Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Palladium-Catalyzed [3+2] Cycloaddition of 4-Vinyl-4-Butyrolactones with Sulfamate-Derived Cyclic Imines: Construction of Sulfamate-Fused Pyrrolidines

Honghao Sun,^{ab} Siyuan Ding,^a Bo Wang,^{*b} Jiaxing Huang,^{*a} and Hongchao Guo^{*a}

^a Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
 ^b Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China

E-mail: hchguo@cau.edu.cn, 05084@cau.edu.cn, 362395987@qq.com

Contents

General Information	S2
Preparation of Starting Materials	S2
General Procedure for Pd-Catalyzed [3+2] Annulation	S2
The Scaled-up Reaction	S2
Further Transformation of the Product	S 3
Investigation on Asymmetric [3+2] Cycloaddition	S 3
Characterization Data of Products	S 4
¹ H NMR and ¹³ C NMR Spectra of Products	S13
HPLC Chromatogram of Product 3aa	S40
X-Ray Crystallographic Data	S41

General Information.

All reactions were performed under argon atmosphere in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents were purified and dried according to standard methods prior to use. Organic solutions were concentrated under reduced pressure on a rotary evaporator or an oil pump. Reactions were monitored by thin layer chromatography (TLC) on silica gel precoated glass plates. Chromatograms were visualized by fluorescence quenching with UV light at 254 nm. Flash column chromatography was performed using flash silica gel (200–300 mesh). ¹H and ¹³C NMR spectra were recorded in CDCl₃ using 500 MHz NMR instrument (referenced internally to Me₄Si). ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet; d = doublet; q = quartet; m = multiplet; br = broad), coupling constant (Hz), and integral. Data for ¹³C NMR spectra are reported in terms of chemical shift. Accurate mass measurements were performed using an instrument with the ESI-Linear ion trap-MS technique.

Preparation of Starting Materials

The 4-vinyl-4-butyrolactones $\mathbf{1}^1$ and sulfamate-derived cyclic imines $\mathbf{2}^2$ were synthesized using known literature procedures.

General Procedure for Pd-Catalyzed [3+2] Annulation

Under argon atmosphere, to a mixture of **1** (0.12 mmol), **2** (0.10 mmol), catalyst $Pd_2(dba)_3$ ·CHCl₃ (5 mol%) and 1.10-phen (10 mol%) in an oven-dried Schlenk tube was added 1 mL of DCE at 25 °C. The resulting mixture was stirred until the starting material was completely consumed (monitored by TLC) and then was concentrated to dryness. The residue was purified through flash column chromatography (petroleum ether/EtOAc) to give the corresponding products **3**.

The Scaled-up Reaction

An oven-dried 100 mL of Schlenk tube was charged with **1a** (1.2 mmol, 365 mg), **2a** (1.0 mmol, 183 mg), $Pd_2(dba)_3$ ·CHCl₃ (5 mol%), 1.10-phen (10 mol%), and 10 mL of DCE under argon atmosphere. The reaction mixture was stirred at 25 °C. Once the starting material was completely consumed (monitored by TLC), the mixture was concentrated to dryness. The

^{1.} Sun, H.; Song, A.; Gu, S.; Tang, Y.; Yang, S.; Li, W.; Guo, H. J. Org. Chem. 2024, 89, 14141-14150.

^{2.} Liu, M.; Liao, J.; Dong, Y.; Shi, W.; Hu, Y.; Xu, J.; Wang, W.; Xu, Y.; Guo, H. Adv. Synth. Catal. 2022, 364, 2146–2151.

residue was purified by flash column chromatography (petroleum ether/EtOAc) to afford the product **3aa** (403 mg, 91% yield, >20:1 dr).

Further Transformation of the Product

Under argon atmosphere, to a solution of **3aa** (0.1 mmol) in DCM was added DABAL (0.8 mmol) at -78 °C. Once the starting material was completely consumed (monitored by TLC), the mixture was concentrated to dryness. The residue was purified by flash column chromatography (petroleum ether/EtOAc) to afford the product **4aa** (57% yield, >20:1 dr).

Investigation on Asymmetric [3+2] Cycloaddition

^{*a*} Reactions of **1a** (0.12 mmol) and **2a** (0.10 mmol) were performed in the presence of $Pd_2(dba)_3$ •CHCl₃ (5 mol%) and **L*** (10 mol%) in 1 mL of DCE at 15 °C for 12 h. ^{*b*} Isolated yield.

Characterization Data of Products

Dimethyl 3-phenyl-3-vinyl-2,3-dihydrobenzo[e]pyrrolo[1, 2-c][1,2,3]oxathiazine-1,1(10bH)dicarboxylate 5,5-dioxide (3aa).

White solid (41.4 mg, 93% yield, >20:1 dr), mp: 134 – 135 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =8:1); ¹H NMR (500 MHz, CDCl₃) δ 7.40 – 7.34 (m, 2H), 7.33 – 7.19 (m, 4H), 7.07 (td, *J* = 7.7, 1.3 Hz, 1H), 6.97 (td, *J* = 7.8, 7.1, 1.3 Hz, 2H), 6.31 (dd, *J* = 17.2, 10.6

Hz, 1H), 6.01 (s, 1H), 5.28 (d, J = 10.6 Hz, 1H), 4.96 (d, J = 17.2 Hz, 1H), 3.57 (s, 3H), 3.26 (s, 3H), 3.08 (d, J = 13.7 Hz, 1H), 3.02 (d, J = 13.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 167.7, 151.7, 140.0, 138. 8, 129.9, 128.2, 127.8, 127.4, 126.0, 125.1, 119.6, 119.5, 118.3, 73.8, 67.0, 63.2, 53.13, 53.08, 45.5; HRMS (ESI) calculated for C₂₂H₂₂NO₇S⁺ [M + H]⁺ 444.1111, found 444.1121.

