Supporting Information

Forging the tricyclic core framework of euphordraculoate B

via a Barbier-type allyl addition

Lingduan Meng, Jingjing Liu, Zeying Sun, Yangdong Hou*, Qingyun Huang*, Pingping Tang*

State Key Laboratory and Institute of Elemento-Organic Chemistry

College of Chemistry, Nankai University, Tianjin 300071, China

Co	ntents:	Pages
1.	General method	S2
2.	Experimental procedures	S2
3.	Reaction Exploration and Optimization	S 7
4.	X-Ray data	S 8
5.	NMR Spectrum	S22
6.	Reference	S 31

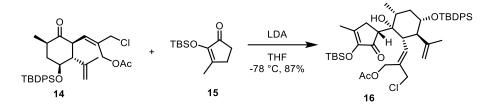
1. General method

All reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. Tetrahydrofuran (THF) and toluene were distilled immediately before use from sodium-benzophenone ketyl. Methylene chloride (CH₂Cl₂) and triethylamine (Et₃N) were distilled from calcium hydride and stored under an argon atmosphere. Reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Solvents for chromatography were used as supplied by Tianjin Reagents Chemical. Reactions were monitored by thin layer chromatography (TLC) carried out on silica gel Huanghai HSGF254 plates using UV light as visualizing agent and aqueous phosphomolybdic acid or basic aqueous potassium permanganate as developing agent. 200-300 mesh silica gel purchased from Qingdao Haiyang Chemical Co., China was used for flash column chromatography. NMR spectra were recorded on Bruker AVANCE AV 400, 600, 800 (¹H: 400 MHz, ¹³C: 101 MHz, ¹H: 600 MHz, ¹³C: 151 MHz, ¹H: 800 MHz, ¹³C: 201 MHz) instrument and calibrated by using residual undeuterated chloroform ($\delta H = 7.26$ ppm) and CDCl₃ ($\delta C = 77.16$ ppm) as internal references. The following abbreviations are used to designate multiplicities: s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet, quint = quintet. High-resolution mass spectra (HRMS) were obtained on Varian 7.0T FTMS. X-ray diffraction was realized on a Rigaku 007 Saturn 70 instrument.

2. Experimental Procedures

Compound 10, 11 and 12 were synthesized based on a literature procedure ^{[1][2]}.

Synthesis of 14

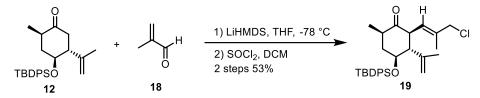

To a solution of ketone **12** (6.27 g, 15.4 mmol, 1.0 equiv) in THF (250 mL), LDA (2.0 M THF solution, 9.3 mL, 18.5 mmol, 1.2 equiv) was added at -78 °C. After stirring at -78 °C for 15 minutes, a solution of **13** (4 g, 30.8 mmol, 2.0 equiv) in 50 mL THF was slowly added to the mixture under nitrogen. The reaction mixture was stirred at -78 °C for 2 hours, and then saturated ammonium chloride solution was added to the mixture. The resultant mixture was raised to room temperature and stirred for additional 30 minutes. The reaction mixture was extracted with EA for three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was used in the next reaction without further purification.

2, 6-Lutidine (16.1 mL, 138.6 mmol, 9.0 equiv) was added to the solution of crude product in DCM (300 mL) at 0 °C. After the reaction mixture was stirred at 0 °C for 5 minutes, SOCl₂ (10 mL, 138.6 mmol, 9.0 equiv) was slowly added to the mixture. The resultant mixture was raised to room temperature and stirred for 30 minutes, and then the mixture was cooled to 0 °C again. Saturated NaHCO₃ solution was added dropwise until foaming stopped, extracted with DCM for three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to obtain the product **14** 3.1 g in 37% yield over 2 steps, colorless oil, Z:E = 1:3.3.

