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1. General information

Materials. O, was supplied by Nanjing Shangyuan Industrial Gas Factory with a purity of 99.99%.
Epoxides were purchased from Alfa Aesar. DL-Mandelic acid, Glycolic acid, Lactic acid, DL-b-
Phenyllactic acid, 1,8-Diazabicyclo[5.4.0]-undec-7-ene (DBU, GC, >98 %, TCl), 7-methyl-1,5,7-
triazabicyclo[4.4.0]dec-5 ene (MTBD, GC, >95 %, TCl), 1, 5-diazabicyclo [4,3,0]non-5-ene (DBN,
GC, >98 %, TCl), and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD, GC, >97 %, TCl) were purchased
commercially. All reagents were used without any further purification.

Characterizations. 'H and 3C NMR spectra were recorded on a Bruker Avance 400 and 100 MHz
NMR spectrometer in CDCls or DMSO-de as stated deuterated solvents. Chemical shifts 6 are reported
in parts per million (ppm) relative to a residual undeuterated solvent as an internal reference (1 H 6
7.26 for CDCl3, & 2.50 for DMSO-dg; 3C 6 77.16 for CDCl3, § 39.52 for DMSO-ds). Conversions and

selectivities of epoxides were determined by *H NMR spectroscopy.

2. Preparation of the different ion pair catalysts

2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium 2-hydroxyacetate ([DBUH][GAc]). Glycolic
acid (1.901g, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was added into a 25mL
round-bottled flask and 1, 8-diazadicyclic [5.4.0] undeca-7-ene (3.732mL, 25mmol, 1eq) was placed
in the flask. Slowly add glycolate-methanol solution while stirring, stirring at room temperature for 5
h, the solution gradually turned into a light yellow liquid, the reaction liquid was concentrated in
vacuum, the ether precipitated and washed three times, purified by column chromatography
(DCM:MeOH=1:1), and vacuum dried to constant weight to obtain catalyst [DBUH][GACc] as a light

yellow viscous liquid. Yield 87%.

S3



2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium  2-hydroxypropanoate ([DBUH][LAc]).
Lactic acid (1.654mL, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was added
into a 25mL round-bottled flask, and 1, 8-diazadicyclic [5.4.0] undecan-7-ene (3.732mL, 25mmol, 1eq)
was placed in the flask. Under the condition of ice bath, the lactate-methanol solution was slowly
added while stirring. Stirring at room temperature for 5 h, the solution gradually turned into a light
yellow liquid, the reaction liquid was concentrated in vacuum, the ether precipitated and washed
three times, purified by column chromatography (DCM:MeOH=1:1), and the catalyst [DBUH][LAc]
was obtained by vacuum drying to constant weight as a yellow viscous liquid. Yield 90%.

2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium 2-hydroxy-2-phenylacetate ([DBUH][MACc]).
DI-mandelic acid (3.804g, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was
added into a 25mL round-bottled flask and 1, 8-diazadicyclic [5.4.0] undecan-7-ene (3.732mL,
25mmol, 1eq) was taken into the flask. The solution of DL-mandelic acid and methanol was slowly
added while stirring. After stirring at room temperature for 5 h, the solution gradually turned into a
light yellow liquid. The reaction liquid was concentrated under vacuum, precipitated by ether and
washed three times, purified by column chromatography (DCM:MeOH=1:1), and then dried under
vacuum to constant weight, catalyst [DBUH][MAc] was obtained as a yellow viscous liquid. Yield 95%.
2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepin-1-ium2-hydroxy-3-phenylpropanoate

