Support Information

L-amino acid ester as biomimetic reducing agent for the reduction of unsaturated C=C bonds

Ji-Wei Ren,* Qing-Hao Zhang, Cheng-Shuai Han, Huai-Xin Zhang, Ya-

Bin Wang, Hai-Rui Shi, Jing-Hui Sun, and Yin-Feng Han*

Table of Contents

1.	General experimental information2
2.	Experimental procedures and characterization data3
	2.1. General procedure for the synthesis of 3-substituted 2-oxindoles 3
	2.2. General procedure for the synthesis of dihydroisoindigos 57
	2.3. General procedure for the synthesis of tetrasubstituted ethanes 7
	2.4. Synthetic procedure of 5 mmol scale model reaction
3.	NMR Spectra ······14

1. General experimental information

Unless otherwise noted, all the substrates and reagents were purchased from commercial suppliers and used without further purification, which were known compounds. ¹H NMR spectra were recorded at 500 MHz. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration. ¹³C NMR data were collected at 125 MHz with complete proton decoupling. Chemical shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal standard. High resolution mass spectroscopy (HRMS) was performed on Thermo Q Exactive Plus (FTMS ESI) mass spectrometer and acetonitrile was used to dissolve the sample. Column chromatography was carried out on silica gel (200-300 mesh). All the disubstituted methyleneindolinones were prepared according to the reported protocol.² All the tetrasubstituted olefins were prepared according to the reported protocol.³

2. Experimental procedures and characterization data

2.1. General procedure for the synthesis of 3-substituted 2-oxindoles 3

Disubstituted methyleneindolinones 1 (0.2 mmol, 1.0 equiv.) and L-alanine methyl ester **2b** (0.40 mmol, 2.0 equiv.) were heated at 80 °C for 5 h. After completion of the reaction, the reaction mixture was purified by flash column chromatography on silica gel (EtOAc/PE = 10%-20%) to yield 3-substituted 2-oxindoles **3**.

3-Substituted 2-oxindole 3a⁴: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (55.5 mg, 95% yield); ¹H NMR (500 MHz, CDCl₃) δ 9.17 (s, 1H), 7.37 (d, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 6.99 (t, *J* = 7.3 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 4.25-4.33 (m, 2H), 4.23 (d, *J* = 4.0 Hz, 1H), 3.96-4.07 (m, 3H), 1.29 (t, *J* = 7.0 Hz, 3H), 1.01 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 178.0, 168.1, 167.0, 142.1, 128.6, 126.2, 125.2, 122.5, 109.9, 62.0, 61.8, 52.2, 45.2, 14.0, 13.6; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₈NO₅⁺ 292.1179, found 292.1171.

3-Substituted 2-oxindole 3b: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (59.3 mg, 96% yield); ¹H NMR (500 MHz, CDCl₃) δ 9.03 (s, 1H), 7.19 (dd, *J* = 8.5, 1.5 Hz, 1H), 6.91-6.95 (m, 1H), 6.82 (dd, *J* =

8.5, 4.5 Hz, 1H), 4.27-4.35 (m, 2H), 4.22 (d, J = 4.0 Hz, 1H), 4.00-4.08 (m, 3H), 1.32 (t, J = 7.0 Hz, 3H), 1.04 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.7, 168.0, 166.7, 158.9 (d, ¹ $J_{C-F} = 238.8$ Hz), 138.0, 127.8 (d, ³ $J_{C-F} = 8.8$ Hz), 115.0 (d, ² $J_{C-F} = 22.5$ Hz), 113.5 (d, ² $J_{C-F} = 26.3$ Hz), 110.3 (d, ³ $J_{C-F} = 8.8$ Hz), 62.1, 61.9, 52.1, 45.6, 14.0, 13.7; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₇FNO₅⁺ 310.1085, found 310.1084.

3-Substituted 2-oxindole 3c: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (61.9 mg, 95% yield); ¹H NMR (500 MHz, CDCl₃) δ 9.06 (*br* s, 1H), 7.40 (s, 1H), 7.20 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 4.26-

4.35 (m, 2H), 4.21 (d, J = 3.5 Hz, 1H), 4.02-4.09 (m, 3H), 1.32 (t, J = 7.0 Hz, 3H), 1.05 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.4, 167.9, 166.7, 140.6, 128.6, 127.9(1), 127.8(6), 125.7, 110.8, 62.2, 62.0, 52.1, 45.3, 14.0, 13.7; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₇ClNO₅⁺ 326.0790, found 326.0788.