 $[\alpha]_{D}^{20} = +10.1 \ (c = 2.5, CH_2Cl_2).$

(*E*)-14: $R_f = 0.51$ (petroleum ether/ethyl acetate = 5/1); ¹H NMR (800 MHz, Chloroform-*d*) δ 7.72 – 7.69 (m, 2H), 7.66 – 7.63 (m, 2H), 7.49 – 7.43 (m, 2H), 7.42 – 7.37 (m, 4H), 5.58 (d, *J* = 9.4 Hz, 1H), 4.88 (s, 1H), 4.82 (s, 1H), 4.55 (d, *J* = 12.5 Hz, 1H), 4.41 (d, *J* = 12.5 Hz, 1H), 4.16 (d, *J* = 11.3 Hz, 1H), 4.10 (d, *J* = 11.3 Hz, 1H), 4.05 – 4.01 (m, 1H), 3.23 (dd, *J* = 12.4, 9.4 Hz, 1H), 2.47 (dd, *J* = 12.4, 9.8 Hz, 1H), 2.28 – 2.22 (m, 1H), 1.97 (s, 4H), 1.49 (s, 3H), 1.32 – 1.28 (m, 1H), 1.00 (s, 9H), 0.84 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 209.1, 170.7, 142.3, 136.0, 135.9, 134.5, 133.4, 133.1, 131.8, 129.9, 129.6, 127.6, 127.4, 115.4, 71.2, 60.0, 59.3, 49.6, 47.3, 43.9, 41.9, 26.8, 20.8, 19.2, 14.1.

Synthesis of 16



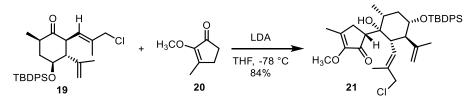
LDA (2.0 M THF solution, 2.5 mL, 5.04 mmol, 3.2 equiv) was added to a solution of ketone **15** (1.06 g, 4.72 mmol, 3.0 equiv) in THF (25 mL) at -78 °C. After the reaction mixture was stirred at -78 °C for 15 minutes, a solution of **14** (870 mg, 1.57 mmol, 1.0 equiv) in 10 mL THF was slowly added to the mixture under nitrogen. The reaction mixture was stirred at -78 °C for 2 hours, and then saturated ammonium chloride solution was added to the mixture. The resultant mixture was raised to room temperature and stirred for additional 30 minutes. The reaction mixture was extracted with EA for three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate = 20/1) to obtain the product **16** 1.0 g in 87% yield, colorless oil, d.r. = 9:1.

 $[\alpha]_{D}^{20} = +124.2 \ (c = 0.3, CH_2Cl_2).$

 R_f = 0.73 (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.66 (m, 4H), 7.45 – 7.32 (m, 6H), 5.96 (s, 1H), 5.28 (s, 1H), 4.78 (s, 1H), 4.60 – 4.52 (m, 2H), 4.10 (s, 2H), 3.49 (m, 1H), 2.50 (s, 1H), 2.21 – 2.17 (m, 1H), 2.08 (m, 1H), 2.04 (s, 3H), 1.99 (t, *J* = 11.4 Hz, 1H), 1.89 (s, 3H), 1.80 (q, *J* = 11.9 Hz, 1H), 1.37 – 1.21 (m, 3H), 1.25 (s, 3H), 0.97 (s, 9H), 0.92 (s, 9H), 0.48 (d, *J* = 6.7 Hz, 3H), 0.15 (s, 3H), 0.10 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 206.9, 170.7, 150.9, 148.2, 136.0, 135.1, 129.5, 129.3, 127.4, 127.2, 77.2, 59.6, 47.8, 47.4, 39.2, 36.1, 29.7, 29.6, 29.4, 26.8, 25.6, 20.8, 19.3, 18.2, 17.6, 14.7. HRMS-ESI (m/z): Calcd. for C₄₄H₆₃ClNaO₆Si₂ [M + Na]⁺: 801.3749. Found, 801.3751.

