₆

Deuteration of Fluconazole (38)⁴

The corresponding substrate was ground under 150 °C heating for 99 minutes to afford **38-[d]** as white solid (142.8 mg, 93%) with D-incorporation 62% for 5-position of Triazole, 31% for 3-position of Benzene by ¹H NMR; $R_f = 0.20$ (Dichloromethane/Methanol = 50/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (s, 2H), 7.85 (s, 2H), 7.42 (td, J = 9.6, 9.2, 6.3 Hz, 1H), 6.84 – 6.73 (m, 2H), 4.74 (d, J = 14.3 Hz, 2H), 4.46 (d, J = 14.3 Hz, 2H).

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>8.05 (s, 0.76H, Labelled)</u>, 7.83 (s, 2H), 7.41 (td, *J* = 9.2, 6.4 Hz, 1H), <u>6.84 – 6.72 (m, 1.69H, Labelled)</u>, 4.73 (d, *J* = 14.3 Hz, 2H), 4.45 (d, *J* = 14.3 Hz, 2H).

Figure S111 ¹H NMR spectrum comparison

Figure S112 ¹H NMR of 38 in Chloroform-d

Figure S113 ¹H NMR of 38-[d] in Chloroform-d

Deuteration of 3,7-Dimethyl-1-(5-oxohexyl)-1H-purine-2,6(3H,7H)-dione (39) 4

The corresponding substrate was ground under standard condition for 99 minutes to afford **39-[d]** as white solid (222.4 mg, 80%) with D-incorporation 26% for 2-position of Imidazole, 29% for Methyl adjacent to the carbonyl group, 22% for Methylene adjacent to the carbonyl group by ¹H NMR; $R_f = 0.50$ (Ethyl acetate/Methanol = 25/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (s, 1H), 4.00 (t, *J* = 6.8 Hz, 2H), 3.97 (s, 3H), 3.55 (s, 3H), 2.49 (t, *J* = 6.9 Hz, 2H), 2.13 (s, 3H), 1.65 (qt, *J* = 8.7, 4.0 Hz, 4H).– **NMR** data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>7.48 (s, 0.74H, Labelled)</u>, 3.96 (d, *J* = 6.8 Hz, 2H), 3.94 (s, 3H), 3.52 (s, 3H), <u>2.45 (t, *J* = 6.9 Hz, 1.57H, Labelled)</u>, <u>2.08 (d, *J* = 8.8 Hz, 2.13H, Labelled)</u>, 1.61 (ddt, *J* = 11.8, 9.3, 4.6 Hz, 4H).

Figure S115 ¹H NMR of 39 in Chloroform-d

Figure S116 ¹H NMR of 39-[d] in Chloroform-d

Deuteration of 7-((1,3-Dioxolan-2-yl)methyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (40) 4

The corresponding substrate was ground under 150 °C heating for 99 minutes to afford **40-[d]** as white solid (128.3 mg, 96%) with D-incorporation 79% for 2-position by ¹H NMR; $R_f = 0.30$ (Ethyl acetate/Methanol = 50/1).

NMR data for starting material: ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 (s, 1H), 5.22 (t, *J* = 3.2 Hz, 1H), 4.58 (d, *J* = 3.2 Hz, 2H), 3.92 – 3.78 (m, 4H), 3.59 (s, 3H), 3.41 (s, 3H).–

NMR data for deuterated product: ¹H NMR (400 MHz, Chloroform-*d*) δ <u>7.65 (s, 0.21H, Labelled)</u>, 5.22 (t, *J* = 3.2 Hz, 1H), 4.58 (d, *J* = 3.2 Hz, 2H), 3.92 – 3.78 (m, 4H), 3.59 (s, 3H), 3.41 (s, 3H).

Figure S117 ¹H NMR spectrum comparison

Figure S118 ¹H NMR of 40 in Chloroform-d

Figure S119 ¹H NMR of 40-[d] in Chloroform-d

6. References

- 1 J. Kong, Z. J. Jiang, J. Xu, Y. Li, H. Cao, Y. Ding, B. Tang, J. Chen and Z. Gao, *J. Org. Chem*, 2021, **86**, 13350-13359.
- 2 R. R. A. Bolt, S. E. Raby Buck, K. Ingram, J. A. Leitch and D. L. Browne, *Angew. Chem. Int. Ed.*, 2022, **61**.
- J. Dey, S. Kaltenberger and M. van Gemmeren, *Angew. Chem. Int. Ed.*, 2024, **63**.
- 4 A. Tlahuext-Aca and J. F. Hartwig, *ACS Catal.*, 2021, **11**, 1119-1127.
- 5 K.-Y. T. a. L. Bauer, *J. Org. Chem.*, 1975, **40**, 172-175.
- 6 E.-C. Li, G.-Q. Hu, Y.-X. Zhu, H.-H. Zhang, K. Shen, X.-C. Hang, C. Zhang and W. Huang, *Org. Lett.*, 2019, **21**, 6745-6749.
- W. Zhuang, M. Bolognesi, M. Seri, P. Henriksson, D. Gedefaw, R. Kroon, M. Jarvid, A. Lundin,
 E. Wang, M. Muccini and M. R. Andersson, *Macromolecules*, 2013, 46, 8488-8499.
- 8 X. Shi, J. Guo, J. Liu, M. Ye and Q. Xu, *Chem. Eur. J*, 2015, **21**, 9988-9993.
- 9 G. Zhang, H. Yi, H. Chen, C. Bian, C. Liu and A. Lei, *Org. Lett.*, 2014, **16**, 6156-6159.
- 10 A. Saha, C. M. Wu, R. Peng, R. Koodali and S. Banerjee, *Eur. J. Org. Chem.*, 2018, **2019**, 104-111.
- 11 F.-F. Sheng, E.-C. Li, J.-W. Bai, C.-X. Wang, G.-Q. Hu, K.-H. Liu, Z.-Y. Sun, K. Shen and H.-H. Zhang, *Org. Biomol. Chem.*, 2022, **20**, 1176-1180.
- 12 X.-W. Liu, J.-L. Shi, J.-X. Yan, J.-B. Wei, K. Peng, L. Dai, C.-G. Li, B.-Q. Wang and Z.-J. Shi, *Org. Lett.*, 2013, **15**, 5774-5777.
- 13 V. S. Aulakh and M. A. Ciufolini, *J. Org. Chem*, 2009, **74**, 5750-5753.
- 14 S. Chun, S. Yang and Y. K. Chung, *Tetrahedron*, 2017, **73**, 3438-3442.
- 15 K. Jouve, F. Pautet, M. Domard and H. Fillion, *Eur. J. Org. Chem.*, 1998, 2047-2050.
- K. Tsuji, T. Ishii, T. Kobayakawa, N. Higashi-Kuwata, K. Shinohara, C. Azuma, Y. Miura, H. Nakano, N. Wada, S.-i. Hattori, H. Bulut, H. Mitsuya and H. Tamamura, *J. Med. Chem.*, 2023, 66, 13516-13529.
- 17 S. Mukhopadhyay and S. Batra, *Chem. Eur. J*, 2018, **24**, 14622-14626.
- 18 W.-C. Gao, F. Hu, Y.-M. Huo, H.-H. Chang, X. Li and W.-L. Wei, *Org. Lett.*, 2015, **17**, 3914-3917.
- 19 Z.-J. Cai, C.-X. Liu, Q. Gu, C. Zheng and S.-L. You, *Angew. Chem. Int. Ed.*, 2019, **58**, 2149-2153.