Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information

I2 Catalyzed Aerobic Dehydrative Coupling and Tandem

Cyclization/Aerobic Dehydrative Coupling in the Preparation of 4-

Aminoquinoline Derivatives

Zikun Yao, Pan Li, Fei Chen, Jiuwei Nie, Hui Wang, Lei Tang,* Yuanyong Yang*

School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China. E-mail: yangyuanyong@gmc.edu.cn; 312854015@qq.com.

Tanle of content

1.	1. Comparasion of current methode with reported work:		
2.	Gei	neral Information:	S1
3. General procedures			S2
3.	1.	The preparation of 2, 3-dihydroquinolin-4(1 <i>H</i>)-one derivatives	S2
3.	2.	The preparation of 2'-Aminochalcone derivatives	S2
3.	3.	Experimental Procedure for Synthesis of 3	S3
3.	4.	Experimental Procedure for Synthesis of 4	S3
3.	5.	Experimental Procedure for Synthesis of 5	
3.	6.	Large-Scale Synthesis of 3a	S4
4.	Me	chanism studies	S4
4.	1.	Control experiment	S4
4.	2.	EPR Measurements and Simulations	
5. Synthetic applications:			S6
6. Characterization Data			S6
7. ¹ H NMR and ¹³ C NMR spectra for spectroscopic data			S19
8. HPLC spectrum of product 3u			S63
9. References:			S64

1. Comparasion of current methode with reported work:

Based on the reported synthesis of 3a,¹⁻³ we compared the current method with the reported work.

Atom Economy (AE)= *MW of product* / ΣMW of reactants ×100%.

2. General Information:

Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on Bruker 600 MHz spectrometer (600 MHz and 400 MHz). Chemical shifts (δ) for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (DMSO: 2.50). Chemical shifts (δ) for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (DMSO: 39.51). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (*J*) were reported in Hertz (Hz). All high-resolution mass spectra were obtained on a Waters G2-XSQTof mass

spectrometer. Melting points were determined on a Tektronix X-4 melting point apparatus. The EPR spectra were obtained on a Bruker EMX PLUS, and simulated using Xenon software package in Bruker EMX PLUS. Analytical TLC was performed using EM separations percolated silica gel 0.2 mm layer UV 254 fluorescent sheets. Flash chromatography was performed using 200-300 mesh neutral alumina with the indicated solvent system.

3. General procedures

3.1. The preparation of 2, 3-dihydroquinolin-4(1H)-one derivatives

The 2, 3-dihydroquinolin-4(1*H*)-one derivatives were prepared according to the reference.⁴⁻⁶ A 100.0 ml round-bottomed flask was charged with substituted aniline (5 mmol, 1 eq.), acrylic acid (7.5 mmol, 1.5 eq.), and toluene (5.0 ml). Then, the reaction was stirred and refluxed at 140°C. Upon completion, cooled to room temperature, toluene was removed. Finally, compound **I** was obtained by silica gel column chromatography separation and purification. Subsequently, polyphosphoric acid is added to compound **I**, which is reacted at 120°C for 6~8 hours. After the reaction is completed and cooled to room temperature, ice water is added and stirred at room temperature overnight. Then, pH is adjusted to 8~10 with saturated potassium carbonate. The aqueous layer is extracted with ethyl acetate, the combine organic layers were dried over anhydrous Na_2SO_4 , filtered. Finally, the target product **II** is obtained through silica gel column chromatography.

3.2. The preparation of 2'-Aminochalcone derivatives

The 2'-Aminochalcone derivatives were prepared according to the reference.⁷ In a 50.0 mL round bottom flask, a mixture of 3 mmol of the aldehyde, 3 mmol of 2-aminoacetophenone in 10.0 mL of methanol was stirred at room temperature. After a complete dissolution of reagents, 12 mmol of NaOH (powder) were added. The reaction progress was monitored by TLC and after 20 h, the solid was filtered off under

vaccum and successivelly washed with a cold mixture of methanol and water (1:1, 10×5.0 mL). The solid was dried at room temperature and recrystallizedwhen necessary, as specified for each compound, or purified by flash chromatography.

3.3. Experimental Procedure for Synthesis of 3

The 2, 3-dihydroquinolin-4(1*H*)-one **1a** (0.4mmol, 1.0 eq), amine **2a** (0.56 mmol, 1.4 eq) and I₂ (0.02 mmol, 5 mol%) was added to 10.0 mL reaction tube containing 2.0 mL PivOH, the reaction mixture was stirred at 140°C under open air condition for 24-48h. Then, the reaction was quenched upon the addition of 15.0 mL saturated K₂CO₃. The aqueous layer was extracted with EtOAc(3×15.0 mL), and the combined organic layers were dried over anhydrous Na₂SO₄, then the solvent was removed by rotary evaporator. The residue was purified by alumina column chromatography (petroleum ether/ethyl acetate = 1:1) to give the compound **3**.

3.4. Experimental Procedure for Synthesis of 4

The 2, 3-dihydroquinolin-4(1*H*)-one derivative 1 (0.4mmol, 1.0 eq), ammonia 2a(1.2 mmol, 3.0 eq) and I₂ (0.02 mmol, 5 mol%) was added to 10.0 mL reaction tube containing 2.0 mL PivOH, the reaction mixture was stirred at 140°C under an oxygen balloon condition for 24-48h. Then, the reaction was quenched upon the addition of 15.0 mL saturated K₂CO₃. The aqueous layer was extracted with EtOAc(3×15.0mL), and the combined organic layers were dried over anhydrous Na₂SO₄, then the solvent was removed by rotary evaporator. The residue was purified by alumina column chromatography (petroleum ether/ethyl acetate = 1:1) to give the compound **4**.

3.5. Experimental Procedure for Synthesis of 5

The 2'-Aminochalcone derivative **1a'** (0.4mmol, 1.0 eq), amine **2**(0.56 mmol, 1.4 eq) and I₂ (0.02 mmol, 5 mol%) was added to 10.0 mL reaction tube containing 2.0 mL PivOH, the reaction mixture was stirred at 140°C under an oxygen balloon condition for 24-48h. Then, the reaction was quenched upon the addition of 15.0 mL saturated K_2CO_3 . The aqueous layer was extracted with EtOAc(3×15.0mL), and the combined organic layers were dried over anhydrous Na₂SO₄, then the solvent was removed by rotary evaporator. The residue was purified by alumina column chromatography (petroleum ether/ethyl acetate = 1:1) to give the compound **5**.

3.6. Large-Scale Synthesis of 3a

The 2, 3-dihydroquinolin-4(1*H*)-one **1a** (10.0mmol, 1.0 eq), aniline **2a** (14.0 mmol, 1.4 eq) and 3iodoquinolin-4-ol **7** (0.1 mmol, 1 mol%) was added to 250.0 mL reaction tube containing 50.0 mL PivOH, the reaction mixture was stirred at 140°C under open air condition for 24h. Then, the reaction was quenched upon the addition of 100.0 mL saturated K₂CO₃. The aqueous layer was extracted with EtOAc(3×100.0 mL), and the combined organic layers were dried over anhydrous Na₂SO₄, then the solvent was removed by rotary evaporator. The residue was purified by alumina column chromatography (petroleum ether/ethyl acetate = 1:1) to give the compound **3a** in 78% isolated yield.