Dimethyl 8-fluoro-3-phenyl-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 -dioxide (3ab).

White solid (41.2 mg, 89% yield, >20:1 dr), mp: 158 – 159 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.33 (m, 2H), 7.29 (dd, *J* = 8.6, 6.9 Hz,

2H), 7.24 – 7.19 (m, 1H), 6.99 – 6.93 (m, 1H), 6.80 (m, 1H), 6.73 (dd, J = 8.7, 2.6 Hz, 1H), 6.30 (dd, J = 17.2, 10.6 Hz, 1H), 5.96 (s, 1H), 5.30 (d, J = 10.6 Hz, 1H), 4.98 (d, J = 17.2 Hz, 1H), 3.59 (s, 3H), 3.28 (s, 3H), 3.09 (d, J = 13.8 Hz, 1H), 3.02 (d, J = 13.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 167.6, 166.5, 161.5 (d, J = 251.2 Hz), 151.4 (d, J = 11.6 Hz), 138.8, 137.5, 127.2, 126.9, 126.5 (d, J = 9.2 Hz), 126.2, 117.4, 114.5 (d, J = 4.0 Hz), 111.5 (d, J = 21.7 Hz), 106.1 (d, J = 25.4 Hz), 72.9, 65.6, 62.1, 52.2, 52.1, 44.4; ¹⁹F NMR (471 MHz, CDCl₃) δ -109.62; HRMS (ESI) calculated for C₂₂H₂₁FNO₇S⁺ [M + H]⁺ 462.1017, found 462.1027.

Dimethyl 9-chloro-3-phenyl-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 - dioxide (3ac).

White solid (43.5 mg, 91% yield, >20:1 dr), mp: 156 – 157 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.39 (m, 2H), 7.39 – 7.34 (m, 2H), 7.32 – 7.27 (m, 2H), 7.05 – 6.98 (m, 2H), 6.35 (dd, *J* = 17.2, 10.6 Hz, 1H),

6.06 (s, 1H), 5.37 (d, J = 10.6 Hz, 1H), 5.05 (d, J = 17.1 Hz, 1H), 3.73 (s, 3H), 3.32 (s, 3H), 3.12 (q, J = 13.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 168.4, 167.3, 150.3, 139.8, 138.5, 130.4, 129.9, 128.2, 127.9, 127.3, 126.3, 121.2, 120.8, 118.5, 73.9, 66.7, 63.2, 53.3, 53.2, 45.3; HRMS (ESI) calculated for C₂₂H₂₁ClNO₇S⁺ [M + H]⁺ 478.0722, found 478.0724.

Dimethyl 8-bromo-3-phenyl-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 -dioxide (3ad).

White solid (49.3 mg, 95% yield, >20:1 dr), mp: 160 – 161 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.36 (dd, *J* = 8.7, 6.8 Hz, 2H), 7.30 – 7.26 (m, 2H), 7.22 (d, *J* = 2.1 Hz, 1H), 6.92 (dd, *J* = 8.5,

1.0 Hz, 1H), 6.36 (dd, J = 17.2, 10.6 Hz, 1H), 6.00 (s, 1H), 5.37 (d, J = 10.5 Hz, 1H), 5.06 (d, J = 17.3 Hz, 1H), 3.66 (s, 3H), 3.35 (s, 3H), 3.15 (d, J = 13.8 Hz, 1H), 3.09 (d, J = 13.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.5, 167.5, 152.0, 139.9, 138.5, 128.3, 128.2, 128.0, 127.3, 127.2, 122.8, 122.6, 118.7, 118.5, 74.0, 66.8, 63.0, 53.3, 53.2, 45.5; HRMS (ESI) calculated for C₂₂H₂₁BrNO₇S⁺ [M + H]⁺ 522.0217, found 522.0223.

Dimethyl 7-bromo-3-phenyl-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 -dioxide (3ae).

White solid (47.0 mg, 90% yield, >20:1 dr), mp: 142 – 143 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.46 (m, 1H), 7.38 – 7.33 (m, 2H), 7.29 (dd, *J* = 8.7, 6.9 Hz, 2H), 7.24 – 7.19 (m, 1H), 6.97 – 6.86 (m, 2H), 6.31

(dd, J = 17.2, 10.6 Hz, 1H), 5.98 (s, 1H), 5.31 (d, J = 10.6 Hz, 1H), 4.97 (d, J = 17.2 Hz, 1H), 3.55 (s, 3H), 3.29 (s, 3H), 3.09 (d, J = 13.8 Hz, 1H), 3.04 (d, J = 13.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 167.5, 148.5, 139.7, 138.4, 133.7, 128.3, 128.0, 127.2, 125.5, 125.2, 121.7, 118.5, 113.2, 74.3, 67.1, 63.4, 53.2, 45.6; HRMS (ESI) calculated for C₂₂H₂₁BrNO₇S⁺ [M + H]⁺ 522.0217, found 522.0221.

Dimethyl 9-methyl-3-phenyl-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 -dioxide (3af).