Synthesis of 19

LiHMDS (1.0 M THF solution, 16.0 mL, 16.01 mmol, 1.3 equiv) was added to a solution of ketone **12** (5 g, 12.3 mmol, 1.0 equiv) in THF (100 mL) at -78 °C. After the reaction mixture was stirred at -78 °C for 15 minutes, a solution of **18** (5.0 mL, 61.5 mmol, 5.0 equiv) in 20 mL THF

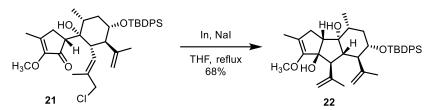

solution was slowly added to the mixture under nitrogen. The reaction mixture was stirred at -78 $^{\circ}$ C for 2 hours, and then saturated ammonium chloride solution was added to the mixture. The resultant mixture was raised to room temperature and stirred for additional 30 minutes. The reaction mixture was extracted with EA for three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated to afford the crude product, which was used in the next reaction without further purification.

2, 6-Lutidine (12.8 mL, 110.9 mmol, 9.0 equiv) was added to a solution of aldol crude product in DCM (250 mL) at 0 °C. After the reaction mixture was stirred at 0 °C for 5 minutes, SOCl₂ (8.0 mL, 110.9 mmol, 9.0 equiv) was slowly added to the mixture. The resultant mixture was raised to room temperature and stirred for 30 minutes, and then the mixture was cooled to 0 °C again. Saturated NaHCO₃ solution was added dropwise until foaming stopped, extracted with DCM for three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to obtain the product **19** 3.1 g in 53% yield over 2 steps, colorless oil, only E.

 $\left[\alpha\right]_{D}^{20} = +110.5 \ (c = 0.2, CH_2Cl_2).$

 $R_f = 0.55$ (petroleum ether/ethyl acetate = 3/1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.56 (m, 4H), 7.35 (m, 6H), 5.25 (d, *J* = 9.3 Hz, 1H), 4.80 (s, 1H), 4.74 (s, 1H), 3.99 – 3.91 (m, 3H), 2.97 (dd, *J* = 12.4, 9.3 Hz, 1H), 2.39 (dd, *J* = 12.3, 9.9 Hz, 1H), 2.15 (dt, *J* = 13.1, 6.1 Hz, 1H), 1.90 (dt, *J* = 12.8, 4.8 Hz, 1H), 1.60 – 1.52 (m, 1H), 1.48 (s, 3H), 1.43 (s, 3H), 0.93 (s, 9H), 0.77 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 209.7, 142.4, 136.0, 135.9, 134.6, 134.2, 133.2, 129.8, 129.6, 127.6, 127.4, 126.4, 115.2, 71.3, 60.1, 51.8, 49.8, 43.4, 42.0, 26.8, 19.3, 19.1, 14.6, 14.2. HRMS-ESI (m/z): Calcd. for C₃₀H₃₉ClNaO₂Si [M + Na]⁺: 517.2306. Found, 517.2305.

Synthesis of 21

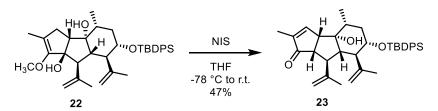

LDA (2.0 M THF solution, 3.2 mL, 6.47 mmol, 3.2 equiv) was added to a solution of enone **20** (760 mg, 6.07 mmol, 3.0 equiv) in THF (30 mL) at -78 °C. After the reaction mixture was stirred at -78 °C for 15 minutes, a solution of **19** (1 g, 2.02 mmol, 1.0 equiv) in 10 mL THF was slowly added to the mixture under nitrogen. The reaction mixture was stirred at -78 °C for 2 hours, and then saturated ammonium chloride solution was added to the mixture. The resultant mixture was raised to room temperature and stirred for additional 30 minutes. The reaction mixture was extracted with EA for three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to obtain the product **21** 1.05 g in 84% yield, colorless oil, d.r. = 8:1.

 $\left[\alpha\right]_{D}^{20} = +173.0 \ (c = 0.2, CH_2Cl_2).$

 $R_f = 0.35$ (petroleum ether/ethyl acetate = 10/1); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.64 (m, 4H), 7.45 – 7.31 (m, 6H), 5.64 (d, *J* = 10.6 Hz, 1H), 5.22 (s, 1H), 4.76 (s, 1H), 4.68 (s, 1H), 4.01 (s, 2H), 3.81 (s, 3H), 3.51 (td, *J* = 10.7, 10.2, 3.9 Hz, 1H), 2.68 – 2.62 (m, 1H), 2.54 (s, 1H), 2.30 – 2.06 (m, 2H), 1.95 (s, 3H), 1.81 (d, *J* = 11.8 Hz, 1H), 1.64 (s, 3H), 1.49 (m, 2H), 1.45 – 1.32 (m, 1H), 0.97 (s, 9H), 0.52 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 207.9, 153.9,