3-Substituted 2-oxindole 3d: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (71.6 mg, 97% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.92 (*br* s, 1H), 7.53 (s, 1H), 7.34-7.37 (m, 1H), 6.77 (d, *J* = 8.5 Hz, 1H), 4.26-4.35 (m, 2H), 4.21 (d, *J* = 3.5 Hz, 1H), 4.02-4.09 (m, 3H), 1.32 (t, *J* = 7.0 Hz, 3H), 1.05 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.2, 167.9, 166.7, 141.1, 131.6, 128.5, 128.3, 115.1, 111.2, 62.2, 62.0, 52.1, 45.2, 14.0, 13.7; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₇BrNO₅⁺ 370.0285, found 370.0283.

3-Substituted 2-oxindole 3e: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (56.9 mg, 93% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.96 (s, 1H), 7.19 (s, 1H), 7.01 (d, *J* = 8.0 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 1H), 4.26-4.33 (m, 2H), 4.21 (d, *J* = 3.5 Hz, 1H), 3.99-4.07 (m, 3H), 2.29 (s, 3H), 1.30 (t, *J* = 7.0 Hz, 3H), 1.01 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.9, 168.2, 167.0, 139.6, 131.9, 128.9, 126.2, 125.9, 109.5, 61.9, 61.7, 52.2, 45.3, 21.2, 14.0, 13.6; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₆H₂₀NO₅⁺ 306.1336, found 306.1333.

3-Substituted 2-oxindole 3f: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (59.9 mg, 92% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.60 (s, 1H), 7.17 (td, *J* = 8.0, 1.0 Hz, 1H), 6.95 (dd, *J* = 8.0, 1.0 Hz, 1H), 6.78 (d, *J* = 7.5 Hz, 1H), 4.72 (d, *J* = 4.5 Hz, 1H), 4.31-4.40 (m, 2H), 4.22 (d, *J* = 4.5 Hz, 1H), 4.10-4.17 (m, 1H), 3.98-4.04 (m, 1H), 1.35 (t, *J* = 7.0 Hz, 3H), 1.11 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.5, 167.6, 166.8, 143.9, 130.4, 130.1, 123.6, 122.8, 108.6, 62.2, 61.6, 50.3, 45.3, 14.0, 13.8; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₇ClNO₅⁺ 326.0790, found 326.0787.

3-Substituted 2-oxindole 3g: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (63.8 mg, 98% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.94

(s, 1H), 7.32 (d, J = 8.0 Hz, 1H), 6.98 (dd, J = 8.0, 2.0 Hz, 1H), 6.90 (d, J = 2.0 Hz, 1H), 4.25-4.34 (m, 2H), 4.21 (d, J = 3.5 Hz, 1H), 4.01-4.09 (m, 3H), 1.31 (t, J = 7.0 Hz, 3H), 1.06 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.7, 168.0, 166.8, 143.1, 134.4, 126.2, 124.6, 122.5, 110.5, 62.1, 62.0, 52.1, 44.8, 14.0, 13.7; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₇ClNO₅⁺ 326.0790, found 326.0789.

3-Substituted 2-oxindole 3h: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (70.5 mg, 95% yield); ¹H NMR (500 MHz, CDCl₃) δ 9.05 (s, 1H), 7.26 (d, *J* = 8.5 Hz, 1H), 7.13 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.06 (d, *J* = 1.5 Hz, 1H), 4.25-4.34 (m, 2H), 4.21 (d, *J* = 3.5 Hz, 1H), 4.01-4.09 (m, 2H), 3.99 (d, *J* = 3.0 Hz, 1H), 1.31 (t, *J* = 7.0 Hz, 3H), 1.06 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.6, 168.0, 166.8, 143.3, 126.6, 125.4, 125.1, 122.2, 113.3, 62.1, 62.0, 52.0, 44.9, 14.0, 13.7; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₇BrNO₅⁺ 370.0285, found 370.0283.

EXOOC CODEL 3-Substituted 2-oxindole 3i: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (58.1 mg, 94% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.96 (s, 1H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.00-7.03 (m, 1H), 6.94-6.98 (m, 1H), 4.25-4.34 (m, 3H), 4.10 (d, *J* = 3.5 Hz, 1H), 3.99-4.09 (m, 2H), 1.30 (t, *J* = 7.0 Hz, 3H), 1.03 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.9, 167.9, 166.7, 147.0 (d, ^{*I*}*J*_{*C*-*F*} = 242.5 Hz), 129.3 (d, ²*J*_{*C*-*F*} = 12.5 Hz), 128.9, 123.1 (d, ³*J*_{*C*-*F*} = 6.3 Hz), 120.9 (d, ³*J*_{*C*-*F*} = 2.5 Hz), 115.7 (d, ²*J*_{*C*-*F*} = 16.3 Hz), 62.1, 61.9, 52.1, 45.4, 14.0, 13.6; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₇FNO₅⁺ 310.1085, found 310.1083.