(IDBUH][PLAC]). D-3-phenyllactic acid (4.154g, 25mmol, 1eq) was dissolved in methanol solution for
use. A rotor was added into a 25mL round-bottled flask and 1, 8-diazadicyclic [5.4.0] undecan-7-ene
(3.732mL, 25mmol, 1eq) was taken into the flask. Slowly add D-3-phenyllactic acid-methanol solution
while stirring, stirring at room temperature for 5 h, the solution gradually turned into a light yellow
liquid, the reaction liquid was concentrated in vacuum, the ether precipitated and washed three times,
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purified by column chromatography (DCM:MeOH=1:1), and the catalyst [DBUH][PLAc] was obtained
by vacuum drying to constant weight. Yield 85%.
2,3,4,6,7,8-hexahydropyrrolo[1,2-a]pyrimidin-1-ium 2-hydroxypropanoate ([DBNH][LAc]). Lactic
acid (1.654mL, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was added into a
25mL round-bottled flask, and 1, 5-diazazobicyclic [4.3.0] nona-5-ene (3.09mL, 25mmol, 1eq) was
placed in the flask. Under the condition of ice bath, mandelate-methanol solution was slowly added
while stirring. Stirring at room temperature for 5 h, the solution gradually turned into yellow liquid,
the reaction liquid was concentrated in vacuum, the ether precipitated and washed three times,
purified by column chromatography (DCM:MeOH=1:1), and the catalyst [DBNH][LAc] was obtained
by vacuum drying to constant weight. Yield 80%.
9-methyl-3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium2-hydroxypropanoate
(IMTBDH][LAC]). Lactic acid (1.654mL, 25mmol, 1eq) was dissolved in methanol solution for use. A
rotor was added into a 25mL round-bottled flask and 7-methyl-1,5, 7-triazadicyclic [4.4.0] dece-5-
ene (3.69mL, 25mmol, 1eq) was placed in the flask. Slowly add mandelic acid-methanol solution
while stirring, stirring at room temperature for 5 h, the solution gradually turned into yellow liquid,
the reaction liquid was concentrated in vacuum, the ether precipitated and washed three times,
purified by column chromatography (DCM:MeOH=1:1), and the catalyst [MTBDH][LAc] was
obtained by vacuum drying to constant weight. Yield 87%.
3,4,6,7,8,9-hexahydro-2H-pyrimido[1,2-a]pyrimidin-1-ium 2-hydroxypropanoate ([TBDH][LAc]).
Lactic acid (1.654mL, 25mmol, 1eq) was dissolved in methanol solution for use. A rotor was added
into a 25mL round-bottled flask and 1,5, 7-triazadicyclodecene-5-ene (3.48g, 25mmol, 1eq) was taken

and placed in the flask under ice bath conditions. Slowly add mandelic acid-methanol solution while
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stirring, stirring at room temperature for 5 h, the solution gradually becomes yellow liquid, the
reaction liquid is concentrated in vacuum, the ether precipitation and washing three times,

purification by column chromatography (DCM:MeOH=1:1), vacuum drying to constant weight to

obtain catalyst [TBDH][LAc] as a white solid. Yield 86%.

3. Copies of 'H NMR and 3C NMR spectra of the ion pair catalysts
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Figure S1. *H NMR Spectrum of [DBUH][GAc] (400 MHz, DMSO-ds)
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Figure S2. 3C NMR Spectrum of [DBUH][GAc] (101 MHz, DMSO-db)
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Figure S3. *H NMR Spectrum of [DBUH][LAc] (400 MHz, DMSO-db)

S7



g g o™ o™ [s2] LWANM~ONSMO
N b ) A% BO66OY0 o
~ [(e] (o] [s2] ~ P~~~ WWOMm—w
-~ -— © wn < MO NNNNN -~
! | | | s | )
o
N
HO -
@ %Lo
N
H
e
180 170 160 150 140 130 120 110 100 90 8 70 60 50 40 30 20 10 (
f1 (ppm)
Figure S4. 3C NMR Spectrum of [DBUH][LAc] (101 MHz, DMSO-ds)
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Figure S5. *H NMR Spectrum of [DBUH][MAc] (400 MHz, DMSO-d&)
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Figure S6. 3C NMR Spectrum of [DBUH][MAc] (101 MHz, DMSO-ds)
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Figure S7. *H NMR Spectrum of [DBUH][PLAc] (400 MHz, DMSO-ds)
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Figure S8. 3C NMR Spectrum of [DBUH][PLAc] (101 MHz, DMSO-ds)
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Figure S9. *H NMR Spectrum of [DBNH][MAc] (400 MHz, DMSO-d&)
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Figure S11. 'H NMR Spectrum of [MTBDH][MAc] (400 MHz, DMSO-ds)
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Figure S12. 3C NMR Spectrum of [MTBDH][MAc] (101 MHz, DMSO-ds)
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Figure S13. *H NMR Spectrum of [TBDH][MAc] (400 MHz, DMSO-ds)
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Figure S14. 3C NMR Spectrum of [TBDH][MAc] (101 MHz, DMSO-ds)
4. General procedure for the cycloaddition of CO; into epoxide (CCE)

The internal epoxide (10.0 mmol) and catalyst [DBUH][MAc] (76 mg, 0.25 mmol, 2.5mol%) were
placed in a dry 10 mL stainless steel reactor containing a magnetic stir bar, the reactor was constantly
purged with 1 MPa CO2 to remove air and finally maintain the pressure at 1.0 MPa. The reaction
mixture was heated to 120 °C and stirred for 12 h. Then the reactor was cooled down to room
temperature and slowly depressurized to < 0.1 MPa. The conversions of epoxides were determined
by 1H NMR spectra with CDCI3 as a solvent, and the selectivity of cyclic carbonates were determined
with 1,3,5-Trimethoxybenzene as the internal standard. before it was sampled for 1H NMR spectra
measurements. The reaction mixture was filtered over silica gel (SiO2) with petroleum ether: ethyl

acetate = 10:1-1:1 to afford the corresponding cyclic carbonate.