4. Mechanism studies

4.1. Control experiment

The 2, 3-dihydroquinolin-4(1*H*)-one **1a** (0.4mmol, 1.0 eq), aniline **2a** (0.56 mmol, 1.4 eq), I_2 (0.02 mmol, 5 mol%) and TEMPO (1.0 eq) was added to 10.0 mL reaction tube containing 2.0 mL PivOH, the reaction mixture was stirred at 140°C under open air condition for 24h. No production of product 3a was detected by TLC.

4.2. EPR Measurements and Simulations

EPR Spectra and Simulation:

To gain more insight into the possible radical intermediates, we carried out paramagnetic resonance (EPR) studies by using using 5,5-dimethyl-pyrroline N-oxide (DMPO) as a free radical spin-trapping agent. Typical Acquisition parameters for the measurements: Center Field = 3510.00 G; Sweep Width =100.00 G; Power = 6.325 mW; Sweep Time = 30.00 s; Time constant = 0.01 ms; Modulation Amplitude= 1.00 G; ModFreq = 100.00 kHz; FrequencyMon = 9.854844 GHz. The EPR spectra were simulated using Xenon software package in Bruker EMX PLUS.

superoxide radical (O₂⁻⁻) detection:

A mixture of **1a** (50 mM), **2a** (1 mol%), I₂ (5 mol%) and DMPO (50 mM) in PivOH (2.0 mL) was prepared. Then, the mixture was stirred at 140 °C for 4.0 h under an air atmosphere. Subsequently, 5,5dimethyl-1-pyrroline N-oxide (DMPO) (0.05 mmol) was added. When the mixture was stirred for 5 min, the reaction mixture was used directly to proceed EPR analysis. A superoxide radical (O_2^{-})-trapping adduct DMPO- O_2^{-} (g = 2.0067, A_N = 13.3834 G, A_H = 10.3475 G) were observed, which were coincident with the simulated spectrums (**Supplementary Figure 2**).

Supplementary Figure 2: The EPR study of photocatalytic system

5. Synthetic applications:

The 7-chloro-2,3-dihydroquinolin-4(1H)-one **1k** (0.4mmol, 1.0 eq), N^1 , N^1 -diethylpentane-1,4-diamine **6** (0.96 mmol, 2.4 eq) and 3-iodoquinolin-4-ol **7** (0.004 mmol, 1 mol%) was added to 10.0 mL reaction tube containing 2.0 mL PivOH, the reaction mixture was stirred at 140°C under open air condition for 24.0 h. Then, the reaction was quenched upon the addition of 15.0 mL saturated K₂CO₃. The aqueous layer was extracted with EtOAc(3×15.0mL), and the combined organic layers were dried over anhydrous Na₂SO₄, then the solvent was removed by rotary evaporator. The residue was purified by alumina column chromatography (petroleum ether/ethyl acetate = 1:1) to give the **Chloroquine 6a** in 74% isolated yield.

6. Characterization Data (Full characteristic data for compounds 3a-3y, 4p, 4q was reported in our previous study, so only ¹H NMR was presented here.⁸)

N-phenylquinolin-4-amine(**3a**). Yellow solid: 74.8mg (85%); ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.96 (s, 1H), 8.46 (d, J = 5.2 Hz, 1H), 8.41 – 8.37 (m, 1H), 7.90 – 7.86 (m, 1H), 7.69 (ddd, J = 8.2, 6.7, 1.3 Hz, 1H), 7.53 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.39 – 7.36 (m, 2H), 7.14 (t, J = 7.3 Hz, 1H), 6.93 (d, J = 5.2 Hz, 1H).

N-(4-chlorophenyl)quinolin-4-amine(**3b**). Yellow solid: 87.5mg (86%); ¹**H NMR** (600 MHz, DMSO*d*₆) δ 9.02 (s, 1H), 8.49 (d, *J* = 5.2 Hz, 1H), 8.35 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.57 – 7.52 (m, 1H), 7.47 – 7.43 (m, 2H), 7.41 – 7.36 (m, 2H), 6.97 (d, *J* = 5.2 Hz, 1H).

N-(o-tolyl)quinolin-4-amine(**3c**). Yellow solid: 76.8mg (82%); ¹**H NMR** (600 MHz, DMSO-d6) δ 8.72 (s, 1H), 8.43 (d, *J* = 8.3 Hz, 1H), 8.34 (d, *J* = 5.2 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.68 (t, *J* = 7.7 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.39 (d, *J* = 7.5 Hz, 1H), 7.31 (d, *J* = 7.4 Hz, 1H), 7.29 – 7.24 (m, 2H), 6.08 (d, *J* = 4.4 Hz, 1H), 2.17 (s, 3H).

N-(3-chlorophenyl)quinolin-4-amine(**3d**). Yellow solid: 85.7mg (84%); ¹**H NMR** (600 MHz, DMSO*d*₆) δ 9.06 (s, 1H), 8.53 (d, *J* = 5.1 Hz, 1H), 8.34 (d, *J* = 8.4 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.72 (t, *J* = 7.6 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.43 – 7.38 (m, 2H), 7.35 (d, *J* = 8.1 Hz, 1H), 7.14 (d, *J* = 7.9 Hz, 1H), 7.07 (d, *J* = 5.2 Hz, 1H).

N-(2,4-dimethylphenyl)quinolin-4-amine(**3e**). Yellow solid: 77.7mg (79%); ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.66 (s, 1H), 8.42 (d, *J* = 8.4 Hz, 1H), 8.31 (d, *J* = 5.2 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 1H), 7.66 (t, *J* = 8.2 Hz, 1H), 7.49 (t, *J* = 6.9 Hz, 1H), 7.19 (s, 1H), 7.15 (d, *J* = 7.9 Hz, 1H), 7.11 (d, *J* = 9.8 Hz, 1H), 6.03 (d, *J* = 5.2 Hz, 1H), 2.33 (s, 3H), 2.12 (s, 3H).

N-(2-methoxyphenyl)quinolin-4-amine(**3f**). Yellow solid: 71.2mg (71%); ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.53 (s, 1H), 8.41 (d, *J* = 8.4 Hz, 1H), 8.35 (d, *J* = 5.3 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.51 – 7.47 (m, 1H), 7.33 – 7.27 (m, 2H), 7.18 (d, *J* = 8.2 Hz, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.25 (d, *J* = 5.9 Hz, 1H), 3.76 (d, *J* = 1.4 Hz, 3H).

N-(3-methoxyphenyl)quinolin-4-amine(**3g**). Yellow solid: 75.9mg (76%); ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.93 (s, 1H), 8.48 (d, *J* = 6.6 Hz, 1H), 8.37 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.71 – 7.67 (m, 1H), 7.55 – 7.51 (m, 1H), 7.31 (t, *J* = 8.8 Hz, 1H), 7.01 (d, *J* = 6.6 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 6.92 (s, 1H), 6.71 (d, *J* = 8.2 Hz, 1H), 3.77 (s, 3H).

N-(4-fluorophenyl)quinolin-4-amine(**3h**). Yellow solid: 82.3mg (86%); ¹**H** NMR (400 MHz, DMSOd₆) δ 8.96 (s, 1H), 8.43 (d, J = 5.3 Hz, 1H), 8.37 (dd, J = 8.5, 1.4 Hz, 1H), 7.87 (dd, J = 8.5, 1.3 Hz, 1H), 7.69 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.53 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.31 – 7.22 (m, 2H), 6.78 (d, J = 5.3 Hz, 1H). ¹⁹**F** NMR (565 MHz, DMSO-d₆) δ -118.6.