151.5, 136.1, 136.0, 135.2, 133.9, 129.4, 129.2, 127.3, 127.2, 77.7, 58.3, 52.5, 48.5, 39.5, 36.2, 30.4, 26.8, 19.3, 17.6, 15.2, 14.8. HRMS-ESI (m/z): Calcd. for $C_{37}H_{49}CINaO_4Si \ [M + Na]^+$: 643.2986. Found, 643.2985.

Synthesis of 22

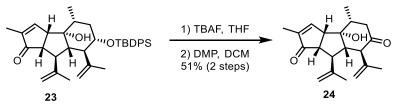

In powder (376 mg, 3.22 mmol, 20.0 equiv) and NaI (120 mg, 0.81 mmol, 5.0 equiv) were added to a solution of **21** (100 mg, 0.16 mmol, 1.0 equiv) in THF (3.2 mL) under nitrogen. The reaction mixture was stirred at 90 °C for 30 minutes, and then cooled to room temperature. 10 mL Et₂O was added into the mixture, and filtered through a pad of Celite with Et₂O washing (5 mL*3). The filtrate was washed by saturated Na₂S₂O₃ solution, and dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to obtain the product **22** 63mg in 68% yield, white solid, d.r.>20:1.

Note: The product 22 is sensitive to acid. During the column chromatography process, the silica gel should be alkalized with petroleum ether containing 1% Et₃N.

 $[\alpha]_{D}^{20} = +87.9 \ (c = 0.5, CH_2Cl_2).$

 R_f = 0.35 (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 7.3 Hz, 1H), 7.65 (d, *J* = 7.3 Hz, 1H), 7.43 − 7.30 (m, 6H), 5.11 (s, 1H), 4.87 (s, 1H), 4.66 (s, 1H), 4.63 (s, 1H), 3.74 (s, 3H), 3.57 (td, *J* = 10.9, 10.4, 4.7 Hz, 1H), 2.87 (s, 1H), 2.63 (t, *J* = 10.5 Hz, 1H), 2.45 (m, 2H), 2.10 (d, *J* = 16.2 Hz, 1H), 2.02 (d, *J* = 8.2 Hz, 1H), 1.83 (s, 3H), 1.73 (s, 3H), 1.68 (t, *J* = 12.2 Hz, 1H), 1.57 (m, 2H), 1.45 − 1.38 (m, 1H), 1.26 (s, 3H), 0.98 (s, 9H), 0.75 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 155.1, 144.7, 136.0, 135.9, 135.3, 134.2, 129.4, 129.2, 127.3, 127.1, 115.5, 114.9, 113.6, 88.3, 78.9, 72.9, 60.1, 54.9, 53.5, 39.3, 39.0, 32.0, 26.9, 19.3, 15.6, 13.1. HRMS-ESI (m/z): Calcd. for C₃₇H₅₀NaO₄Si [M + Na]⁺: 609.3376. Found, 609.3375. Mp: 104-106°C.

Synthesis of 23


NIS (6.9 mg, 0.03 mmol, 1.0 equiv) was added to a solution of **22** (18 mg, 0.03 mmol, 1.0 equiv) in THF (1.5 mL) at -78 °C under nitrogen. After the reaction mixture was stirred at -78 °C for 1 hour, the resultant mixture was slowly raised to room temperature and stirred for 30 minutes. Saturated Na₂S₂O₃ solution was added to the mixture to quench the reaction. The reaction mixture was extracted with EA for three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate = 10/1) to obtain the product **23** 7.8 mg in 47% yield, white solid.

Note: The product 23 is sensitive to acid. During the column chromatography process, the silica gel should be alkalized with petroleum ether containing 1% Et₃N.