3-Substituted 2-oxindole 3j: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (69.6 mg, 94% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.22 (s, 1H), 7.34-7.37 (m, 2H), 6.90 (t, *J* = 8.0 Hz, 1H), 4.25-4.34 (m, 2H), 4.24 (d, *J* = 3.0 Hz, 1H), 4.14 (d, *J* = 3.5 Hz, 1H), 4.03-4.09 (m, 1H), 3.95-4.02 (m, 1H), 1.30 (t, *J* = 7.0 Hz, 3H), 1.00 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.9, 167.9, 166.6, 141.3, 131.3, 127.5, 124.2, 123.8, 102.7, 62.1, 61.9, 52.2, 46.3, 14.0, 13.6; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₇BrNO₅⁺ 370.0285, found 370.0282.

C₂₂H₂₄NO₅⁺ 382.1649, found 382.1643.

3-Substituted 2-oxindole 3k: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (72.3 mg, 95% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, J = 7.5 Hz, 1H), 7.36 (d, J = 7.5 Hz, 2H), 7.30-7.33 (m, 2H), 7.24-7.27 (m, 1H), 7.16 (t, J = 7.5 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 4.93 (q, J = 15.5 Hz, 2H), 4.23-4.34 (m, 3H), 4.13 (d, *J* = 3.5 Hz, 1H), 3.98-4.05 (m, 1H), 3.88-3.94 (m, 1H), 1.28 (t, J = 7.0 Hz, 3H), 0.87 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.4, 168.2, 167.0, 143.8, 135.8, 128.7, 128.5, 127.7, 127.6, 125.7, 125.0, 122.6, 109.0, 62.0,

EtOOC 3-Substituted 2-oxindole 31: Purified by flash chromatography on silica COOFt gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless =0 Ме ЗI oil (59.2 mg, 97% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 7.5 Hz, 1H), 7.22 (t, J = 7.8 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 4.16-4.25 (m, 2H), 4.14 (d, J = 4.0 Hz, 1H), 3.88-3.96 (m, 3H), 3.16 (s, 3H), 1.22 (t, J = 7.0 Hz, 3H), 0.92 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.3, 167.0, 165.9, 143.7, 127.6, 124.6, 123.9, 121.5, 106.9, 60.9, 60.6, 51.3, 43.6, 25.4, 13.0, 12.7; HRMS (FTMS-ESI) m/z: $[M+H]^+$ calcd for $C_{16}H_{20}NO_5^+$ 306.1336, found 306.1331.

61.7, 52.3, 44.7, 44.1, 14.1, 13.6; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for

3-Substituted 2-oxindole 3m: Purified by flash chromatography on silica ⁱPrOOC -COOⁱPr gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless =0 oil (59.9 mg, 94% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.82 (s, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.21 (t, J = 7.5 Hz, 1H), 6.99 (td, J = 7.5, 0.5 Hz, 1H), 6.87 (d, J = 7.5 Hz, 1Hz), 6.87 (d, J = 7.5 Hz, 1Hz), 6.87 (d, J = 7.5 Hz, 1Hz), 6.87 (d7.5 Hz, 1H), 5.12-5.17 (m, 1H), 4.83-4.88 (m, 1H), 4.19 (d, J = 3.5 Hz, 1H), 4.04 (d, J = 3.0 Hz, 1H), 1.28 (t, J = 6.3 Hz, 6H), 1.06 (d, J = 6.5 Hz, 3H), 0.92 (d, J = 6.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.9, 167.7, 166.5, 142.1, 128.6, 126.3, 125.5, 122.5, 109.7, 69.7, 69.6, 52.5, 45.2, 21.7, 21.5, 21.4, 21.0; HRMS (FTMS-ESI) m/z: $[M+H]^+$ calcd for C₁₇H₂₂NO₅⁺ 320.1492, found 320.1490.

3-Substituted 2-oxindole 3n: Purified by flash chromatography on silica BnOOC COOBn gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless =0 oil (78.9 mg, 95% yield); ¹H NMR (500 MHz, CDCl₃) δ 8.41 (s, 1H), 3n 7.28-7.32 (m, 5H), 7.23-7.26 (m, 4H), 7.16 (t, J = 7.5 Hz, 1H), 7.10-7.12 (m, 2H), 6.92(td, J = 7.5, 1.0 Hz, 1H), 6.73 (d, J = 7.5 Hz, 1H), 5.19-5.25 (m, 2H), 4.95-5.01 (m, 2H),4.32 (d, J = 4.0 Hz, 1H), 4.07 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 177.2,

167.7, 166.7, 141.8, 135.0, 134.8, 128.7, 128.6, 128.4(9), 128.4(7), 128.4, 128.3, 125.9, 125.1, 122.5, 109.9, 67.8, 67.6, 52.2, 45.1; HRMS (FTMS-ESI) m/z: [M+Na]⁺ calcd for C₂₅H₂₁NNaO₅⁺ 438.1312, found 438.1310.