N-(4-methoxyphenyl)quinolin-4-amine(**3i**). Yellow solid: 81.4mg (81%); ¹**H NMR** (600 MHz, DMSO*d*₆) δ 8.82 (s, 1H), 8.38 (d, *J* = 6.6 Hz, 2H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.28 (d, *J* = 7.0 Hz, 2H), 7.02 (d, *J* = 7.0 Hz, 2H), 6.62 (d, *J* = 5.3 Hz, 1H), 3.78 (s, 3H).

N-(naphthalen-2-yl)quinolin-4-amine(**3j**). Yellow solid: 69.3mg (64%); ¹**H NMR** (600 MHz, DMSOd₆) δ 9.19 (s, 1H), 8.51 (d, J = 5.3 Hz, 1H), 8.45 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.7 Hz, 1H), 7.90 (t, J = 9.1 Hz, 2H), 7.86 (d, J = 8.2 Hz, 1H), 7.83 (s, 1H), 7.74 – 7.70 (m, 1H), 7.60 – 7.54 (m, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.09 (d, J = 5.2 Hz, 1H).

N-benzylquinolin-4-amine(**3k**). Yellow solid: 72.1mg (76%); ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.29 (d, J = 5.7 Hz, 2H), 7.91 (t, J = 6.1 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.39 (d, J = 8.1 Hz, 2H), 7.34 – 7.30 (m, 2H), 7.23 (t, J = 7.4 Hz, 1H), 6.32 (d, J = 5.1 Hz, 1H), 4.56 (d, J = 6.0 Hz, 2H).

N-(4-methoxybenzyl)quinolin-4-amine(**31**). Yellow oil: 87.9mg (83%); ¹**H NMR** (600 MHz, DMSO- d_6) δ 8.29 (dd, J = 11.7, 6.2 Hz, 2H), 7.85 (t, J = 6.2 Hz, 1H), 7.77 (d, J = 9.7 Hz, 1H), 7.63 – 7.59 (m, 1H), 7.46 – 7.41 (m, 1H), 7.31 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.34 (d, J = 5.3 Hz, 1H), 4.48 (d, J = 5.9 Hz, 2H), 3.71 (s, 3H).

N-(4-fluorobenzyl)quinolin-4-amine(**3m**). Yellow solid: 75.8mg (75%); ¹**H** NMR (600 MHz, DMSOd₆) δ 8.31 (d, J = 5.3 Hz, 1H), 8.28 (d, J = 9.8 Hz, 1H), 7.90 (t, J = 6.1 Hz, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.62 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 8.3 Hz, 1H), 7.42 (dd, J = 8.7, 5.8 Hz, 2H), 7.15 (t, J = 8.9 Hz, 2H), 6.33 (d, J = 5.3 Hz, 1H), 4.54 (d, J = 5.9 Hz, 2H). ¹⁹F NMR (565 MHz, DMSO- d_6) δ -116.2 (d, J = 10.9 Hz).

N-(2-methylbenzyl)quinolin-4-amine(**3n**). Yellow solid: 71.4mg (72%); ¹**H NMR** (600 MHz, DMSO*d*₆) δ 8.33 (d, *J* = 8.4 Hz, 1H), 8.31 (d, *J* = 5.2 Hz, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.74 (t, *J* = 5.8 Hz, 1H), 7.63 (t, *J* = 7.1 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.20 (t, *J* = 8.8 Hz, 2H), 7.15 (t, *J* = 7.3 Hz, 1H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.26 (d, *J* = 5.3 Hz, 1H), 4.51 (d, *J* = 5.6 Hz, 2H), 2.38 (s, 3H).

N-(2-fluorobenzyl)quinolin-4-amine(**30**). Yellow solid: 70.9mg (70%); ¹**H NMR** (600 MHz, DMSO- d_6) δ 8.34 (d, J = 5.2 Hz, 1H), 8.29 (d, J = 8.4 Hz, 1H), 7.85 – 7.77 (m, 2H), 7.65 – 7.60 (m, 1H), 7.48 – 7.44 (m, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.31 (q, J = 7.0, 5.9 Hz, 1H), 7.25 – 7.20 (m, 1H), 7.13 (t, J =7.5 Hz, 1H), 6.34 (d, J = 5.3 Hz, 1H), 4.59 (d, J = 5.8 Hz, 2H). ¹⁹F NMR (565 MHz, DMSO- d_6) δ – 118.6 – -118.7 (m).

N-(3-methoxybenzyl)quinolin-4-amine(**3p**). Yellow solid: 77.5mg (73%); ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.30 (t, J = 6.7 Hz, 2H), 7.89 (t, J = 6.1 Hz, 1H), 7.79 (d, J = 8.5 Hz, 1H), 7.64 – 7.60 (m, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.23 (t, J = 8.0 Hz, 1H), 6.95 (d, J = 6.7 Hz, 2H), 6.81 – 6.78 (m, 1H), 6.33 (d, J = 5.3 Hz, 1H), 4.52 (d, J = 6.0 Hz, 2H), 3.71 (s, 3H).

N-(3-chlorobenzyl)quinolin-4-amine(**3q**). Yellow solid: 79.9mg (74%); ¹**H NMR** (600 MHz, DMSO*d*₆) δ 8.32 (d, *J* = 5.2 Hz, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 7.91 (t, *J* = 6.2 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.49 – 7.43 (m, 2H), 7.36 (d, *J* = 4.7 Hz, 2H), 7.31 – 7.28 (m, 1H), 6.33 (d, *J* = 5.3 Hz, 1H), 4.57 (d, *J* = 6.0 Hz, 2H).

N-benzhydrylquinolin-4-amine(**3r**). Yellow solid: 84.5mg (68%); ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.51 (d, *J* = 8.4 Hz, 1H), 8.32 (d, *J* = 5.3 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 7.3 Hz, 1H), 7.48 – 7.41 (m, 5H), 7.36 (t, *J* = 7.6 Hz, 4H), 7.27 (t, *J* = 7.4 Hz, 2H), 6.47 (d, *J* = 5.4 Hz, 1H), 6.03 (d, *J* = 7.3 Hz, 1H).

N-hexylquinolin-4-amine(**3s**). Yellow solid: 68.7mg (75%); mp=82.3-83.1°C; ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.37 (d, J = 5.3 Hz, 1H), 8.22 (d, J = 7.1 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.41 – 7.37 (m, 1H), 7.12 (t, J = 5.6 Hz, 1H), 6.41 (d, J = 5.4 Hz, 1H), 3.25 (q, J = 7.2 Hz, 2H), 1.65 (p, J = 7.4 Hz, 2H), 1.38 (q, J = 6.9, 6.2 Hz, 2H), 1.32 – 1.27 (m, 4H), 0.88 – 0.84 (m, 3H). ¹³C NMR (151 MHz, DMSO) δ 151.2, 150.4, 148.9, 129.5, 129.1, 124.1, 122.2, 119.4, 98.6, 42.9, 31.6, 28.3, 26.8, 22.6, 14.4. HRMS (m/z): [M+H]⁺ Calcd. for C₁₅H₂₁N₂ 229.1705; found 229.1714.