 $[\alpha]_{D}^{20} = +102.2 \ (c = 0.15, CH_2Cl_2).$

 R_f = 0.45 (petroleum ether/ethyl acetate = 5/1); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 7.3 Hz, 1H), 7.66 (d, *J* = 7.3 Hz, 1H), 7.38 (m, 6H), 6.97 (s, 1H), 4.82 (s, 1H), 4.75 (s, 1H), 4.73 (s, 1H), 4.72 (s, 1H), 3.55 (td, *J* = 10.5, 4.5 Hz, 1H), 2.93 (s, 1H), 2.56 (m, 2H), 2.44 (t, *J* = 10.7 Hz, 1H), 1.78 (s, 3H), 1.71 (s, 3H), 1.67 (t, *J* = 11.4 Hz, 1H), 1.55 (m, 5H), 1.40 (m, 2H), 0.97 (s, 9H), 0.80 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 209.8, 151.5, 144.7, 136.0, 136.0, 135.3, 133.8, 129.5, 129.2, 127.3, 127.2, 78.9, 53.1, 39.4, 38.1, 26.8, 19.4, 15.8, 10.6.

Synthesis of 24

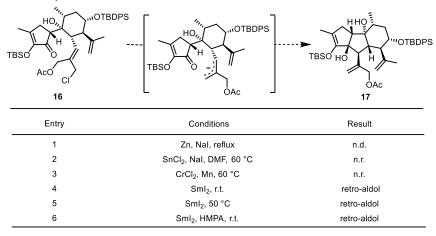
TBAF (1.0 M THF, 0.1 mL, 0.1 mmol, 5.0 equiv) was added to a solution of **23** (12 mg, 0.02 mmol, 1.0 equiv) in THF (0.4 mL) at room temperature. After the reaction mixture was stirred for 4 hours, water (3 mL) was added. The reaction mixture was extracted with EA for three times. The combined organic layers were dried over anhydrous Na_2SO_4 , filtered, and concentrated to afford the crude product, which was used in the next reaction without further purification.

DMP (42.4 mg, 0.1 mmol, 5.0 equiv) was added to a solution of the crude product in DCM (1 mL) at room temperature. The mixture was stirred for 4 hours. Then the mixture was filtered through a pad of Celite with DCM washing (5 mL*3). The filtrate was washed with saturated NaHCO₃ solution. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude residue was purified by column chromatography (petroleum ether/ethyl acetate = 3/1) to obtain the product **24** 3.2 mg in 51% yield over 2 steps, white solid.

Note: The product 24 is sensitive to acid. During the column chromatography process, the silica gel should be alkalized with petroleum ether containing 1% Et₃N.

 $\left[\alpha\right]_{D}^{20} = +115.6 \ (c = 0.15, CH_2Cl_2).$

 R_f = 0.65 (petroleum ether/ethyl acetate = 1/1); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.09 (s, 1H), 4.87 (s, 2H), 4.84 (s, 1H), 4.74 (s, 1H), 3.31 (d, *J* = 12.2 Hz, 1H), 3.25 (d, *J* = 7.4 Hz, 1H), 2.78 (t, *J* = 7.2 Hz, 1H), 2.66 (dd, *J* = 11.1, 7.3 Hz, 1H), 2.41 (m, 1H), 2.33 (m, 2H), 2.14 (dt, *J* = 12.6, 6.3 Hz, 1H), 1.85 (s, 3H), 1.78 (s, 3H), 1.63 (s, 3H), 1.07 (d, *J* = 6.5 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 208.4, 208.0, 149.2, 145.0, 143.9, 139.5, 115.3, 112.5, 77.8, 58.1, 56.3, 54.9, 51.6, 48.8, 43.8, 37.8, 28.6, 19.6, 19.4, 15.0, 9.7. HRMS-ESI (m/z): Calcd. for C₂₀H₂₆NaO₃ [M + Na]⁺: 337.1780. Found, 337.1788.