3-Substituted 2-oxindole 30: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 10%-20% (v/v); Colorless oil (52.7 mg, 92% yield); ¹H NMR (500 MHz, CDCl₃, mixture of two *diastereomers*) δ 9.24 (s, 2.3H), 9.13 (s, 1.0H), 7.34-7.38 (m, 3.4H), 7.27 (t, J = 8.0 Hz, 3.5H), 7.02-7.06 (m, 3.4H), 6.94 (d, J = 8.0 Hz, 3.4H), 4.35-4.42 (m, 1.9H), 4.09-4.15 (m, 4.4H), 3.90-3.97 (m, 2.5H), 3.81-3.88 (m, 4.8H), 1.37 (t, J = 7.0 Hz, 3.0H), 0.83 (t, J = 7.0 Hz, 3.0H)J = 7.0 Hz, 7.3H); ¹³C NMR (125 MHz, CDCl₃, major diastereomer) δ 177.3, 164.1 (d, ${}^{3}J_{C-F} = 1.3$ Hz), 142.1, 129.2, 124.5 (q, ${}^{1}J_{C-F} = 276.3$ Hz), 125.5, 124.5, 122.9, 110.1, 61.8, 49.7 (q, ${}^{2}J_{C-F} = 28.8$ Hz), 43.7 (d, ${}^{3}J_{C-F} = 1.3$ Hz), 13.3; HRMS (FTMS-ESI) m/z: $[M+H]^+$ calcd for $C_{13}H_{13}F_3NO_3^+$ 288.0842, found 288.0846.

2.2. General procedure for the synthesis of dihydroisoindigos 5

Isoindigos 4 (0.2 mmol, 1.0 equiv.) and L-alanine methyl ester 2b (0.40 mmol, 2.0 equiv.) were heated at 80 °C for 5 h. After completion of the reaction, the precipitated solid was filtered, washed with dichloromethane and *n*-hexane, and then dried *in vacuo* to yield dihydroisoindigos 5.

solid (65.9 mg, 93% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 10.41 (s, 1H), 7.19-7.24 (m, 4H), 7.16-7.19 (m, 1H), 7.08-7.10 (m, 2H), 6.93 (d, J = 4.5 Hz, 2H), 6.81-6.84 (m, 2H), 6.74 (d, J = 7.5 Hz, 1H), 6.68 (d, J = 7.0 Hz, 1H), 4.93 (d, *J* = 16.0 Hz, 1H), 4.67 (d, *J* = 16.0 Hz, 1H), 4.39 (d, *J* = 3.5 Hz, 1H), 4.31 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 176.6, 175.0, 144.1, 143.9, 136.5, 128.9, 128.8, 127.6, 127.4, 127.3, 126.9, 124.1, 123.9, 122.5, 121.8, 110.0, 109.5, 46.2, 45.9, 43.1; HRMS (FTMS-ESI) m/z: $[M+H]^+$ calcd for $C_{23}H_{19}N_2O_2^+$ 355.1441,

Dihydroisoindigo 5a: Obtained through direct single-run filtration; White

found 355.1442.

Dihydroisoindigo 5b: Obtained through direct single-run filtration; White solid (68.4 mg, 92% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 10.47 (s, 1H), 7.24 (t, J = 7.8 Hz, 1H), 7.20-7.21 (m, 3H), 7.04-7.07 (m, 3H), 6.82-6.88 (m, 3H), 6.74 (dd, J = 8.8, 4.3 Hz, 1H), 6.63 (d, J = 7.0

Hz, 1H), 4.92 (d, J = 16.0 Hz, 1H), 4.65 (d, J = 16.0 Hz, 1H), 4.44 (d, J = 3.0 Hz, 1H), 4.35 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 176.5, 174.7, 158.6 (d, ¹ $J_{C-F} = 236.3$ Hz), 143.9, 140.4, 136.2, 129.0, 128.9, 128.8, 127.6, 127.4, 126.9, 124.0, 121.8, 115.0 (d, ² $J_{C-F} = 22.5$ Hz), 112.0 (d, ² $J_{C-F} = 25.0$ Hz), 110.3 (d, ³ $J_{C-F} = 8.8$ Hz), 110.0, 46.3, 45.9, 43.1; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₃H₁₈FN₂O₂⁺ 373.1347, found 373.1340.