N-cyclohexylquinolin-4-amine(**3t**). Yellow solid: 70.9mg (78%); ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.36 (d, *J* = 5.4 Hz, 1H), 8.28 (d, *J* = 8.6 Hz, 1H), 7.75 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.40 – 7.36 (m, 1H), 6.73 (d, *J* = 7.7 Hz, 1H), 6.47 (d, *J* = 5.4 Hz, 1H), 3.47 (qd, *J* = 10.5, 3.6 Hz, 1H), 2.00 (d, *J* = 9.1 Hz, 2H), 1.77 (d, *J* = 6.4 Hz, 2H), 1.66 (d, *J* = 13.5 Hz, 1H), 1.38 (q, *J* = 9.9, 9.4 Hz, 4H), 1.19 (td, *J* = 12.3, 3.7 Hz, 1H).

(S)-N-(1-phenylethyl)quinolin-4-amine(**3u**). Yellow solid: 82.7mg (83%); ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.49 (d, *J* = 8.6 Hz, 1H), 8.24 (d, *J* = 5.2 Hz, 1H), 7.76 (d, *J* = 9.8 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.48 – 7.42 (m, 3H), 7.40 (d, *J* = 6.9 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 6.23 (d, *J* = 5.4 Hz, 1H), 4.78 (p, *J* = 6.8 Hz, 1H), 1.61 (d, *J* = 6.8 Hz, 3H).

N-benzyl-N-methylquinolin-4-amine(**3v**). Yellow solid: 51.7mg (52%); ¹**H** NMR (600 MHz, DMSOd₆) δ 8.62 (d, J = 5.0 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.69 – 7.65 (m, 1H), 7.49 – 7.46 (m, 1H), 7.39 – 7.35 (m, 4H), 7.31 – 7.28 (m, 1H), 6.94 (d, J = 5.0 Hz, 1H), 4.50 (s, 2H), 2.86 (s, 3H).

4-(pyrrolidin-1-yl)quinoline(**3**w). Yellow oil: 46.2mg (58%); ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.38 (d, *J* = 5.4 Hz, 1H), 8.27 (dd, *J* = 8.5, 1.3 Hz, 1H), 7.80 (dd, *J* = 8.4, 1.4 Hz, 1H), 7.61 – 7.57 (m, 1H), 7.38 – 7.34 (m, 1H), 6.52 (d, *J* = 5.4 Hz, 1H), 3.65 – 3.62 (m, 4H), 1.98 – 1.95 (m, 4H).

1-(4-(quinolin-4-yl)piperazin-1-yl)ethan-1-one(**3x**). Yellow oil: 52.4mg (51%); ¹**H NMR** (600 MHz, DMSO- d_6) δ 8.70 (d, J = 4.9 Hz, 1H), 8.07 (dd, J = 8.5, 1.5 Hz, 1H), 7.97 (dd, J = 8.4, 1.3 Hz, 1H), 7.73 – 7.69 (m, 1H), 7.59 – 7.55 (m, 1H), 6.99 (d, J = 4.9 Hz, 1H), 3.75 – 3.69 (m, 4H), 3.17 (t, J = 5.0 Hz, 2H), 3.11 (t, J = 5.1 Hz, 2H), 2.07 (s, 3H).

4-(quinolin-4-yl)morpholine(**3**y). Yellow oil: 44.8mg (52%); ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.70 (d, *J* = 4.9 Hz, 1H), 8.06 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.96 (d, *J* = 8.3 Hz, 1H), 7.70 (ddd, *J* = 8.4, 6.7, 1.5 Hz, 1H), 7.55 (ddd, *J* = 8.2, 6.7, 1.3 Hz, 1H), 6.99 (d, *J* = 4.9 Hz, 1H), 3.90 – 3.85 (m, 4H), 3.16 (t, *J* = 4.6 Hz, 4H).

quinolin-4-amine(**4a**). Yellow solid: 47.9mg (83%); mp=153.1-155.6°C; ¹**H** NMR (600 MHz, DMSOd₆) δ 8.29 (d, J = 5.2 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.58 (dd, J = 8.4, 6.8 Hz, 1H), 7.37 (dd, J = 8.4, 6.7 Hz, 1H), 6.75 (s, 2H), 6.53 (d, J = 5.1 Hz, 1H). ¹³**C** NMR (151 MHz, DMSO) δ 151.9, 150.8, 149.2, 129.3, 123.9, 122.8, 119.1, 102.7. HRMS (m/z): [M+H]⁺ Calcd. for C₉H₉N₂ 145.0765; found 145.0766.

6-chloroquinolin-4-amine(**4b**). Yellow solid: 64.3mg (90%); mp=247.1-249.3°C; ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.31 (d, J = 5.1 Hz, 1H), 8.29 (d, J = 2.4 Hz, 1H), 7.76 (d, J = 9.0 Hz, 1H), 7.58 (dd, J = 8.9, 2.3 Hz, 1H), 6.89 (s, 2H), 6.57 (d, J = 5.2 Hz, 1H). ¹³C NMR (151 MHz, DMSO) δ 151.4, 151.3, 147.8, 131.5, 129.8, 128.4, 122.0, 119.8, 103.4. **HRMS** (m/z): [M+H]⁺ Calcd. for C₉H₈N₂Cl 179.0386; found 179.0376.

8-methylquinolin-4-amine(**4c**). Yellow solid: 38.8mg (62%); mp=185.4-188.1°C; ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.32 (d, J = 5.0 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 6.9 Hz, 1H), 7.25 (dd, J = 8.4, 6.9 Hz, 1H), 6.69 (s, 2H), 6.55 (d, J = 5.0 Hz, 1H), 2.60 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ

152.2, 149.7, 148.2, 136.5, 129.4, 123.5, 120.6, 118.7, 102.9, 18.9. **HRMS** (m/z): $[M+H]^+$ Calcd. for $C_{10}H_{11}N_2$ 159.0933; found 159.0922.

6,8-dimethylquinolin-4-amine(**4d**). Yellow solid: 44.2mg (64%); mp=217.7-219.5°C; ¹H NMR (600 MHz, DMSO- d_6) δ 8.26 (d, J = 5.1 Hz, 1H), 7.75 (s, 1H), 7.29 (s, 1H), 6.56 (s, 2H), 6.51 (d, J = 5.0 Hz, 1H), 2.57 (s, 3H), 2.40 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 151.6, 148.8, 146.6, 136.2, 132.4, 131.4, 119.5, 118.7, 102.9, 21.7, 18.8. HRMS (m/z): [M+H]⁺Calcd. for C₁₁H₁₃N₂ 173.1094; found 173.1079.

8-chloroquinolin-4-amine(**4**e). Brown solid: 40.3mg (56%); mp=205.6-207.1°C; ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.38 (d, J = 5.2 Hz, 1H), 8.13 (dd, J = 8.4, 1.5 Hz, 1H), 7.77 (dd, J = 7.4, 1.4 Hz, 1H), 7.33 (t, J = 7.9 Hz, 1H), 6.98 (s, 2H), 6.62 (d, J = 5.2 Hz, 1H). ¹³C NMR (151 MHz, DMSO) δ 152.5, 151.3, 145.3, 132.9, 129.6, 123.7, 122.3, 120.3, 103.7. **HRMS** (m/z): [M+H]⁺ Calcd. for C₉H₈N₂Cl 179.0389; found 179.0376.