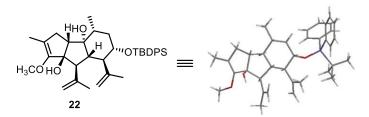

3. Reaction Exploration and Optimization

3.1 Optimization of 14

TBDPSO aldol pro	H SOCI ₂ 2, 6-Lutidine solvent	TBDPSO 14
Entry	Solvent	Result
1	Et_2O/n -Hexane = 3:2	61%, Z/E = 1:2.8
2	Et ₂ O	65%, Z/E = 1:3.3
3	DCM	72%, Z/E = 1:3.3
4	Toluene	56%, Z/E = 1:2.6
5	THF	33%, Z/E = 1:3.1
6	Acetone	8%, Z/E = 1:4.0
7	CH ₃ CN	6%, Z/E = 1:5.1

conditions: aldol product (1 equiv), SOCl₂ (9 equiv), 2, 6-Lutidine (9 equiv), solvents, c = 0.05 mol/L, 0 $^\circ C$ to r.t.

3.2 Exploration of cyclization reactions



3.3 Optimization of 23

HHO H ₃ CO HO 22	""OTBDPS <u>oxidant</u>	HO, HO, WITCHEDPS
Entry	Conditions	Result
1	Br ₂ , DCM, -30 °C	trace
2	Br ₂ , DCM, -78 °C	5%
3	NBS, THF, -78 °C	trace
4	PyHBr ₃ , DCM, -78 °C	n.d.
5	NIS, THF, -78 °C to r.t.	47%
6	NIS, DCM, -78 °C to r.t.	7%
7	NIS, THF, -30 °C to r.t.	trace
8	NIS, THF, 0 °C to r.t.	trace

conditions: 22 (1 equiv), oxidant (1.2 equiv), solvents, c = 0.02 mol/L

4. X-Ray data

Table 1 Crystal data and structure refinement for 22 (CCDC 2354348).

Identification code	22
Empirical formula	C37H50O4Si
Formula weight	586.86
Temperature/K	113.15
Crystal system	monoclinic
Space group	P21
a/Å	10.62167(13)
b/Å	10.50225(11)
c/Å	15.14865(15)
α/°	90
β/°	93.6459(10)
γ/°	90
Volume/Å ³	1686.43(3)
Z	2
$\rho_{calc}g/cm^3$	1.156
μ/mm^{-1}	0.106
F(000)	636.0

Crystal size/mm ³	$0.28 \times 0.26 \times 0.14$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.842 to 59.15
Index ranges	$-14 \le h \le 14, -14 \le k \le 14, -21 \le l \le 20$
Reflections collected	38186
Independent reflections	9443 [$R_{int} = 0.0623$, $R_{sigma} = 0.0438$]
Data/restraints/parameters	9443/3/395
Goodness-of-fit on F ²	1.068
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0447, wR_2 = 0.1083$
Final R indexes [all data]	$R_1 = 0.0464, wR_2 = 0.1097$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.25
Flack parameter	0.06(5)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 22. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
Si1	-7538.3(5)	-4477.2(5)	-1508.8(3)	16.07(12)
01	-6514.1(13)	-4501.7(15)	-2272.3(9)	20.2(3)
O2	-5729.2(14)	-4290.3(13)	-5096.6(9)	18.0(3)
03	-2947.5(15)	-7225.5(14)	-5545.6(10)	20.7(3)
O4	-2146.6(16)	-4691.9(16)	-6115.3(10)	28.1(3)

Supporting Information						
C1	-6891.9(18)	-6111.1(19)	-4528.7(13)	18.0(4)		
C2	-7249.8(18)	-5373(2)	-3703.4(13)	17.8(4)		
C3	-6219.6(18)	-5378.7(19)	-2950.4(12)	16.0(3)		
C4	-4916.0(17)	-4983.1(18)	-3248.3(12)	14.7(3)		
C5	-4609.6(17)	-5768.5(18)	-4065.2(12)	14.3(3)		
C6	-3386.2(18)	-5434.8(19)	-4506.9(12)	16.3(3)		
C7	-3622(2)	-6043.8(18)	-5450.5(12)	17.2(4)		
C8	-5049.7(19)	-6300.2(18)	-5593.1(12)	17.7(4)		
C9	-5637.0(18)	-5596.2(17)	-4826.6(12)	14.8(3)		
C10	-5418(2)	-5821(2)	-6535.0(13)	24.1(4)		
C11	-4297(2)	-5079(2)	-6816.6(14)	24.9(4)		
C12	-3345(2)	-5175.0(19)	-6203.6(13)	21.5(4)		
C13	-7972(2)	-6070(2)	-5248.7(15)	27.9(5)		
C14	-3911.2(19)	-5070(2)	-2491.4(13)	19.3(4)		
C15	-3184(2)	-4075(2)	-2271.7(17)	32.0(5)		
C16	-3763(2)	-6304(2)	-2000.3(14)	27.4(5)		
C17	-2140(2)	-5809(2)	-4030.2(14)	24.9(4)		
C18	-1914(3)	-6971(3)	-3716.2(16)	34.4(5)		
C19	-1142(2)	-4779(3)	-3967.1(19)	39.6(6)		
C20	-4433(3)	-4441(3)	-7706.0(15)	39.3(6)		
C21	-1728(3)	-3887(3)	-6793.2(19)	38.6(6)		
C22	-6663(2)	-3769(2)	-492.8(13)	21.7(4)		

