Supporting Information

Size and Shape Matter for Micellar Catalysis using Photosurfactants

Camille Blayo,^a Beatrice E. Jones,^b Michael J. Bennison,^b and Rachel C. Evans^{b*}

^aSchool of Chemistry, Trinity College Dublin, Dublin 2, Ireland

^bDepartment of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom

*Corresponding Author: Rachel C. Evans (rce2C@cam.ac.uk)

TABLE OF CONTENTS

1	Materials2					
2	Sup	porting Data	.2			
	2.1	Physicochemical and self-assembly properties of AzoTABs	.2			
	2.2	Effect of reaction conditions on conversion efficiency and product yield	.4			
	2.3	Effect of UV irradiation	.5			
	2.4	Supporting Zeta Potential Measurements	. 6			
	2.5	UV/Vis Absorption Spectroscopy	.6			
3	3 Estimation of surfactant tail length					
4	Refe	erences	7			

1 Materials

4-bromobenzaldehyde (95%), 2-cetyl-3-methylpyrazine (97%), chloroform and hydrochloric acid (conc. 37%) were purchased from Fisher Scientific, K₂CO₃(≥99%), cyclohexane, cetyltrimethyl ammonium bromide (CTAB, 95%) and ethanol were purchased from Sigma Aldrich, and phenol (≥99%) was purchased from BDH Chemical Ltd. CDCl₃ (99.8%), DMSO-d6 (99.8%) and D₂O (99.92%) were purchased from Apollo Scientific Limited. All solvents used for reactions were analytical grade and for characterisation were HPLC grade. MilliporeTM water was obtained from passing distilled water through a Mill-Q purifier (resistivity = 18.2 MΩ cm⁻¹ at 25 °C).

2 Supporting Data

2.1 Physicochemical and self-assembly properties of AzoTABs

Table S1: Critical micelle concentrations (CMCs) for the *trans*- and *cis*-photoisomers of AzoTABs and the Krafft temperature of the trans-form.

Surfactant	CMC <i>trans</i> (mM) ^a	CMC <i>cis</i> (mM)ª	∆CMC (mM)⁵
C ₄ AzoOC ₄ TAB	1.2±0.1	2.6±0.2	2.4
C₄AzoOC ₆ TAB	0.4 ± 0.1	1.1 ± 0.1	0.7
C ₈ AzoOC ₂ TAB	0.2 ± 0.1	0.7 ± 0.1	0.5
C ₈ AzoOC ₆ TAB	0.3 ± 0.1	0.8 ± 0.1	0.5
C ₆ AzoOC ₄ TAB	0.1 ± 0.1	0.2 ± 0.1	0.1
CTAB°	~1.0 ^c		

^a Mean value from surface tensiometry and dynamic light scattering measurements. T = 20 °C. Data from reference [1]. ^b Δ CMC = CMC*cis*- CMC*trans* °From reference [5].

Table S2. Summary of the shape and size of *trans*- and *cis*-AzoTAB micelles in D_2O at 25 °C as determined from model fitting to small-angle neutron scattering. Data summarised from reference [1] to aid discussion. The reader is referred to the original paper for detailed discussion of the model fitting.

Surfactant	lsomer	Conc. (mM)	Form factor, <i>P</i> (q)	R ª (Å)	L♭ (Å)	<i>H</i>	N agg ^d
C₄AzoOC₄TAB ^b	trans	5	Oblate	25±3	39 ± 2	-	$\textbf{90}\pm14$
		20	Ellipsoid ^e	24 ± 1	41 ± 1	-	165 ± 10
	cis 5		concentratior	n too close t	o the CMC to profile	o yield useful	scattering
		20	Sphere ^e	26 ± 1	-	-	42 ± 8
C₄AzoOC₀TAB	trans	5	Oblate	25 ± 1	45 ± 1	-	119 ± 13
		20	Ellipsoide	26 ± 1	50 ± 1	-	255 ± 24
	cis	cis 5		24 ± 1	-	-	26 ± 5
		20	Sphere ^e	26±1	-	-	67±10
C ₈ AzoOC ₂ TAB	trans	5	Oblate	20 ± 1	52 ± 1	-	209 ± 21
		20	Ellipsoid	24 ± 1	53±1	-	309 ± 22
	cis	5		22 ± 1			47±5
		20	Sphere ^e	25±1			72 ± 10
C ₈ AzoOC₀TAB	trans	5	Oblate	28 ± 1	88 ± 1	-	669 ± 30
	20	Ellipsoid ^e	29 ± 1	87 ± 1	-	753 ± 27	
	cis	5	Sphere ^e	28 ± 1			64 ± 8
		20	Oblate Ellipsoid ^e	23±1	36±1		140 ± 13
C₀AzoOC₄TAB	oOC₄TAB trans 5 E 20 c	Elliptical	28 ± 1	49 ± 1	364 ± 11	-	
		20	cylinder ^e	27 ± 1	53 ± 1	162 ± 2	-
	cis	20	Elliptical cylinder ^e	22±1	46 ± 1	260 ± 9	572 ± 25