6-fluoro-8-methylquinolin-4-amine(**4f**). Yellow solid: 43.3mg (61%); mp=164.7-168.1°C; **¹H NMR** (600 MHz, DMSO-*d*₆) δ 8.31 (d, *J* = 5.1 Hz, 1H), 7.77 (dd, *J* = 10.8, 2.9 Hz, 1H), 7.38 (dd, *J* = 9.3, 2.8 Hz, 1H), 6.67 (s, 2H), 6.57 (d, *J* = 5.1 Hz, 1H), 2.62 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 159.0, 157.4, 151.9, 149.2, 145.4, 140.3, 118.9, 103.9, 103.2, 18.8. ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ -117.05. **HRMS** (m/z): $[M+H]^+$ Calcd. for C₁₀H₁₀N₂F 177.0844; found 177.0828.

5-chloroquinolin-4-amine(**4g**). Yellow solid: 55.3mg (77%); mp=146.9-148.1°C; ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.29 (d, J = 5.3 Hz, 1H), 7.71 (dd, J = 8.5, 1.4 Hz, 1H), 7.49 (dd, J = 8.6, 7.4 Hz, 1H), 7.39 (dd, J = 7.5, 1.4 Hz, 1H), 7.00 (s, 2H), 6.66 (d, J = 5.3 Hz, 1H). ¹³C NMR (151 MHz, DMSO) δ 152.3, 151.6, 150.8, 129.7, 129.1, 128.8, 126.7, 116.0, 105.6. HRMS (m/z): [M+H]⁺ Calcd. for C₉H₈N₂Cl 179.0388; found 179.0376.

6-fluoroquinolin-4-amine(**4h**). Yellow solid: 46.2mg (71%); mp=182.1-183.5°C; ¹**H** NMR (600 MHz, DMSO-*d*₆) δ 8.29 (d, *J* = 5.1 Hz, 1H), 7.96 (dd, *J* = 10.8, 2.9 Hz, 1H), 7.81 (dd, *J* = 9.2, 5.7 Hz, 1H),

7.49 (td, J = 8.7, 2.8 Hz, 1H), 6.76 (s, 2H), 6.55 (d, J = 5.1 Hz, 1H). ¹³C NMR (151 MHz, DMSO) δ 159.6, 158.0, 151.6, 150.3, 146.4, 133.6, 119.1, 106.6, 102.9. ¹⁹F NMR (565 MHz, DMSO- d_6) δ -116.65 – -116.91 (m). HRMS (m/z): [M+H]⁺ Calcd. for C₉H₈N₂F 163.0684; found 163.0672.

6-methoxyquinolin-4-amine(**4i**). Yellow solid: 47.6mg (68%); mp=123.2-124.7°C; ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.19 (d, J = 5.1 Hz, 1H), 7.67 (d, J = 9.1 Hz, 1H), 7.50 (d, J = 2.7 Hz, 1H), 7.24 (dd, J = 9.1, 2.7 Hz, 1H), 6.61 (s, 2H), 6.51 (d, J = 5.1 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 156.1, 151.0, 148.5, 144.9, 130.8, 121.2, 119.5, 102.8, 101.7, 56.0. **HRMS** (m/z): [M+H]⁺ Calcd. for C₁₀H₁₁N₂O 175.0885; found 175.0871.

6-methylquinolin-4-amine(**4j**). Yellow solid: 44.3mg (70%); mp=181.8-183.5°C; ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.23 (d, J = 5.1 Hz, 1H), 7.92 (s, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.41 (dd, J = 8.6, 1.9 Hz, 1H), 6.64 (s, 2H), 6.50 (d, J = 5.1 Hz, 1H), 2.45 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 151.3, 145.0, 147.7, 133.1, 131.2, 129.2, 121.7, 118.9, 102.8, 21.7. HRMS (m/z): [M+H]⁺ Calcd. for C₁₀H₁₁N₂ 159.0934; found 159.0922.

7-chloroquinolin-4-amine(**4**k). Yellow solid: 45.7mg (64%); mp=159.3-164.1°C; **¹H NMR** (600 MHz, DMSO-*d*₆) δ 8.31 (d, *J* = 5.2 Hz, 1H), 8.19 (d, *J* = 8.9 Hz, 1H), 7.76 (d, *J* = 2.2 Hz, 1H), 7.40 (dd, *J* = 8.9, 2.2 Hz, 1H), 6.94 (s, 2H), 6.55 (d, *J* = 5.2 Hz, 1H). ¹³C NMR (151 MHz, DMSO) δ 152.2, 152.0, 149.9, 133.9, 127.8, 125.1, 124.3, 117.6, 103.2. **HRMS** (m/z): [M+H]⁺ Calcd. for C₉H₈N₂Cl 179.0388; found 179.0376.

6-methoxy-8-methylquinolin-4-amine(**4**I). Yellow solid: 43.6mg (59%); mp=214.2-216.1°C; ¹H NMR (600 MHz, DMSO- d_6) δ 8.20 (d, J = 5.0 Hz, 1H), 7.33 (d, J = 2.8 Hz, 1H), 7.13 (dd, J = 2.7, 1.3 Hz, 1H), 6.52 (d, J = 4.8 Hz, 3H), 3.84 (s, 3H), 2.57 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 155.4, 151.2, 147.4, 144.1, 138.4, 121.1, 119.3, 103.1, 99.4, 55.8, 18.9. HRMS (m/z): [M+H]⁺ Calcd. for C₁₁H₁₃N₂O 189.1039; found 189.1028.

2-methylquinolin-4-amine(4m). Yellow solid: 52.2mg (82%); mp=192.4-196.1°C; ¹H NMR (600 MHz,

DMSO- d_6) δ 8.08 (d, J = 8.4 Hz, 1H), 7.66 (d, J = 8.4 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.33 – 7.28 (m, 1H), 6.64 (s, 2H), 6.43 (s, 1H), 2.40 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 158.7, 152.0, 148.9, 129.3, 128.6, 123.2, 122.6, 117.7, 102.5, 25.3. HRMS (m/z): [M+H]⁺ Calcd. for C₁₀H₁₁N₂ 159.0936; found 159.0922.

3-methylquinolin-4-amine(**4n**). Yellow solid: 47.6mg (75%); mp=155.4-157.1°C; ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.27 (s, 1H), 8.20 (d, J = 8.3 Hz, 1H), 7.73 (d, J = 8.8 Hz, 1H), 7.52 (t, J = 6.9 Hz, 1H), 7.36 (t, J = 7.0 Hz, 1H), 6.44 (s, 2H), 2.20 (s, 3H). ¹³C NMR (151 MHz, DMSO) δ 152.2, 148.8, 148.1, 129.3, 128.2, 123.9, 122.5, 118.4, 109.6, 15.2. **HRMS** (m/z): [M+H]⁺ Calcd. for C₁₀H₁₁N₂ 159.0936; found 159.0922.