Supporting Information						
C23	-6403(4)	-2370(3)	-688(2)	51.1(9)		
C24	-7447(3)	-3865(3)	315.6(16)	41.7(7)		
C25	-5389(2)	-4413(3)	-276.0(16)	38.8(6)		
C26	-8857.8(19)	-3358.7(19)	-1853.1(13)	19.5(4)		
C27	-8810(2)	-2616(2)	-2617.3(14)	23.2(4)		
C28	-9733(2)	-1711(2)	-2838.3(17)	29.3(5)		
C29	-10701(2)	-1497(2)	-2285.0(18)	31.5(5)		
C30	-10760(2)	-2199(2)	-1517.9(17)	29.4(5)		
C31	-9860(2)	-3137(2)	-1314.7(15)	25.1(4)		
C32	-8195(2)	-6110(2)	-1311.3(13)	19.9(4)		
C33	-9433(2)	-6425(2)	-1614.9(14)	24.3(4)		
C34	-9931(2)	-7630(2)	-1479.7(15)	28.8(5)		
C35	-9209(2)	-8551(2)	-1034.7(15)	29.0(5)		
C36	-7986(2)	-8272(2)	-730.3(16)	29.2(5)		
C37	-7484(2)	-7072(2)	-870.8(15)	26.0(4)		

Table 3 Anisotropic Displacement Parameters (Å2×103) for 22. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Si1	16.0(2)	20.5(3)	11.9(2)	-1.66(19)	2.54(16)	-1.6(2)
01	20.6(6)	24.9(7)	15.8(6)	-4.2(6)	7.1(5)	-3.1(6)
O2	24.4(7)	13.0(6)	16.8(6)	1.0(5)	3.4(5)	2.4(5)

Supporting Information						
O3	25.6(8)	14.7(6)	22.6(7)	-1.2(5)	8.1(6)	3.5(6)
O4	34.0(8)	27.5(8)	24.0(7)	5.0(6)	11.8(6)	-7.5(7)
C1	17.2(9)	19.4(9)	17.3(8)	-2.8(7)	0.3(7)	-3.1(7)
C2	16.0(8)	20.8(9)	17.0(8)	-1.0(7)	2.6(7)	-1.8(7)
C3	16.8(8)	17.7(8)	13.6(8)	-0.3(7)	3.2(6)	-1.5(7)
C4	15.5(8)	15.7(8)	13.2(8)	-0.6(6)	3.0(6)	-0.9(7)
C5	15.0(8)	13.9(8)	14.1(8)	0.4(6)	2.7(6)	-0.3(6)
C6	17.1(8)	17.0(8)	15.1(8)	-2.0(7)	4.5(6)	0.3(7)
C7	23.3(9)	14.2(8)	14.9(8)	-0.9(6)	6.5(7)	1.3(7)
C8	23.6(9)	14.2(8)	15.5(8)	-2.2(7)	3.5(7)	-0.7(7)
C9	19.1(8)	12.1(8)	13.3(8)	-0.6(6)	1.5(6)	-0.6(7)
C10	32.5(11)	25.1(10)	14.5(8)	-3.1(7)	-0.1(8)	0.3(9)
C11	40.0(12)	18.2(10)	17.4(9)	0.4(7)	7.5(8)	3.9(9)
C12	32.9(11)	15.2(9)	17.5(9)	-0.7(7)	10.5(8)	-0.5(8)
C13	22.0(10)	38.6(13)	22.6(10)	-7.0(9)	-3.3(8)	-6.4(9)
C14	17.5(9)	26.0(10)	14.6(8)	-0.1(7)	2.2(7)	2.4(8)
C15	27.6(11)	32.9(12)	34.1(12)	-2.3(10)	-10.1(9)	-3.0(9)
C16	28.0(11)	33.3(12)	20.6(10)	8.7(9)	-1.4(8)	1.3(9)
C17	19.0(9)	36.2(11)	19.9(9)	-5.2(8)	3.7(7)	3.4(8)
C18	32.5(12)	43.1(14)	27.1(11)	-1.3(10)	-0.8(9)	16.8(11)
C19	21.0(10)	59.2(18)	38.5(13)	-3.6(12)	1.6(9)	-6.8(11)
C20	62.4(17)	34.1(12)	21.7(10)	9.1(10)	3.7(10)	3.7(13)