White solid (42.8 mg, 94% yield, >20:1 dr), mp: 154 - 155 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.40 (m, 2H), 7.35 (m, 2H), 7.29 – 7.24 (m, 1H), 7.12 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.93 (d, *J* = 8.4 Hz, 1H), 6.83

- 6.75 (m, 1H), 6.36 (dd, J = 17.2, 10.6 Hz, 1H), 6.08 (s, 1H), 5.35 (d, J = 10.6 Hz, 1H), 5.03 (d, J = 17.2 Hz, 1H), 3.68 (s, 3H), 3.28 (s, 3H), 3.14 (d, J = 13.7 Hz, 1H), 3.08 (d, J = 13.7 Hz, 1H)., 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 167.6, 149.7, 140.1, 138.9, 134.7, 130.5, 128.1, 127.7, 127.4, 126.4, 119.2, 119.0, 118.3, 73.6, 67.0, 63.2, 53.01, 52.99, 45.3, 21.0; HRMS (ESI) calculated for C₂₃H₂₄NO₇S⁺ [M + H]⁺ 458.1268, found 458.1272.

Dimethyl 8-methyl-3-phenyl-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 -dioxide (3ag).

White solid (40.9 mg, 89% yield, >20:1 dr), mp: 164 – 165 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =8:1); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.33 (m, 2H), 7.28 (dd, *J* = 8.6, 7.0 Hz, 2H), 7.23 – 7.18 (m, 1H), 6.87 (dd, *J* = 8.2, 1.8 Hz, 1H), 6.84 – 6.72

(m, 2H), 6.29 (dd, J = 17.2, 10.6 Hz, 1H), 5.99 (s, 1H), 5.27 (d, J = 10.7 Hz, 1H), 4.96 (d, J = 17.2 Hz, 1H), 3.60 (s, 3H), 3.21 (s, 3H), 3.07 (d, J = 13.7 Hz, 1H), 3.00 (d, J = 13.7 Hz, 1H), 2.26 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 167.6, 166.6, 150.5, 139.5, 139.1, 137.8, 127.0, 126.7, 126.4, 125.0, 124.6, 118.7, 117.2, 115.2, 72.6, 65.9, 62.0, 52.1, 52.0, 44.2, 19.9; HRMS (ESI) calculated for C₂₃H₂₄NO₇S⁺ [M + H]⁺ 458.1268, found 458.1272.

Dimethyl 7-methyl-3-phenyl-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 -dioxide (3ah).

White solid (41.2 mg, 90% yield, >20:1 dr), mp: 145 – 146 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =8:1); ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 7.36 (dd, *J* = 8.6, 7.0 Hz, 2H), 7.31 – 7.26 (m, 1H), 7.19 – 7.15 (m, 1H), 7.02 (t, *J* = 7.7 Hz, 1H), 6.86 (d, *J* = 7.9

Hz, 1H), 6.40 (dd, J = 17.2, 10.6 Hz, 1H), 6.06 (s, 1H), 5.35 (d, J = 10.6 Hz, 1H), 5.03 (d, J = 17.2 Hz, 1H), 3.62 (s, 3H), 3.34 (s, 3H), 3.16 (d, J = 13.7 Hz, 1H), 3.10 (d, J = 13.7 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.9, 167.8, 150.1, 140.0, 138.9, 131.3, 128.7, 128.2, 127.8, 127.4, 124.4, 123.5, 119.3, 118.1, 73.9, 67.1, 63.4, 53.1, 53.0, 45.5, 15.7; HRMS (ESI) calculated for C₂₃H₂₄NO₇S⁺ [M + H]⁺ 458.1268, found 458.1264.

Dimethyl 9-(tert-butyl)-3-phenyl-3-vinyl-2,3-dihydrobenzo [e]pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10- bH)-dicarboxylate 5,5-dioxide (3ai).

White solid (45.7 mg, 92% yield, >20:1 dr), mp: 163– 164 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 7.39 – 7.31 (m, 3H),

7.29 – 7.26 (m, 1H), 7.10 – 7.07 (m, 1H), 6.97 (d, J = 8.6 Hz, 1H), 6.38 (dd, J = 17.2, 10.6 Hz, 1H), 6.07 (s, 1H), 5.35 (d, J = 10.6 Hz, 1H), 5.03 (d, J = 17.2 Hz, 1H), 3.67 (s, 3H), 3.32 (s, 3H), 3.15 (d, J = 13.7 Hz, 1H), 3.10 (d, J = 13.7 Hz, 1H), 1.27 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 167.7, 149.3, 148.1, 140.1, 138.9, 128.1, 127.7, 127.4, 127.0, 123.0, 118.8, 118.5, 118.3, 73.6, 67.1, 63.1, 53.3, 53.0, 45.5, 34.6, 31.3; HRMS (ESI) calculated for C₂₆H₃₀NO₇S⁺ [M + H]⁺ 500.1737, found 500.1732.

Dimethyl 8-(tert-butyl)-3-phenyl-3-vinyl-2,3-dihydrobenzo [e]pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10-bH)-dicarboxylate 5,5-dioxide (3aj).

White solid (46.2 mg, 93% yield, >20:1 dr), mp: 134 – 135 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =15:1); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.28 (t, *J* = 7.7 Hz, 2H), 7.22 – 7.19 (m, 1H), 7.08 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.96 (d, *J* = 2.0

Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.29 (dd, J = 17.2, 10.6 Hz, 1H), 6.01 (s, 1H), 5.28 (d, J = 10.6 Hz, 1H), 4.96 (d, J = 17.2 Hz, 1H), 3.61 (s, 3H), 3.20 (s, 3H), 3.07 (d, J = 13.7 Hz, 1H), 3.01 (d, J = 13.7 Hz, 1H), 1.22 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 167.6, 153.9, 151.6, 140.1, 138.9, 128.0, 127.7, 127.5, 125.4, 122.4, 118.4, 116.4, 116.1, 73.6, 66.8, 63.0, 53.1, 53.0, 45.3, 34.8, 31.0; HRMS (ESI) calculated for C₂₆H₃₀NO₇S⁺ [M + H]⁺ 500.1737, found 500.1735.