3-phenylquinolin-4-amine(**40**). Yellow solid: 64.5mg (74%); mp=198.3-200.1°C; ¹**H** NMR (600 MHz, DMSO-*d*₆) δ 8.33 (d, *J* = 8.3 Hz, 1H), 8.30 (s, 1H), 7.81 (dd, *J* = 8.3, 1.3 Hz, 1H), 7.63 (ddd, *J* = 8.3, 6.8, 1.4 Hz, 1H), 7.52 (d, *J* = 6.9 Hz, 4H), 7.45 (ddd, *J* = 8.3, 6.8, 1.4 Hz, 1H), 7.41 (ddd, *J* = 8.7, 6.5, 2.1 Hz, 1H), 6.41 (s, 2H). ¹³C NMR (151 MHz, DMSO) δ 151.6, 148.3, 147.7, 137.4, 129.8, 129.6, 129.4, 127.7, 124.7, 123.3, 118.7, 115.3. HRMS (m/z): [M+H]⁺Calcd. for C₁₅H₁₃N₂ 221.1091; found 221.1079.

7-chloro-*N*-phenylquinolin-4-amine(**4p**). Yellow solid: 73.4mg (73%). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 9.11 (s, 1H), 8.49 – 8.40 (m, 2H), 7.90 (d, *J* = 2.2 Hz, 1H), 7.57 (dd, *J* = 9.0, 2.3 Hz, 1H), 7.47 – 7.33 (m, 4H), 7.17 (tt, *J* = 7.2, 1.4 Hz, 1H), 6.92 (d, *J* = 5.3 Hz, 1H).

6,8-dimethyl-*N*-phenylquinolin-4-amine(**4q**). Yellow solid: 83.9mg (84%). ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.79 (s, 1H), 8.42 (d, J = 5.3 Hz, 1H), 8.00 (s, 1H), 7.42 – 7.37 (m, 3H), 7.34 (d, J = 7.8 Hz, 2H), 7.11 (t, J = 7.3 Hz, 1H), 6.95 (d, J = 5.2 Hz, 1H), 2.63 (s, 3H), 2.47 (s, 3H).

3-methyl-*N*-phenylquinolin-4-amine(4r). White solid: 64.4mg (69%); mp=202.1-202.8°C ¹H NMR (400

MHz, DMSO- d_6) 8 8.72 (s, 1H), 8.43 (s, 1H), 7.99 (dd, J = 12.7, 8.5 Hz, 2H), 7.65 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.48 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.21 – 7.11 (m, 2H), 6.78 (t, J = 7.4 Hz, 1H), 6.68 – 6.62 (m, 2H), 2.21 (s, 3H). ¹³**C** NMR (101 MHz, DMSO) δ 154.2, 148.4, 145.3, 143.7, 129.7, 129.4, 128.9, 126.1, 124.7, 123.9, 123.4, 119.7, 116.1, 16.6. HRMS (m/z): [M+H]⁺ Calcd. for C₁₆H₁₅N₂ 235.1235; found 235.1242.

7-chloro-*N*-pentylquinolin-4-amine(**4s**). Yellow solid: 82.3mg (83%); mp=98.3-99.7°C; ¹**H NMR** (400 MHz,) δ 8.38 (d, *J* = 5.4 Hz, 1H), 8.28 (d, *J* = 9.0 Hz, 1H), 7.77 (d, *J* = 2.2 Hz, 1H), 7.43 (dd, *J* = 9.0, 2.3 Hz, 1H), 7.29 (t, *J* = 5.4 Hz, 1H), 6.43 (d, *J* = 5.4 Hz, 1H), 3.28 – 3.18 (m, 2H), 1.65 (p, *J* = 7.3 Hz, 2H), 1.35 (dq, *J* = 7.3, 3.3 Hz, 4H), 0.91 – 0.81 (m, 3H). ¹³C NMR (101 MHz,) δ 152.4, 150.6, 149.6, 133.81, 128.0, 124.6, 124.4, 117.9, 99.0, 42.8, 29.3, 28.0, 22.4, 14.4. HRMS (m/z): [M+H]⁺ Calcd. for C₁₄H₁₈N₂Cl 2249.1159; found 249.1165.

2-phenylquinolin-4-amine(**5a**).Yellow solid: 38.2mg (42%); mp=254.8-256.1°C; ¹**H** NMR (400 MHz, DMSO- d_6) δ 8.16 (dd, J = 8.5, 1.4 Hz, 1H), 8.10 – 8.03 (m, 2H), 7.84 (dd, J = 8.5, 1.2 Hz, 1H), 7.61 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.46 – 7.41 (m, 1H), 7.38 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 7.12 (s, 1H), 6.84 (s, 2H). ¹³C NMR (151 MHz, DMSO) δ 156.7, 152.9, 149.7, 140.5, 129.8, 129.3, 129.0, 127.3, 124.0, 122.7, 118.3, 99.6. HRMS (m/z): [M+H]⁺ Calcd. for C₁₅H₁₃N₂ 221.1094; found 221.1079.

N,2-diphenylquinolin-4-amine(**5b**). Yellow solid: 64.5mg (54%); mp=198.1-200.3 °C; ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 9.05 (s, 1H), 8.41 (dd, *J* = 8.4, 1.4 Hz, 1H), 8.02 – 7.99 (m, 2H), 7.97 (dd, *J* = 8.4, 1.3 Hz, 1H), 7.72 (ddd, *J* = 8.3, 6.8, 1.4 Hz, 1H), 7.53 (ddd, *J* = 8.3, 6.8, 1.4 Hz, 1H), 7.49 – 7.41 (m, 8H), 7.17 (ddd, *J* = 8.5, 5.4, 3.3 Hz, 1H). ¹³**C NMR** (151 MHz, DMSO) δ 157.1, 149.5, 149.2, 141.2, 140.2, 130.2, 130.0, 129.9, 129.5, 129.1, 127.4, 125.1, 124.2, 122.9, 122.5, 119.5, 99.1. **HRMS** (m/z): [M+H]⁺ Calcd. for C₂₁H₁₇N₂ 297.1396; found 297.1392.

N-benzyl-2-phenylquinolin-4-amine(**5**c). Yellow solid: 79.5mg (64%); mp=172.7-175.9 °C; ¹H NMR (600 MHz, DMSO- d_6) δ 8.31 (d, J = 8.4 Hz, 1H), 8.05 – 8.01 (m, 2H), 7.98 (t, J = 6.1 Hz, 1H), 7.87 (d, J = 7.2 Hz, 1H), 7.65 (ddd, J = 8.2, 6.7, 1.3 Hz, 1H), 7.48 – 7.43 (m, 5H), 7.42 – 7.39 (m, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.23 (t, J = 7.4 Hz, 1H), 6.89 (s, 1H), 4.70 (d, J = 6.0 Hz, 2H). ¹³C NMR (151 MHz, DMSO) δ 156.9, 151.1, 148.8, 140.5, 139.6, 129.9, 129.7, 129.4, 128.9, 127.5, 127.4, 127.4, 124.5, 122.0, 118.7, 96.5, 46.0. HRMS (m/z): [M+H]⁺ Calcd. for C₂₂H₁₉N₂ 311.1560; found 311.1548.