^{*a*} Polar radius. ^{*b*} Equatorial radius ^{*c*} Cylinder length ^{*d*} N_{agg} is the aggregation number for the micelle. ^{*e*} Hayter-Penfold structure factor for electrostatic interactions included in this fit as described in reference [1].

2.2 Effect of reaction conditions on conversion efficiency and product yield

Table S3: Effect of surfactant concentration in water on the reaction yield (after 2.5 h) for the Claisen-Schmidt aldol condensation under micellar conditions at T = 35 °C.

Surfactant	(mM)	(mol %)°	Base ^d	¹ H NMR (%)
CTAB ^a	13.5	15	K ₂ CO ₃	66
СТАВ	0.5	2	K ₂ CO ₃	trace
trans-C ₈ AzoOC ₂ TAB ^b	13.6	15	K ₂ CO ₃	53
trans-C ₈ AzoOC ₂ TAB	0.5	2	K ₂ CO ₃	52
trans-C ₈ AzoOC ₂ TAB	13.6	15	None	trace
None	-	-	K ₂ CO ₃	24

^a CMC = 0.01 mol %/ 1 mM in water; ^bCMC = 0.005 wt%/ 0.5 mM in water ^c Relative concentration is the mol% of surfactant relative to the reagents. ^d K_2CO_3 is used as base to promote the reaction.

Table S4: Effect of temperature on the reaction yield (after 2.5 h) for the Claisen-Schmidt aldol condensation under micellar conditions in water.

Surfactant	Temperature (°C)	Relative Conc. (mol %)ª	Reaction Yield ¹ H NMR (%)
СТАВ	20	20	14
trans-C ₈ AzoOC ₂ TAB	20	16	19
СТАВ	35	13.5	66
trans-C ₈ AzoOC ₂ TAB	35	13.6	53
trans-C ₈ AzoOC ₂ TAB	70	10.5	56

^a Relative concentration is the mol% of surfactant relative to the reagents.

Table S5: Effect of the AzoTAB structure on the reaction yield (after 2.5 h) of the Claisen-Schmidt aldol condensation under micellar conditions at T = 35 °C. K₂CO₃ is added as a base to promote the reaction.

AzoTAB	Conc. (mM)ª	Relative Conc. (mol %) ^b	Reaction Yield ¹ H NMR (%)
trans-C ₄ AzoOC ₄ TAB	10.0	13	46
trans-C₄AzoOC ₆ TAB	11.1	13	48
trans-C ₈ AzoOC ₂ TAB	13.6	15	53
trans-C ₈ AzoOC ₆ TAB	10.5	13	55
trans-C ₆ AzoOC ₄ TAB	10.5	15	64

^a All AzoTAB concentrations are above the CMC at T = 35° C. ^b Relative concentration is the mol% of surfactant relative to the reagents. ^c

2.3 Effect of UV irradiation

Table S6: Effect of UV irradiation on the on the reaction yield (after 2.5 h) of the Claisen-Schmidt aldol condensation under micellar conditions at T = 35 °C. K₂CO₃ (1.3 mol eq. relative to reagents) is added as a base to promote the reaction in all cases.