Dihydroisoindigo 5c: Obtained through direct single-run filtration; White solid (73.3 mg, 94% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 10.47 (s, 1H), 7.23-7.27 (m, 2H), 7.19(8)-7.20(4) (m, 3H), 7.04(6)-7.05(3) (m, 2H), 6.99 (*br* s, 1H), 6.85 (t, *J* = 8.8 Hz, 2H), 6.75 (d, *J* =

8.0 Hz, 1H), 6.68 (d, J = 7.0 Hz, 1H), 4.93 (d, J = 16.0 Hz, 1H), 4.65 (d, J = 16.0 Hz, 1H), 4.45 (d, J = 3.0 Hz, 1H), 4.35 (d, J = 3.0 Hz, 1H); ¹³C NMR (125 MHz, DMSOd₆) δ 176.5, 174.6, 143.8, 143.0, 136.0, 129.1(0), 129.0(5), 128.9, 128.6, 127.7, 127.4, 126.9, 126.6, 124.2, 124.0, 121.9, 110.9, 110.1, 46.0, 45.9, 43.1; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₃H₁₈ClN₂O₂⁺ 389.1051, found 389.1047.

Dihydroisoindigo 5d: Obtained through direct single-run filtration; White solid (81.2 mg, 94% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 10.47 (s, 1H), 7.39 (dd, J = 8.0, 1.0 Hz, 1H), 7.25 (t, J = 8.0 Hz, 1H), 7.20-7.21 (m, 3H), 7.11 (*br* s, 1H), 7.05(5)-7.06(1) (m, 2H), 6.84-6.86

(m, 2H), 6.68-6.72 (m, 2H), 4.93 (d, J = 16.0 Hz, 1H), 4.65 (d, J = 16.0 Hz, 1H), 4.47 (d, J = 3.0 Hz, 1H), 4.36 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 176.4, 174.5, 143.8, 143.5, 136.1, 131.4, 129.5, 129.0, 128.9, 127.7, 127.4, 127.0, 126.9, 124.1, 121.9, 114.4, 111.4, 110.0, 45.9, 43.1; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₃H₁₈BrN₂O₂⁺ 433.0546, found 433.0544.

Dihydroisoindigo 5e: Obtained through direct single-run filtration; White solid (67.1 mg, 91% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 10.42 (s, 1H), 7.19-7.24 (m, 4H), 7.04-7.08 (m, 2H), 6.99 (d, J = 8.0Hz, 1H), 6.79-6.84 (m, 3H), 6.62 (d, J = 8.0 Hz, 2H), 4.90 (d, J = 16.0

Hz, 1H), 4.62 (d, *J* = 16.0 Hz, 1H), 4.34 (d, *J* = 3.5 Hz, 1H), 4.27 (d, *J* = 3.5 Hz, 1H),

2.16 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6) δ 176.7, 174.8, 143.9, 141.8, 136.5, 131.4, 128.9, 128.8, 127.5, 127.4, 127.3, 127.0, 124.7, 124.0, 121.7, 109.9, 109.3, 46.1, 46.0, 43.0, 21.2; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₄H₂₁N₂O₂⁺ 369.1598, found 369.1596.

Dihydroisoindigo 5f: Obtained through direct single-run filtration; White solid (69.8 mg, 90% yield); ¹H NMR (500 MHz, Tetrahydrofuran- d_8) δ 9.45 (*br* s, 1H), 7.09 (t, *J* = 8.0 Hz, 1H), 6.94-7.03 (m, 5H), 6.69-6.71 (m, 3H), 6.52 (d, *J* = 7.5 Hz, 1H), 6.45 (t, *J* = 7.5 Hz, 1H), 5.96 (d, *J* = 3.0 Hz, 1H), 6.45 (t, *J* = 7.5 Hz, 1H), 5.96 (d, *J* = 3.0 Hz, 1H), 6.45 (t, *J* = 7.5 Hz, 1H), 5.96 (d, *J* = 3.0 Hz, 1H), 6.45 (t, *J* = 7.5 Hz, 1H), 5.96 (d, *J* = 3.0 Hz, 1H), 5.96 (d, J =

1H), 4.80 (d, J = 15.5 Hz, 1H), 4.34 (dd, J = 17.5, 2.5 Hz, 2H), 4.29 (d, J = 15.5 Hz, 1H); ¹³C NMR (125 MHz, Tetrahydrofuran- d_8) δ 175.9, 173.1, 146.6, 144.8, 136.3, 130.8, 130.4, 128.8, 128.7, 127.5, 127.4, 124.9, 123.9, 122.9, 121.3, 109.7, 108.0, 47.0, 43.9, 43.4; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₃H₁₈ClN₂O₂⁺ 389.1051, found 389.1048.