N-cyclohexyl-2-phenylquinolin-4-amine(**5d**). Yellow solid: 53.4mg (44%); mp=147.8-150.1°C; ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.30 (dd, *J* = 8.5, 1.3 Hz, 1H), 8.19 – 8.15 (m, 2H), 7.84 (dd, *J* = 8.4, 1.3 Hz, 1H), 7.64 – 7.59 (m, 1H), 7.50 (t, *J* = 7.7 Hz, 2H), 7.44 (t, *J* = 7.3 Hz, 1H), 7.38 (ddd, *J* = 8.3, 6.7, 1.4 Hz, 1H), 6.98 (s, 1H), 6.76 (d, *J* = 7.9 Hz, 1H), 3.73 (ddp, *J* = 10.6, 7.3, 3.7 Hz, 1H), 2.05 (d, *J* = 11.4 Hz, 2H), 1.82 – 1.75 (m, 2H), 1.71 – 1.65 (m, 1H), 1.51 – 1.38 (m, 4H), 1.25 – 1.16 (m, 1H). ¹³**C NMR** (151 MHz, DMSO) δ 157.2, 150.3, 149.0, 140.8, 129.8, 129.5, 129.3, 128.9, 127.6, 124.0, 122.3, 118.6, 95.7, 51.1, 32.5, 26.0, 25.3. **HRMS** (m/z): [M+H]⁺ Calcd. for C₂₁H₂₃N₂ 303.1871; found 303.1861.

N-hexyl-2-phenylquinolin-4-amine(**5e**). Yellow oil: 59.9mg (49%); mp=169.3-170.1°C ; ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.24 (dd, *J* = 8.5, 1.3 Hz, 1H), 8.18 (dd, *J* = 7.2, 1.8 Hz, 2H), 7.85 (dd, *J* = 8.4, 1.3 Hz, 1H), 7.62 (ddd, *J* = 8.2, 6.7, 1.4 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.46 – 7.42 (m, 1H), 7.40 (ddd, *J* = 8.2, 6.7, 1.3 Hz, 1H), 7.15 (t, *J* = 5.5 Hz, 1H), 6.94 (s, 1H), 3.41 – 3.37 (m, 2H), 1.72 (p, *J* = 7.3 Hz, 2H), 1.42 (q, *J* = 7.1 Hz, 2H), 1.36 – 1.27 (m, 4H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹³**C NMR** (151 MHz, DMSO) δ 157.1, 151.3, 148.8, 140.7, 129.8, 129.5, 129.3, 128.9, 127.6, 124.1, 122.1, 118.6, 95.5, 42.9, 31.6, 28.4, 26.9, 22.6, 14.4. **HRMS** (m/z): [M+H]⁺ Calcd. for C₂₁H₂₅N₂ 305.2024; found 305.2018.

N-benzyl-2-(o-tolyl)quinolin-4-amine(**5f**). Yellow solid: 68.6mg (53%); mp=166.3-167.1°C; ¹H NMR (400 MHz, DMSO-d6) δ 8.33 (dd, J = 8.4, 1.4 Hz, 1H), 7.98 (t, J = 6.0 Hz, 1H), 7.80 (dd, J = 8.5, 1.3 Hz, 1H), 7.64 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.48 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.34 – 7.27 (m, 3H), 7.26 – 7.18 (m, 4H), 6.36 (s, 1H), 4.60 (d, J = 5.8 Hz, 2H), 2.07 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 160.1, 150.2, 148.5, 142.2, 139.5, 135.6, 130.8, 129.7, 129.5, 128.9, 128.2,

127.3, 127.2, 126.0, 124.5, 122.0, 118.2, 100.6, 46.0, 20.3. **HRMS** (m/z): $[M+H]^+$ Calcd. for $C_{23}H_{21}N_2$ 325.1744; found 325.1705.

N-benzyl-2-(2-chlorophenyl)quinolin-4-amine(**5**g). Yellow solid: 73.6mg (52%); mp=209.3-210.1°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.34 (dd, *J* = 8.5, 1.4 Hz, 1H), 8.04 (t, *J* = 6.0 Hz, 1H), 7.83 (dd, *J* = 8.4, 1.3 Hz, 1H), 7.66 (ddd, *J* = 8.3, 6.8, 1.3 Hz, 1H), 7.56 – 7.45 (m, 3H), 7.42 – 7.35 (m, 4H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.25 – 7.18 (m, 1H), 6.53 (s, 1H), 4.59 (d, *J* = 5.9 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ 157.4, 150.2, 148.6, 140.8, 139.4, 131.9, 131.6, 130.2, 130.1, 129.8, 129.7, 128.9, 127.5, 127.3, 124.9, 122.0, 118.4, 100.8, 46.1. HRMS (m/z): [M+H]⁺ Calcd. for C₂₂H₁₈N₂Cl 345.1174; found 345.1159.

N-benzyl-2-(p-tolyl)quinolin-4-amine(**5h**). Yellow solid: 65.0mg (51%); mp=175.5-176.2°C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 8.29 (dd, J = 8.5, 1.5 Hz, 1H), 7.97 – 7.89 (m, 3H), 7.84 (dd, J = 8.4, 1.3 Hz, 1H), 7.63 (ddd, J = 8.3, 6.8, 1.3 Hz, 1H), 7.48 – 7.41 (m, 3H), 7.33 (dd, J = 8.4, 6.9 Hz, 2H), 7.28 – 7.20 (m, 3H), 6.86 (s, 1H), 4.69 (d, J = 5.9 Hz, 2H), 2.34 (s, 3H). ¹³**C NMR** (101 MHz, DMSO) δ 156.8, 151.0, 148.8, 139.6, 138.9, 137.7, 129.8, 129.6, 129.5, 128.9, 127.5, 127.3, 127.3, 124.3, 122.0, 118.6, 96.2, 46.0, 21.3. **HRMS** (m/z): [M+H]⁺ Calcd. for C₂₃H₂₁N₂ 325.1703; found 325.1705.

Chloroquine(**6a**). white solid: 94.1mg(74%). mp=76.7-77.1°C; ¹**H** NMR (600 MHz, DMSO- d_6) δ 8.36 (dd, J = 7.3, 1.8 Hz, 2H), 7.76 (d, J = 2.2 Hz, 1H), 7.42 (dd, J = 9.0, 2.2 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 6.50 (d, J = 5.6 Hz, 1H), 3.71 (hept, J = 6.5 Hz, 1H), 2.40 (q, J = 7.1 Hz, 4H), 2.35 (t, J = 7.0 Hz, 2H), 1.72 – 1.64 (m, 1H), 1.55 – 1.41 (m, 3H), 1.22 (d, J = 6.4 Hz, 3H), 0.89 (t, J = 7.1 Hz, 6H). ¹³C NMR (151 MHz, DMSO) δ 152.4, 150.0, 149.8, 133.8, 127.9, 124.8, 124.2, 118.0, 99.3, 52.6, 48.1, 46.6, 33.8, 23.9, 20.3, 12.1. HRMS (m/z): [M+H]⁺ Calcd. for C₁₈H₂₆N₃Cl 320.1894; found 320.1897.

3-iodoquinolin-4-ol(7). white solid: 24.1mg(22%); mp=291.5-292.3°C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 12.20 (s, 1H), 8.51 (s, 1H), 8.11 (dd, J = 8.2, 1.5 Hz, 1H), 7.68 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.59 (dd, J = 8.3, 0.7 Hz, 1H), 7.38 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H). ¹³**C NMR** (101 MHz, DMSO) δ 173.5, 145.1, 140.0, 132.4, 125.9, 124.6, 122.9, 118.9, 81.1. **HRMS** (m/z): [M+H]⁺ Calcd. for C₉H₇INO 271.9581; found 271.9552.

quinolin-4-ol(8). white solid: 52.3mg(90%); mp=187.6-188.5°C; ¹H NMR (400 MHz, DMSO- d_6) δ 11.87 (s, 1H), 8.11 (dd, J = 8.1, 1.5 Hz, 1H), 7.92 (dd, J = 7.5, 4.7 Hz, 1H), 7.62 (ddd, J = 8.4, 6.8, 1.6 Hz, 1H), 7.55 (d, J = 7.2 Hz, 1H), 7.34 – 7.26 (m, 1H), 6.07 (d, J = 7.3 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 177.5, 140.5, 140.0, 132.1, 126.3, 125.4, 123.6, 118.8, 109.2. HRMS (m/z): [M+H]+ Calcd. for C9H8NO 146.0615; found 146.0601.