Surfactant	Conc. (mM)	Relative Conc. (mol %) ^c	Reaction Yield ¹ H NMR (%)
cis-C ₄ AzoOC ₄ TAB ^a	10.5	13	70
<i>cis</i> -C₄AzoOC ₆ TAB ^a	10.5	15	60
<i>cis</i> -C ₆ AzoOC₄TABª	10.5	13	48
<i>cis</i> -C ₈ AzoOC ₂ TAB ^a	10.5	15	78
<i>cis</i> -C ₈ AzoOC ₆ TAB ^a	10.5	13	62
trans-C ₈ AzoOC ₂ TAB	0.5	2	52
trans-C ₈ AzoOC ₂ TAB	0.5 ^b	2	31

^a The solution was irradiated at λ_{ex} = 365 nm for 10 minutes prior to the addition of reagents and the start of the reaction. Formation of the *cis*-photostationary state was confirmed by UV/V is absorbance spectroscopy. ^b The concentration is below the CMC of the *cis*-isomer. The solution was irradiated at λ_{ex} = 365 nm for 10 minutes at the end of the reaction. ^c Relative concentration is the mol% of surfactant relative to the reagents.

2.4 Supporting Zeta Potential Measurements

Figure S1: Zeta potential (ZP) as a function of time for *trans*- C_8AzoOC_2TAB (10 mM in water, 35°C). The solid black lines indicate the addition of K_2CO_3 to the solution, followed by shaking. A negative ZP is not obtained.

2.5 UV/Vis Absorption Spectroscopy

Figure S2: UV/Vis absorbance spectra of *trans*-**C8AzoOC2TAB** (0.1 µmol dm⁻³, red line) and *cis*-**C8AzoOC2TAB** (0.1 µmol dm⁻³, blue line) in water. A sample of the reaction mixture (10 µL) was taken and diluted in water (3,000 µL) to evaluate the concentration of AzoTAB from the molar absorption coefficient ($\approx 2.0 \times 10^4$ mol⁻¹ cm⁻¹) of the *trans*-isomer at $\lambda_{abs} = 350$ nm.

3 Estimation of surfactant tail length

The length of the hydrophobic tails, l, of each surfactant were estimated using the empirical volume additivity rule of Traube⁶:

$$\Box = \$ \Box_{\Box}$$
 Eq. S1

where l_i is the contributions of the *i*th component for the tail length, respectively, using the data

from Table S7.

Table S7: Contribution of lengths used to estimate the hydrophobic tail length of different surfactants in the *trans (E)* isomer.

Component	Value	Method
Alkyl chain volume (nm ³)	0.0269 <i>m</i> + 0.0274	Tanford equations ⁷
Z-azobenzene length (nm)	0.9	X-ray analysis ⁸
Oxy-group length (nm)	0.28	DFT calculations ⁹

4 References

- C. Blayo, J. E. Houston, S. M. King, R. C. Evans, Unlocking Structure–Self-Assembly Relationships in Cationic Azobenzene Photosurfactants. *Langmuir* 2018, 34, 34, 10123– 10134.
- B. S. Kitawat, M. Singh, R. K. Kale, Robust Cationic Quaternary Ammonium Surfactant-Catalyzed Condensation Reaction for (E)-3-Aryl-1-(3-alkyl-2-pyrazinyl)-2-propenone Synthesis in Water at Room Temperature. ACS Sustainable Chem. Eng. 2013, 1, 8, 1040– 1044.
- 3. T. Kitanosono, K. Masuda, P. Xu, S. Kobayashi, Catalytic Organic Reactions in Water toward Sustainable Society. *Chem. Rev.* **2018**, 118, 679–746.
- 4. T. Dwars, E. Paetzold, G. Oehme, Reactions in Micellar Systems. *Angew. Chem. Int. Ed.* 2005, 44, 7174–7199.
- M. Bielawska, A. Chodzińska, B. Jańczuk, A. Zdziennicka, Determination of CTAB CMC in Mixed Water + Short-Chain Alcohol Solvent by Surface Tension, Conductivity, Density and Viscosity Measurements. *Colloids Surf. A*, 2013, 424, 81–88.
- 6. Durchschlag, H.; Zipper, P. Calculation of the Partial Volume of Organic Compounds and Polymers; **1GG4**.
- 7. Tanford, C. Thermodynamics of Micelle Formation: Prediction of Micelle Size and Size Distribution. *Proc Natl Acad Sci U S A* **1G74**, *71*, 1811–1815.
- 8. Merino, E.; Ribagorda, M. Control over molecular motion using the cis-trans photoisomerization of the azo group. *Beilstein J. Org. Chem.* **2012**, *8*, 1071-1090.
- Agapito, F.; Costa Cabral, B. J.; Martinho Simões, J. A. Carbon-Hydrogen Bond Dissociation Enthalpies in Ethers: A Theoretical Study. *Journal of Molecular Structure: THEOCHEM* 2005, 719, 109–114.