Dimethyl 7-(tert-butyl)-3-phenyl-3-vinyl-2,3-dihydrobenzo [e]pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10-bH)-dicarboxylate 5,5-dioxide (3ak).

White solid (46.5 mg, 93% yield, >20:1 dr), mp: 154 - 155 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.35 (m, 2H), 7.29 (dd, *J* = 8.6, 7.0 Hz, 2H), 7.25 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.23 – 7.18 (m, 1H), 6.98 (t, *J* = 7.9 Hz, 1H), 6.85

(dt, J = 7.8, 1.2 Hz, 1H), 6.35 (dd, J = 17.3, 10.6 Hz, 1H), 5.95 (s, 1H), 5.26 (d, J = 10.6 Hz, 1H), 4.96 (d, J = 17.2 Hz, 1H), 3.50 (s, 3H), 3.27 (s, 3H), 3.13 (d, J = 13.6 Hz, 1H), 3.02 (d, J = 13.7 Hz, 1H), 1.33 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 169.0, 167.9, 150.8, 140.4, 140.2, 138.8, 128.2, 127.8, 127.3, 127.3, 124.4, 124.3, 120.1, 117.8, 74.0, 67.2, 63.8, 53.0, 45.3, 35.0, 30.0; HRMS (ESI) calculated for C₂₆H₃₀NO₇S⁺ [M + H]⁺ 500.1737, found 500.1741.

Dimethyl 8-methoxy-3-phenyl-3-vinyl-2,3-dihydrobenzo [e]pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10-bH)-dicarboxylate 5,5-dioxide (3al).

White solid (41.3 mg, 87% yield, >20:1 dr), mp: 194 – 195 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =8:1); ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, *J* = 7.4 Hz, 2H), 7.28 (t, *J* = 7.6

Hz, 2H), 7.19 (t, J = 3.7 Hz, 1H), 6.83 (d, J = 8.8 Hz, 1H), 6.62 (dd, J = 8.8, 2.7 Hz, 1H), 6.49 (d, J = 2.6 Hz, 1H), 6.30 (dd, J = 17.2, 10.6 Hz, 1H), 5.97 (s, 1H), 5.28 (d, J = 10.7 Hz, 1H), 4.97 (d, J = 17.2 Hz, 1H), 3.72 (s, 3H), 3.61 (s, 3H), 3.22 (s, 3H), 3.08 (d, J = 13.7 Hz, 1H), 2.99 (d, J = 13.7 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 167.7, 160.5, 152.6, 140.1, 138.9, 128.1, 127.7, 127.4, 126.7, 118.3, 111.9, 111.0, 104.2, 73.6, 66.7, 63.0, 55.6, 53.2, 53.0, 45.2; HRMS (ESI) calculated for C₂₃H₂₄NO₈S⁺ [M + H]⁺ 474.1217, found 474.1221.

Dimethyl 7-ethoxy-3-phenyl-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 -dioxide (3am).

White solid (44.5 mg, 91% yield, >20:1 dr), mp: 146 – 147 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =8:1); ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.28 (m, 2H), 7.28 (dd, *J* = 8.6, 7.0 Hz, 2H), 7.19 (d, *J* = 7.0 Hz, 1H), 6.96 (t, *J* = 8.1 Hz, 1H), 6.82 (dd, *J* = 8.3, 1.5 Hz, 1H), 6.50 (dt, *J* = 8.1, 1.2 Hz, 1H), 6.33 (dd, *J* = 17.2, 10.6 Hz, 1H), 6.00 (s, 1H),

5.28 (d, J = 10.7 Hz, 1H), 4.95 (d, J = 17.2 Hz, 1H), 4.00 (m, 2H), 3.56 (s, 3H), 3.24 (s, 3H), 3.06 (q, J = 13.7 Hz, 2H), 1.36 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.8, 167.7, 148.8, 141.7, 139.9, 138.9, 128.1, 127.8, 127.4, 124.7, 120.6, 118.2, 117.0, 113.6, 73.9, 67.1, 65.0, 63.3, 53.1, 53.0, 45.6, 14.7; HRMS (ESI) calculated for C₂₄H₂₆NO₈S⁺ [M + H]⁺ 488.1374, found 488.1377.

Dimethyl 3-(4-fluorophenyl)-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 -dioxide (3ba).