Dihydroisoindigo 5g: Obtained through direct single-run filtration; White solid (68.5 mg, 92% yield); ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.46 (s, 1H), 7.25 (t, *J* = 7.5 Hz, 1H), 7.19-7.20 (m, 3H), 7.06-7.11 (m, 1H), 6.95-7.01 (m, 3H), 6.84-6.88 (m, 2H), 6.81 (d, *J* = 7.0 Hz, 1H), 6.72 (d, *J* = 7.0

Hz, 1H), 5.00 (d, J = 16.0 Hz, 1H), 4.76 (d, J = 16.0 Hz, 1H), 4.51 (d, J = 3.5 Hz, 1H), 4.35 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 176.4, 174.8, 147.0 (d, ¹ $J_{C-F} = 240.0$ Hz), 143.9, 137.4, 130.6 (d, ² $J_{C-F} = 8.8$ Hz), 130.2 (d, ³ $J_{C-F} = 2.5$ Hz), 129.0, 128.8, 127.4, 127.0, 126.8, 124.1, 123.7 (d, ³ $J_{C-F} = 6.3$ Hz), 121.9, 120.3, 116.8 (d, ² $J_{C-F} = 18.8$ Hz), 110.1, 46.1(9), 46.1(5), 44.8; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₃H₁₈FN₂O₂⁺ 373.1347, found 373.1344.

Dihydroisoindigo 5h: Obtained through direct single-run filtration; White solid (80.8 mg, 93% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 10.47 (s, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.25 (t, J = 8.0 Hz, 1H), 7.16-7.18 (m, 3H), 7.06 (d, J = 6.5 Hz, 1H), 6.89-6.95 (m, 4H), 6.84 (d, J = 8.0 Hz, 1H), 6.72

(d, J = 7.0 Hz, 1H), 5.16 (s, 2H), 4.52 (d, J = 3.5 Hz, 1H), 4.37 (d, J = 4.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 176.4, 175.8, 143.9, 141.4, 137.9, 134.3, 130.7, 129.1, 128.7, 127.0(2), 126.9(7), 126.3, 124.4, 124.1, 123.5, 121.9, 110.1, 101.9, 46.2, 45.7, 44.4; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₃H₁₈BrN₂O₂⁺ 433.0546, found 433.0542.

Dihydroisoindigo 5i: Obtained through direct single-run filtration; White solid (65.9 mg, 96% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 10.48 (s, 1H), 10.38 (s, 1H), 7.37 (dd, J = 8.5, 1.5 Hz, 1H), 7.20 (t, J =7.8 Hz, 1H), 6.92 (*br* s, 1H), 6.88 (t, J = 7.5 Hz, 1H), 6.82 (d, J = 8.0

Hz, 1H), 6.76-6.79 (m, 2H), 4.24 (d, J = 3.5 Hz, 1H), 4.22 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 176.4, 176.1, 143.8, 143.2, 131.4, 130.3, 128.9, 127.3, 126.8, 123.9, 121.8, 113.3, 111.7, 109.9, 46.3, 46.0; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₂BrN₂O₂⁺ 343.0077, found 343.0075.

Dihydroisoindigo 5j: Obtained through direct single-run filtration; White solid (80.8 mg, 93% yield); ¹H NMR (500 MHz, DMSO- d_6) δ 10.85 (s, 1H), 7.38 (d, J = 4.0 Hz, 4H), 7.28-7.31 (m, 1H), 7.26 (dd, J =8.0, 2.0 Hz, 1H), 7.11 (t, J = 8.0 Hz, 1H), 7.02 (d, J = 7.0 Hz, 1H), 6.95

(br s, 1H), 6.88 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.72 (d, J = 8.0 Hz, 1H), 5.07 (d, J = 15.5 Hz, 1H), 4.87 (d, J = 16.0 Hz, 1H), 4.36 (d, J = 3.5 Hz, 1H), 4.31 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 177.1, 175.7, 143.7, 142.7, 136.6, 131.5, 129.3, 128.8, 127.9, 127.7, 126.5, 125.6, 123.5, 122.8, 113.4, 111.9, 109.8, 46.1, 45.8, 43.6; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₂₃H₁₈BrN₂O₂⁺ 433.0546, found 433.0542.

Dihydroisoindigo 5k: Obtained through direct single-run filtration; White solid (50.3 mg, 95% yield); ¹H NMR (500 MHz, DMSO- d_6 , *mixture of two diastereomers*) δ 10.68 (s, 0.4H), 10.33 (s, 2.0H), 7.18 (t, J = 7.5 Hz, 2.0H), 7.04 (t, J = 7.5 Hz, 0.5H), 6.88 (d, J = 7.5 Hz, 0.5H), 6.85 (t, J = 7.5 Hz, 0.5H), 6.88 (d, J = 7.5 Hz, 0.5H), 6.85 (t, J = 7.5 Hz, 0.5H), 6.88 (d, J = 7.5 Hz, 0.5H), 6.85 (t, J = 7.5 Hz, 0.5H), 6.88 (d, J = 7.5 Hz, 0.5H), 6.85 (t, J = 7.5 Hz, 0.5H), 6.88 (d, J = 7.5 Hz, 0.5H), 6.85 (t, J = 7.5 Hz, 0.5H), 6.88 (d, J = 7.5 Hz, 0.5H), 6.85 (t, J

1.9H), 6.80 (d, J = 7.5 Hz, 2.0H), 6.77 (d, J = 7.5 Hz, 2.1H), 6.73 (t, J = 7.5 Hz, 0.6H), 4.17 (s, 2.0H), 4.07 (s, 0.5H); ¹³C NMR (125 MHz, DMSO-*d*₆, *major diastereomer*) δ 176.6, 143.8, 128.7, 127.7, 123.9, 121.7, 109.8, 46.2; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₃N₂O₂⁺ 265.0972, found 265.0949.