5. Copies of 'H NMR and 3C NMR spectra of cyclic carbonates
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Figure S15. 'H NMR Spectrum of 4-(chloromethyl)-1,3-dioxolan-2-one (400 MHz, CDCls)
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Figure S16. 3C NMR Spectrum of 4-(chloromethyl)-1,3-dioxolan-2-one (101 MHz, CDCls)
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Figure S17. *H NMR Spectrum of 4-(bromomethyl)-1,3-dioxolan-2-one (400 MHz, CDCls)
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Figure S18. 3C NMR Spectrum of 4-(bromomethyl)-1,3-dioxolan-2-one (101 MHz, CDCls)
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Figure $19. 'H NMR Spectrum of 4-vinyl-1,3-dioxolan-2-one (400 MHz, CDCls)
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Figure $20. 3C NMR Spectrum of 4-butyl-1,3-dioxolan-2-one (101 MHz, CDCls)
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Figure S21. 'H NMR Spectrum of 4-(but-3-en-1-yl)-1,3-dioxolan-2-one (400 MHz, CDCls)
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Figure S22. 3C NMR Spectrum of 4-(but-3-en-1-yl)-1,3-dioxolan-2-one (101 MHz, CDCls)
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Figure S23. *H NMR Spectrum of 4-butyl-1,3-dioxolan-2-one (400 MHz, CDCls)
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Figure S24. 3C NMR Spectrum of 4-butyl-1,3-dioxolan-2-one (101 MHz, CDCls)
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Figure S25. *H NMR Spectrum of 4-(methoxymethyl)-1,3-dioxolan-2-one (400 MHz, CDCls)
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Figure S26. 3C NMR Spectrum of 4-(methoxymethyl)-1,3-dioxolan-2-one (101 MHz, CDCls)
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Figure S27. 'H NMR Spectrum of 4-((allyloxy)methyl)-1,3-dioxolan-2-one (400 MHz, CDCls)
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Figure $28. 3C NMR Spectrum of 4-((allyloxy)methyl)-1,3-dioxolan-2-one (101 MHz, CDCls)
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Figure S29. 'H NMR Spectrum of 4-(tert-butoxymethyl)-1,3-dioxolan-2-one (400 MHz, CDCls)
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Figure S30. 3C NMR Spectrum of 4-(tert-butoxymethyl)-1,3-dioxolan-2-one (101 MHz, CDCls)
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Figure S31. 'H NMR Spectrum of 4-(phenoxymethyl)-1,3-dioxolan-2-one (400 MHz, CDCls)
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Figure S33. 'H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCls)
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Figure S34. 3C NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (101 MHz, CDCls)
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Figure $35. 'H NMR Spectrum of hexahydrobenzo[d]-1,3-dioxolan-2-one (400 MHz, CDCls)
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Figure S36. 3C NMR Spectrum of hexahydrobenzo[d]-1,3-dioxolan-2-one (101 MHz, CDCls)
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Figure S37. 'H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCls) catalyst:[DBUH][Pac]
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Figure S38.13C spectra (DMSO-d6) of [DBUH][MACc] during the absorption of CO; (b), Pure [DBUH][MACc] (a),

CO: (1 Mpa), Catalyst[DBUH][MACc]
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7. Supplementary data
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Figure S39. 'H NMR Spectrum of [DBUH][PAc] (400 MHz, DMSO-ds)
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Figure S40.'H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl3) [DBUH][PAC]
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Figure S41.'H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl;) [DBU]
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Figure S42.'H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl3) [MAc]
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Figure S43.H NMR Spectrum of [DBUH][ALc] (400 MHz, DMSO-d)
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Figure S44.'H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCl3) [DBUH][ALc]
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Amplification experiment:

In order to verify the possibility of industrial application of catalyst [DBUH][MAC] in catalyzing the
synthesis of five-member cyclic carbonates from epoxides and CO,, we carried out scale-up
experiments with 100 g oxidized styrene as epoxy substrate under optimal reaction conditions. As
shown in Figure S45, 23% SC nuclear magnetic yield was obtained with [DBUH][MACc] as catalyst at

laboratory scale. Therefore, it is not suitable for industrialization.
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Figure S45.'H NMR Spectrum of 4-phenyl-1,3-dioxolan-2-one (400 MHz, CDCls) [DBUH][MACc]
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