Pale yellow solid (42.9 mg, 93% yield, >20:1 dr), mp: 136 - 137 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.34 (tt, *J* = 8.2, 1.3 Hz, 1H), 7.15 (td, *J* = 7.6, 1.3 Hz, 1H), 7.09 – 7.00 (m, 4H), 6.36 (dd, *J* = 17.2, 1.3 Hz, 1H), 7.09 – 7.00 (m, 2H), 7.34 (tt, *J* = 8.2, 1.3 Hz, 1H), 7.15 (td, *J* = 7.6, 1.3 Hz, 1H), 7.09 – 7.00 (m, 2H), 6.36 (dd, *J* = 17.2, 1.3 Hz, 1.3

10.6 Hz, 1H), 6.08 (s, 1H), 5.37 (d, J = 10.7 Hz, 1H), 5.03 (d, J = 17.2 Hz, 1H), 3.66 (s, 3H), 3.40 (s, 3H), 3.15 (d, J = 13.8 Hz, 1H), 3.04 (d, J = 13.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 167.5, 162.2 (d, J = 247.5 Hz), 151.6, 138.7, 135.9 (d, J = 3.1 Hz), 130.0, 129.3 (d, J = 8.3 Hz), 126. 0, 125.2, 119.5, 119.4, 118.5, 115.0 (d, J = 21.5 Hz), 73.2, 67.0, 63.1, 53.2, 45.6; ¹⁹F NMR (471 MHz, CDCl₃) δ -114.61; HRMS (ESI) calculated for C₂₂H₂₁FNO₇S⁺ [M + H]⁺ 462.1017, found 462.1018.

Dimethyl 3-(3-chlorophenyl)-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 -dioxide (3ca).

Pale yellow solid (44.5 mg, 93% yield, >20:1 dr), mp: 130 - 131 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.38 (dt, *J* = 3.5, 1.9 Hz, 2H), 7.37 - 7.26 (m, 3H), 7.15 (td, *J* = 7.7, 1.3 Hz, 1H), 7.08 - 6.99 (m, 2H), 6.37 (dd, *J* =

17.2, 10.7 Hz, 1H), 6.08 (s, 1H), 5.39 (d, J = 10.7 Hz, 1H), 5.06 (d, J = 17.2 Hz, 1H), 3.67 (s, 3H), 3.43 (s, 3H), 3.17 (d, J = 13.8 Hz, 1H), 3.03 (d, J = 13.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 167.4, 151.6, 142.6, 138.1, 134.1, 130.0, 129.6, 128.0, 127.4, 126.0, 125.6, 125.2, 119.5, 119.3, 118.8, 73.2, 67.1, 63.1, 53.2, 45.2; HRMS (ESI) calculated for C₂₂H₂₁ClNO₇S⁺ [M + H]⁺ 478.0722, found 478.0724.

Dimethyl 3-(4-chlorophenyl)-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 -dioxide (3da).

White solid (44.0 mg, 92% yield, >20:1 dr), mp: 138 – 139 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.23 (m, 5H), 7.08 (td, *J* = 7.7, 1.3 Hz, 1H), 7.00 – 6.91 (m, 2H), 6.28 (dd, *J* = 17.2, 10.6 Hz, 1H), 6.01 (s, 1H),

5.30 (d, J = 10.6 Hz, 1H), 4.96 (d, J = 17.2 Hz, 1H), 3.59 (s, 3H), 3.32 (s, 3H), 3.08 (d, J = 13.8 Hz, 1H), 2.95 (d, J = 13.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 167.4, 151.6, 138.9, 138.4, 133.8, 130.0, 128.9, 128.3, 126.0, 125.2, 119.5, 119.3, 118.6, 73.2, 67.0, 63.0, 53.2, 45.4; HRMS (ESI) calculated for C₂₂H₂₁ClNO₇S⁺ [M + H]⁺ 478.0722, found 478.0728.

Dimethyl 3-(2-bromophenyl)-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH) -dicarboxylate 5,5 -dioxide (3ea).

White solid (46.6 mg, 89% yield, >20:1 dr), mp: 140 – 141 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =8:1); ¹H NMR (500 MHz, CDCl₃) δ 7.65 – 7.56 (m, 2H), 7.54 – 7.47 (m, 2H), 7.31 – 7.25 (m, 1H), 7.10 (td, *J* = 7.7, 1.3 Hz, 1H), 6.99 (dd, *J* = 8.2, 1.3

Hz, 1H), 6.93 (dt, J = 8.0, 1.2 Hz, 1H), 6.28 (dd, J = 17.3, 10.6 Hz, 1H), 6.05 (s, 1H), 5.35 (d, J = 10.7 Hz, 1H), 4.99 (d, J = 17.2 Hz, 1H), 3.64 (s, 3H), 3.28 (s, 3H), 3.14 (d, J = 14.0 Hz, 1H), 2.93 (d, J = 13.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 167.4, 151.6, 142.9, 138.1, 131.0, 130.3, 130.0, 129.9, 126.1, 126.0, 125.2, 122.2, 119.5, 119.3, 118.8, 73.1, 67.1, 63.1, 53.3, 53.2, 45.2; HRMS (ESI) calculated for C₂₂H₂₁BrNO₇S⁺ [M + H]⁺ 522.0217, found 522.0220.

Dimethyl 3-(3-bromophenyl)-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH) -dicarboxylate 5,5 -dioxide (3fa).

White solid (45.4 mg, 87% yield, >20:1 dr), mp: 135 - 136 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (t, *J* = 1.9 Hz, 1H), 7.36 (tdd, *J* = 6.7, 2.0, 1.0 Hz, 2H), 7.26 (ddt, *J* = 8.1, 7.0, 1.3 Hz, 1H), 7.19 - 7.15 (m, 1H), 7.08 (td, *J* =

7.6, 1.3 Hz, 1H), 7.01 – 6.92 (m, 2H), 6.29 (dd, J = 17.2, 10.7 Hz, 1H), 6.00 (s, 1H), 5.32 (d, J = 10.7 Hz, 1H), 4.99 (d, J = 17.2 Hz, 1H), 3.59 (s, 3H), 3.36 (s, 3H), 3.09 (d, J = 13.9 Hz, 1H), 2.96 (d, J = 13.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 167.4, 151.6, 142.9, 138.1, 131.0, 130.3, 130.0, 129.9, 126.1, 126.0, 125.2, 122.2, 119.5, 119.3, 118.8, 73.1, 67.1, 63.1, 53.3, 53.2, 45.2; HRMS (ESI) calculated for C₂₂H₂₁BrNO₇S⁺ [M + H]⁺ 522.0217, found 522.0216.