7. ¹H NMR and ¹³C NMR spectra for spectroscopic data.

Figure S2. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound **3b**

Figure S3. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3c

Figure S4. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3d

Figure S5. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3e

Figure S6. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound 3f

Figure S7. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3g

Figure S8. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3h

Figure S9. ¹⁹F NMR (565 MHz, DMSO-*d*₆) spectra of compound 3h

Figure S10. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3i

Figure S11. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3j

Figure S12. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3k

Figure S15. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound **3m**

Figure S16. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3n

Figure S17. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound **30**

Figure S19. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3p

Figure S20. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3q

Figure 21. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3r

Figure S22. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3s

Figure S23. ¹³C NMR (151 MHz, DMSO) spectra of compound 3s

Figure S24. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3t

Figure S25. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3u

Figure S26. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3v

Figure S27. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3w

Figure S28. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3x

Figure S29. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3y

Figure S30. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4a

Figure S32. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4b

Figure S33. ¹³C NMR (151 MHz, DMSO) spectra of compound 4b

Figure S34. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4c

Figure S35. ¹³C NMR (151 MHz, DMSO) spectra of compound 4c

Figure S36. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4d

Figure S37. ¹³C NMR (151 MHz, DMSO) spectra of compound 4d

Figure S38. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4e

Figure S39. ¹³C NMR (151 MHz, DMSO) spectra of compound 4e

Figure S40. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4f

Figure S42. ¹⁹F NMR (565 MHz, DMSO-*d*₆) spectra of compound 4f

Figure S43. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4g

Figure S44. ¹³C NMR (151 MHz, DMSO) spectra of compound 4g

Figure S45. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4h

Figure S46. ¹³C NMR (151 MHz, DMSO) spectra of compound 4h

Figure S47. ¹⁹F NMR (565 MHz, DMSO-*d*₆) spectra of compound 4h

Figure S48. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4i

Figure S50. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4j

Figure S51. ¹³C NMR (151 MHz, DMSO) spectra of compound 4j

Figure S52. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4k

Figure S54. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4I

Figure S55. ¹³C NMR (151 MHz, DMSO) spectra of compound 4I

Figure S56. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4m

Figure S57. ¹³C NMR (151 MHz, DMSO) spectra of compound 4m

Figure S58. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 4n

Figure S59. ¹³C NMR (151 MHz, DMSO) spectra of compound 4n

Figure S60. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 40

Figure S62. ¹H NMR (400 MHz, DMSO-*d*₆) spectra of compound 4p

Figure S64. ¹H NMR (400 MHz, DMSO-*d*₆) spectra of compound 4r

Figure S68. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 5a

Figure S70. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound **5b**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Figure S72. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 5c

Figure S73. ¹³C NMR (151 MHz, DMSO) spectra of compound 5c

Figure S74. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 5d

Figure S76. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 5e

Figure S77. ¹³C NMR (151 MHz, DMSO) spectra of compound 5e

Figure S78. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 5f

Figure S79. ¹³C NMR (151 MHz, DMSO) spectra of compound 5f

Figure S80. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 5g

Figure S82. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 5h

Figure S83. ¹³C NMR (151 MHz, DMSO) spectra of compound 5h

Figure S84. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 6a

Figure S86. ¹H NMR (400 MHz, DMSO-*d*₆) spectra of compound 7

Figure S87. ¹³C NMR (101 MHz, DMSO) spectra of compound 7

Figure S88. ¹H NMR (400 MHz, DMSO-*d*₆) spectra of compound 8

Figure S89. ¹³C NMR (101 MHz, DMSO) spectra of compound 8

8. HPLC spectrum of product 3u.

03/21/23 10:54:37 PM 1 / 1

9. References:

- A. R. Katritzky, T.-B. Huang and M. V. Voronkov, From Amides to Amidines: Preparations of Imidoylbenzotriazoles and Arylaminoheterocycles, J. Org. Chem., 2001, 66, 1043-1045.
- 2 B. J. Margolis, K. A. Long, D. L. T. Laird, J. C. Ruble and S. R. Pulley, Assembly of 4-Aminoquinolines via Palladium Catalysis: A Mild and Convenient Alternative to SNAr Methodology, *J. Org. Chem.*, 2007, **72**, 2232-2235.
- 3 J. C. Vantourout, H. N. Miras, A. Isidro-Llobet, S. Sproules and A. J. B. Watson, Spectroscopic Studies of the Chan–Lam Amination: A Mechanism-Inspired Solution to Boronic Ester Reactivity, J. Am. Chem. Soc., 2017, 139, 4769-4779.
- 4 B. Chandrasekhar, A. S. R. Prasad, S. Eswaraiah and A. Venkateswaralu, Development of an Efficient Process for 4,5,7-Trichloroquinoline, A Key Intermediate for Agrochemical Synthesis, *Org. Process Res. Dev.*, 2002, 6, 242-245.
- 5 R. Gosmini, V. L. Nguyen, J. Toum, C. Simon, J.-M. G. Brusq, G. Krysa, O. Mirguet, A. M. Riou-Eymard, E. V. Boursier, L. Trottet, P. Bamborough, H. Clark, C.-w. Chung, L. Cutler, E. H. Demont, R. Kaur, A. J. Lewis, M. B. Schilling, P. E. Soden, S. Taylor, A. L. Walker, M. D. Walker, R. K. Prinjha and E. Nicodème, The Discovery of I-BET726 (GSK1324726A), a Potent Tetrahydroquinoline ApoA1 Up-Regulator and Selective BET Bromodomain Inhibitor, *J. Med. Chem.*, 2014, **57**, 8111-8131.
- 6 R. I. Higuchi, J. P. Edwards, T. R. Caferro, J. D. Ringgenberg, J. W. Kong, L. G. Hamann, K. L. Arienti, K. B. Marschke, R. L. Davis, L. J. Farmer and T. K. Jones, 4-Alkyl- and 3,4-dialkyl-1,2,3,4,-tetrahydro-8-pyridono[5,6-g]quinolines: Potent, nonsteroidal androgen receptor agonists, *Bioorg. Med. Chem. Lett.*, 1999, 9, 1335-1340.
- 7 R. P. Sakata, G. Antoniolli, M. Lancellotti, D. F. Kawano, E. Guimarães Barbosa and W. P. Almeida, Synthesis and biological evaluation of 2'-Aminochalcone: A multi-target approach to find drug candidates to treat Alzheimer's disease, *Bioorg. Chem.*, 2020, **103**, 104201.
- 8 F. Chen, H. Geng, C. Li, J. Wang, B. Guo, L. Tang, Y.-Y. Yang, Aerobic Dehydrogenative Aromatization in the Preparation of 4-Aminoquinoline Derivatives by Synergistic Pd/Cu Catalysis, J. Org. Chem. 2023, 88, 15589–15596.