2.3. General procedure for the synthesis of tetrasubstituted ethanes 7

Tetrasubstituted olefins **6** (0.2 mmol, 1.0 equiv.) and L-alanine methyl ester **2b** (0.40 mmol, 2.0 equiv.) were heated at 80 °C for 5 h. After completion of the reaction, the

reaction mixture was purified by flash column chromatography on silica gel (EtOAc/PE = 5%-10%) to yield tetrasubstituted ethanes 7.

Tetrasubstituted ethane 7a: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 5%-10% (v/v); Colorless oil (42.9 mg, 94% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.47 (m, 3H), 7.35-7.38 (m, 2H), 4.40 (d, J = 9.0 Hz, 1H), 4.30-4.37 (m, 1H), 4.23-4.30 (m, 1H), 4.21 (d, J = 9.0 Hz, 1H), 1.28 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.6, 131.7, 129.9, 129.7, 128.2, 111.5, 110.9, 63.0, 51.9, 27.0, 13.9; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₃N₂O₂⁺ 229.0972, found 229.0955.

Tetrasubstituted ethane 7b: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 5%-10% (v/v); Colorless oil (41.0 mg, 96% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.45 (m, 3H), 7.32-7.34 (m, 2H), 4.39 (d, J = 8.5 Hz, 1H), 4.21 (d, J = 8.5 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.1, 131.5, 130.0, 129.7, 128.2, 111.5, 110.8, 53.6, 51.8, 27.0; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₂H₁₁N₂O₂⁺ 215.0815, found 215.0813.

Tetrasubstituted ethane 7c: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 5%-10% (v/v); Colorless oil (44.4 mg, 92% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 7.5 Hz, 2H), 4.35 (dd, J = 8.5, 1.5 Hz, 1H), 4.27-4.33 (m, 1H), 4.19-4.26 (m, 1H), 4.15 (d, J = 8.5 Hz, 1H), 2.37 (s, 3H), 1.25 (td, J = 7.3, 1.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.7, 140.0, 130.3, 128.7, 128.0, 111.7, 111.1, 62.9, 51.5, 27.1, 21.2, 13.9; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₄H₁₅N₂O₂⁺ 243.1128, found 243.1127.

Tetrasubstituted ethane 7d: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 5%-10% (v/v); Colorless oil (50.4 mg, 96% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.44 (m, 2H), 7.28-7.30 (m, 2H), 4.37 (d, *J* = 8.5 Hz, 1H), 4.28-4.34 (m, 1H), 4.22-4.28 (m, 1H), 4.17 (d, *J* = 8.5 Hz, 1H), 1.26 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.2, 136.2, 130.1, 129.9, 129.6, 111.3, 110.7, 63.2, 51.2, 26.9, 13.9; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₂ClN₂O₂⁺ 263.0582, found 263.0563. **Tetrasubstituted ethane 7e**: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 5%-10% (v/v); Colorless oil (58.2 mg, 95% yield); ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 4.38 (d, J = 8.0 Hz, 1H), 4.28-4.34 (m, 1H), 4.21-4.27 (m, 1H), 4.16 (d, J = 8.5 Hz, 1H), 1.25 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.1, 132.9, 130.6, 129.9, 124.4, 111.3, 110.8, 63.3, 51.2, 26.8, 13.9; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₁₃H₁₂BrN₂O₂⁺ 307.0077, found 307.0080.

2.4. Synthetic procedure of 5 mmol scale model reaction

Disubstituted methyleneindolinone **1a** (1.45 g, 5.0 mmol, 1.0 equiv.) and L-alanine methyl ester **2b** (1.03 g, 10.0 mmol, 2.0 equiv.) were heated at 80 °C for 5 h. After completion of the reaction, the reaction mixture was purified by flash column chromatography on silica gel (EtOAc/PE = 2%-20%) to yield 3-substituted 2-oxindole **3a** in 93% yield (1.36 g, colorless oil) and methyl pyruvate **8** in 84% yield (0.43 g, colorless oil).

Methyl pyruvate 8⁵: Purified by flash chromatography on silica gel, eluting with ethyl acetate/petroleum ether 2% (v/v); Colorless oil (0.43 g, 84% yield); ¹H NMR (500 MHz, CDCl₃) δ 3.88 (s, 3H), 2.49 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 191.6, 161.1, 52.9, 26.6; HRMS (FTMS-ESI) m/z: [M+H]⁺ calcd for C₄H₇O₃⁺ 103.0390, found 103.0389.