Dimethyl 3-(4-bromophenyl)-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH) -dicarboxylate 5,5 -dioxide (3ga).

White solid (47.4 mg, 91% yield, >20:1 dr), mp: 130 - 131 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.52 - 7.47 (m, 2H), 7.36 - 7.30 (m, 3H),

7.15 (td, J = 7.7, 1.3 Hz, 1H), 7.07 – 6.99 (m, 2H), 6.35 (dd, J = 17.2, 10.6 Hz, 1H), 6.08 (s, 1H), 5.37 (d, J = 10.6 Hz, 1H), 5.04 (d, J = 17.2 Hz, 1H), 3.67 (s, 3H), 3.39 (s, 3H), 3.15 (d, J = 13.8 Hz, 1H), 3.02 (d, J = 13.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.6, 167.4, 151.6, 139.4, 138.3, 131.3, 130.0, 129.2, 126.0, 125.2, 122.0, 119.5, 119.3, 118.7, 73.2, 67.0, 63.0, 53.0, 45.4; HRMS (ESI) calculated for C₂₂H₂₁BrNO₇S⁺ [M + H]⁺ 522.0217, found 522.0220.

Dimethyl 3-(p-tolyl)-3-vinyl-2,3-dihydrobenzo[e]pyrrolo[1, 2-c][1,2,3]oxathiazine-1,1(10-bH)-dicarbo-xylate 5,5-dioxide (3ha).

White solid (40.7 mg, 89% yield, >20:1 dr), mp: 124 - 125 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.29 (m, 3H), 7.19 – 7.11 (m, 3H),

7.08 – 7.02 (m, 2H), 6.38 (dd, J = 17.2, 10.6 Hz, 1H), 6.03 (s, 1H), 5.34 (d, J = 10.6 Hz, 1H), 5.03 (d, J = 17.2 Hz, 1H), 3.62 (s, 3H), 3.40 (s, 3H), 3.14 (d, J = 13.7 Hz, 1H), 3.09 (d, J = 13.7 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 168.9, 167.8, 151.5, 139.0, 137.6, 136.9, 129.8, 128.9, 127.3, 126.1, 125.1, 119.7, 119.4, 118.0, 73.8, 66.9, 63.2, 53.13, 53.06, 45.6, 21.0; HRMS (ESI) calculated for C₂₃H₂₄NO₇S⁺ [M + H]⁺ 458.1268, found 458.1272.

Dimethyl 3-(2-methoxyphenyl)-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10b H)-dicarboxylate 5,5 -dioxide (3ia).

White solid (40.7 mg, 86% yield, >20:1 dr), mp: 135 - 136 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.57 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.31 (td, *J* = 7.8, 1.6 Hz, 2H), 7.14 (td, *J* = 7.6, 1.3 Hz, 1H), 7.09 (dt, *J* = 8.0, 1.3 Hz,

1H), 7.04 (dd, J = 8.3, 1.3 Hz, 1H), 6.99 (td, J = 7.6, 1.2 Hz, 1H), 6.93 (dd, J = 8.2, 1.2 Hz, 1H), 6.23 (dd, J = 17.2, 10.6 Hz, 1H), 6.14 (s, 1H), 5.36 (d, J = 10.6 Hz, 1H), 5.14 (d, J = 17.2 Hz, 1H), 3.82 (s, 3H), 3.57 (d, J = 13.8 Hz, 4H), 3.50 (s, 3H), 2.98 (d, J = 13.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 168.2, 156.6, 151.3, 137.5, 129.8, 129.7, 129.5, 128.3, 126.0, 124.9, 120.6, 120.5, 119.2, 117.1, 111.6, 72.6, 67.2, 63.2, 55.2, 53.1, 52.8, 43.9; HRMS (ESI) calculated for C₂₃H₂₄NO₈S⁺ [M + H]⁺ 474.1217, found 474.1218.

Dimethyl 3-(4-cyanophenyl)-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5 -dioxide (3ja).

White solid (43.1 mg, 92% yield, >20:1 dr), mp: 162 – 163 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.45 (d, *J* = 2.0 Hz, 1H), 7.36 (m, 2H), 7.26 (td, *J* = 8.0, 1.6 Hz, 1H), 7.21 – 7.17 (m, 1H), 7.08 (td, *J* = 7.7, 1.3 Hz, 1H),

7.00 – 6.93 (m, 2H), 6.29 (dd, J = 17.2, 10.7 Hz, 1H), 6.00 (s, 1H), 5.32 (d, J = 10.6 Hz, 1H), 4.99 (d, J = 17.2 Hz, 1H), 3.59 (s, 3H), 3.36 (s, 3H), 3.09 (d, J = 13.9 Hz, 1H), 2.95 (d, J = 13.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 167.1, 151.6, 146.2, 137.6, 131.9, 130.2, 128.2, 125.9, 125.4, 119.6, 119.3, 119.0, 118.4, 111.8, 73.0, 67.2, 62.9, 53.3, 53.2, 45.1; HRMS (ESI) calculated for C₂₃H₂₁N₂O₇S⁺ [M + H]⁺ 469.1064, found 469.1068.