Disubstituted methyleneindolinone **1a** (1.45 g, 5.0 mmol, 1.0 equiv.) and L-proline methyl ester **2g** (1.29 g, 10.0 mmol, 2.0 equiv.) were heated at 80 °C for 5 h. After completion of the reaction, the reaction mixture was purified by flash column chromatography on silica gel (EtOAc/PE = 15%-20%) to yield 3-substituted 2-oxindole **3a** in 88% yield (1.28 g, colorless oil). The imine **9** was obtained by vacuum distillation

using a short-path distillation apparatus (bp: 85-90 °C at 10 mbar) as a colorless oil (0.48 g, 75% yield).

 $\bigcup_{N=9}^{coome} \frac{\text{Imine 9}^{6}: \text{Purified by vacuum distillation; Colorless oil (0.48 g, 75% yield);}}{^{1}\text{H NMR (500 MHz, CDCl_3) } \delta 4.08-4.12 (m, 2H), 3.87 (s, 3H), 2.81-2.84} (m, 2H), 1.95-2.02 (m, 2H).}$

References

1 Q. Lou, Y. Ding, D. Xu, G. Liu, J. Zhao, Organocatalytic Enantioselective Synthesis of Dihydropyranoindole Derivatives Bearing Trifluoromethylated All-Carbon-Substituted Stereocenters. *Adv. Synth. Catal.*, 2017, **359**, 2557-2563.

2 B. M. Trost and M. Osipov, Palladium-Catalyzed Asymmetric Construction of Vicinal All-Carbon Quaternary Stereocenters and its Application to the Synthesis of Cyclotryptamine Alkaloids. *Angew. Chem. Int. Ed.*, 2013, **52**, 9176-9181.

3 T.-Z. Li, J. Xie, Y. Jiang, F. Sha, X.-Y. Wu, Enantioselective Vinylogous Michael/Cyclization Cascade Reaction of Acyclic β , γ -Unsaturated Amides with Isatylidene Malononitriles: Asymmetric Construction of Spirocyclic Oxindoles. *Adv. Synth. Catal.*, 2015, **357**, 3507-3511.

4 S. J. Garden, C. R. W. Guimarães, M. B. Corréa, C. A. F. de Oliveira, A. C. Pinto, R. B. de Alencastro, Synthetic and Theoretical Studies on the Reduction of Electron Withdrawing Group Conjugated Olefins Using the Hantzsch 1,4-Dihydropyridine Ester. *J. Org. Chem.*, 2003, **68**, 8815-8822.

5 C. J. Pouchert, The Aldrich Library of Infrared Spectra. *Aldrich Chemical*, 1975, **9**, 184-191.

6 B. Sezen, D. Sames, Oxidative C-Arylation of Free (NH)-Heterocycles via Direct (sp³)
C-H Bond Functionalization. J. Am. Chem. Soc., 2004, 126, 13244-13246.

3. NMR Spectra

500 MHz, CDCl₃, ¹H NMR

125 MHz, CDCl₃, ¹³C NMR

500 MHz, CDCl₃, ¹H NMR

500 MHz, CDCl₃, ¹H NMR

125 MHz, CDCl₃, ¹³C NMR

37

500 MHz, CDCl₃, ¹H NMR

129.15 127.77 125.56 125.46 125.44 123.35 123.35 123.35 121.13 -177.33 $<^{164.09}_{164.08}$ 50.03 49.81 49.35 43.74 43.73 -13.31 -61.77 ≻=o . Н Зо fl (ppm) ò

125 MHz, CDCl₃, ¹³C NMR

500 MHz, DMSO-*d*₆, ¹H NMR

 $<^{144.13}_{143.86}$ -136.4612875 12875 127.40 127.40 122.53 109.53 109.53 ~176.59 ~174.95 46.16 45.86 43.05 0= Bn 5a 0 -1 fl (ppm)

125 MHz, DMSO-*d*₆, ¹³C NMR

500 MHz, DMSO-*d*₆, ¹H NMR

125 MHz, DMSO-*d*₆, ¹³C NMR

500 MHz, DMSO-*d*₆, ¹H NMR

127.50 127.27 127.27 127.01 124.69 121.69 121.69 121.69 --176.65 --174.78 46.11
45.97
43.02 ---21.20 Bn 5e fl (ppm) ò

125 MHz, DMSO-*d*₆, ¹³C NMR

500 MHz, Tetrahydrofuran-*d*₈, ¹H NMR

125 MHz, Tetrahydrofuran-*d*₈, ¹³C NMR

125 MHz, DMSO-*d*₆, ¹³C NMR

125 MHz, DMSO-*d*₆, ¹³C NMR

125 MHz, DMSO-*d*₆, ¹³C NMR