Dimethyl 3-([1,1'-biphenyl]-4-yl)-3-vinyl-2,3-dihydrobenzo [e]pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10 bH)-dicarboxylate 5,5-dioxide (3ka).

White solid (47.9 mg, 92% yield, >20:1 dr), mp: 146 – 147 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.59 (td, *J* = 6.3, 3.0 Hz, 4H), 7.54 – 7.49 (m, 2H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.38 – 7.30 (m, 2H), 7.14 (td, *J* = 7.7, 1.3

Hz, 1H), 7.05 (tt, J = 6.7, 1.3 Hz, 2H), 6.42 (dd, J = 17.2, 10.6 Hz, 1H), 6.12 (s, 1H), 5.39 (d, J = 10.6 Hz, 1H), 5.10 (d, J = 17.2 Hz, 1H), 3.65 (s, 3H), 3.35 (s, 3H), 3.15 (q, J = 13.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 167.6, 151.7, 140.6, 140.3, 139.1, 138.7, 129.9, 128.9, 127.9, 127.6, 127.1, 126.8, 126.1, 125.2, 119.6, 119.5, 118.4, 73.7, 67.1, 63.2, 53.2, 53.1, 45.5; HRMS (ESI) calculated for C₂₈H₂₆NO₇S⁺ [M + H]⁺ 520.1424, found 520.1419.

Dimethyl 3-(thiophen-2-yl)-3-vinyl-2,3-dihydrobenzo[e]py- rrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)-dicarboxylate 5,5-dioxide (3la).

White solid (37.9 mg, 84% yield, 1:1 dr), mp: 121 - 122 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.30 (td, *J* = 6.1, 5.1, 1.3 Hz, 2H), 7.19 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.07 - 6.97 (m, 4H), 6.48 (dd, *J* = 17.1, 10.5 Hz, 1H), 5.92 (s,

1H), 5.30 (d, J = 10.7 Hz, 1H), 5.16 (d, J = 17.1 Hz, 1H), 3.82 (s, 3H), 3.54 (s, 3H), 3.42 (d, J = 13.6 Hz, 1H), 3.33 (d, J = 13.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 169.4, 168.1, 165.7, 165.7, 151.0, 144.0, 143.0, 139.2, 138.2, 129.8, 127.6, 127.1, 126.97, 126.94, 126.6, 125.94, 125.92, 125.1, 119.8, 119.1, 117.9, 116.4, 84.8, 70.9, 66.5, 63.3, 63.0, 54.01, 53.98, 53.5, 53.0, 48.0, 43.8; HRMS (ESI) calculated for C₂₀H₂₀NO₇S₂⁺ [M + H]⁺ 450.0676, found 450.0672.

Dimethyl 3-(naphthalen-2-yl)-3-vinyl-2,3-dihydrobenzo[e] pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH) -dicarboxylate 5,5 -dioxide (3ma).

White solid (44.9 mg, 91% yield, >20:1 dr), mp: 167 – 168 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, *J* = 2.3 Hz, 1H), 7.91 – 7.78 (m, 3H), 7.52 – 7.42 (m, 3H), 7.33 (td, *J* = 8.1, 1.6 Hz, 1H), 7.14

(td, J = 7.6, 1.3 Hz, 1H), 7.06 (m, 2H), 6.45 (dd, J = 17.3, 10.6 Hz, 1H), 6.14 (s, 1H), 5.41 (d, J = 10.5 Hz, 1H), 5.09 (d, J = 17.3 Hz, 1H), 3.64 (s, 3H), 3.19 (m, 5H); ¹³C NMR (126 MHz, CDCl₃) δ 168.7, 167.7, 151.7, 138.6, 137.3, 132.8, 132.6, 129.9, 128.5, 128.0, 127.4, 126.61, 126.56, 126.5, 126.1, 125.2, 125.1, 119.6, 119.5, 118.7, 73.9, 67.2, 63.2, 53.2, 53.1, 45.1; HRMS (ESI) calculated for C₂₆H₂₄NO₇S⁺ [M + H]⁺ 494.1268, found 494.1265.

Dimethyl 3-ethyl-3-vinyl-2,3-dihydrobenzo[e]pyrrolo[1,2-c][1,2,3]oxathiazine-1,1(10bH)dicarboxy-late 5,5-dioxide (3na).

White solid (34.0 mg, 86% yield, >20:1 dr), mp: 103 – 104 °C. It was purified by flash column chromatography (petroleum ether/EtOAc =10:1); ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.27 (m, 1H), 7.21 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.16 – 7.10 (m, 1H), 7.01 (dd, *J* = 8.2, 1.2 Hz, 1H), 6.29 (dd, *J* = 17.5, 1H), 6.29 (dd, *J* = 17.5).

11.0 Hz, 1H), 5.69 (s, 1H), 5.24 – 5.13 (m, 2H), 3.91 (s, 3H), 3.44 (s, 3H), 2.86 (d, J = 13.8 Hz, 1H), 2.65 (d, J = 13.8 Hz, 1H), 2.12 – 1.98 (m, 2H), 1.03 (t, J = 7.4 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.1, 168.2, 150.6, 139.3, 129.4, 126.6, 124.9, 120.4, 118.7, 114.7, 71.6, 66.9, 62.4, 53.7, 52.6, 42.9, 31.4, 8.7; HRMS (ESI) calculated for C₁₈H₂₂NO₇S⁺ [M + H]⁺ 396.1111, found 396.1115.

1,1-bis(hydroxymethyl)-3-phenyl-3-vinyl-1,2,3,10b-tetrah-ydrobenzo[e]pyrrolo[1,2c][1,2,3]oxathia-zine 5,5-dioxide (4aa).

Pale yellow oil (22.2 mg, 57% yield, >20:1 dr). It was purified by flash column chromatography (petroleum ether/EtOAc =2:1); ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.39 (m, 3H), 7.33 – 7.19 (m, 4H), 7.13 – 7.07 (m, 1H), 6.94 (d, *J* = 8.2 Hz, 1H), 6.56 (dd, *J* = 17.4, 11.0 Hz, 1H), 5.41 – 5.30

(m, 3H), 3.87 (d, J = 10.7 Hz, 1H), 3.71 (d, J = 10.8 Hz, 1H), 3.54 – 3.42 (m, 2H), 2.86 (d, J = 13.9 Hz, 1H), 2.40 (s, 1H), 2.15 – 1.94 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 150.2, 143.0, 137.5, 128.2, 127.5, 126.7, 126.5, 125.0, 124.1, 119.0, 118.3, 115.8, 73.3, 66.9, 66.6, 62.3, 50.5, 42.7; HRMS (ESI) calculated for C₂₀H₂₂NO₅S⁺ [M + H]⁺ 388.1213, found 388.1214.

¹H NMR and ¹³C NMR Spectra of Products

¹H NMR (500 MHz, CDCl₃)

7, 7, 38 7, 7, 37 7, 37 7, 38 7, 38 7, 39 7, 39 7, 29 7, 29 7, 28 7, 29 7, 20,

7, 738 7, 7387 7, 7387 7, 7387 7, 7387 7, 7387 7, 7387 7, 7387 7, 73877 7, 7387

io 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -200 -210 -2 f1 (ppm)

f1 (ppm)

7, 7, 45 7, 45

f1 (ppm) $\frac{1}{70}$

f1 (ppm)

7,444 7,748 7,749 7,748 7,749

¹³C NMR (126 MHz, CDCl₃)

¹⁹F NMR (471 MHz, CDCl₃)

7, 7, 80 7, 7, 38 7, 38 7, 38 7, 38 7, 38 7, 38 7, 38 7, 39 7, 30 8, 30,

¹³C NMR (126 MHz, CDCl₃)

7, 7, 82 7, 7, 10 7, 7, 10 7, 7, 10 7, 7, 10 7,

¹³C NMR (126 MHz, CDCl₃)

7,51 7,260 7,260 7,740 7,747 7,747 7,747 7,747 7,747 7,747 7,747 7,747 7,747 7,747 7,747 7,7447 7,7447 7,7447 7,7447 7,7447 7,7447 7,7447 7,7447 7,7447 7,7447 7,7

¹³C NMR (126 MHz, CDCl₃)

7.7.34 7.7.32 7.7.32 7.7.32 7.7.17 7.7.17 7.7.17 7.7.12 7.

¹⁸⁰ 170 160 150 140 130 120 90 fl (ppm) 70 60 50 40 30 20 10 110 80 100

7,7,88 7,7,88 7,158 7,158 7,158 7,7,33 7,7,33 7,7,34 7,7,34 7,7,34 7,7,34 7,7,34 7,7,35 7,3,35 7,3,3

7,761 7,500 7,500 7,500 7,500 7,500 7,501 7,502 7,502 7,502 7,502 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,504 7,505 7,505 7,506

7. 19.7
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
7. 20.8
<

fl (ppm)

7,7,46 7,46 7,745

¹³C NMR (126 MHz, CDCl₃)

¹⁸⁰ 170 160 150 130 90 f1 (ppm) 50 20 10 140 120 110 100 80 70 60 40 30

HPLC Chromatogram of Product 3aa

HPLC chromatogram of racemic product 3aa

Peak RetTime		Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	10.039	BV	0.2951	786.57825	40.58231	49.7736	
2	11.208	VB	0.3326	793.73364	36.09402	50.2264	

HPLC chromatogram of chiral product 3aa

2

11.797

MM R

0.3922

11.72741

37.9989

275.99091

X-ray Crystallographic Data of Product 3aa

Crystallographic data for **3aa** has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 2366186. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request- @ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223336033.

Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from ethyl acetate/ petroleum ether(V/V=5/1) at RT. X-ray structure of complex **3aa** with 50% ellipsoid probability Crystal data.

Identification code	399
Empirical formula	CapHayNOzS
Formula weight	443.46
Temperature/K	203
Crystal system	monoclinic
Space group	D2./n
	$\Gamma 2]/\Pi$
d/A	0.96360(10)
	20.9081(2)
	11.6909(2)
α/°	90
β/°	109.1210(10)
γ/°	90
Volume/Å ³	2080.75(5)
Z	4
$\rho_{calc}g/cm^3$	1.416
μ/mm ⁻¹	1.781
F(000)	928.0
Crystal size/mm ³	$0.06 \times 0.05 \times 0.04$
Radiation	$CuK\alpha (\lambda = 1.54184)$
20 range for data collection/°	8.434 to 135.928
Index ranges	$-10 \le h \le 10, -24 \le k \le 25, -12 \le 1 \le 13$
Reflections collected	20398
Independent reflections	$3749 [R_{int} = 0.0323, R_{sigma} = 0.0177]$
Data/restraints/parameters	3749/0/283
Goodness-of-fit on F^2	1.043
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0392, wR_2 = 0.1063$
Final R indexes [all data]	$R_1 = 0.0401, wR_2 = 0.1072$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.41

Table 1	Crystal	data	and	structure	refinement	for	3aa.
	•						