	Supporting Information					
C21	45.8(15)	30.8(13)	41.6(14)	13.9(11)	21.4(12)	-3.3(11)
C22	22.1(10)	25.7(10)	17.2(9)	-4.8(7)	-0.2(7)	-3.2(8)
C23	69(2)	32.5(14)	48.0(16)	-1.0(12)	-23.6(15)	-19.8(14)
C24	35.3(13)	71(2)	19.8(10)	-17.2(12)	6.1(9)	-7.4(13)
C25	27.7(11)	58.5(17)	28.6(11)	-15.7(13)	-9.3(9)	7.3(13)
C26	18.6(9)	21.3(10)	18.5(9)	-2.1(7)	1.2(7)	-2.4(7)
C27	23.6(10)	24.3(10)	21.6(10)	-1.4(8)	1.7(8)	-3.8(8)
C28	31.6(12)	24.1(10)	31.5(11)	4.9(9)	-2.9(9)	-0.5(9)
C29	24.6(11)	23.8(11)	45.5(14)	-1.3(10)	-3.8(10)	3.5(9)
C30	21.0(10)	31.1(11)	36.7(12)	-6.9(10)	5.9(9)	-0.9(9)
C31	23.4(10)	28.0(11)	24.4(10)	-1.2(8)	5.6(8)	-1.2(9)
C32	22.4(9)	23.7(9)	14.0(8)	-2.6(7)	5.7(7)	-2.0(8)
C33	23.0(10)	30.4(11)	19.5(9)	2.1(8)	2.4(8)	-3.7(9)
C34	27.2(11)	36.1(12)	23.3(10)	-2.1(9)	4.1(9)	-11.2(10)
C35	38.3(13)	26.1(10)	23.9(10)	-2.7(9)	12.8(9)	-9.2(9)
C36	33.0(12)	24.6(11)	30.8(11)	2.4(9)	8.2(9)	2.6(9)
C37	22.1(10)	27.6(10)	28.5(11)	0.4(9)	3.4(8)	-1.3(9)

Table 4 Bond Lengths for 22.

Atom Atom		Length/Å	Atom	Atom	Length/Å
Si1	01	1.6376(14)	C8	C10	1.540(3)
Si1	C22	1.898(2)	C10	C11	1.508(3)

S13

				Supporting	Information
Si1	C26	1 877(2)	<u>C11</u>		
		1.877(2)		C12	1.333(3)
Si1	C32	1.883(2)	C11	C20	1.503(3)
01	C3	1.429(2)	C14	C15	1.330(3)
O2	C9	1.433(2)	C14	C16	1.498(3)
03	C7	1.445(2)	C17	C18	1.325(4)
O4	C12	1.369(3)	C17	C19	1.514(4)
O4	C21	1.423(3)	C22	C23	1.527(4)
C1	C2	1.539(3)	C22	C24	1.527(3)
C1	C9	1.533(3)	C22	C25	1.530(3)
C1	C13	1.532(3)	C26	C27	1.399(3)
C2	C3	1.530(3)	C26	C31	1.401(3)
C3	C4	1.540(3)	C27	C28	1.391(3)
C4	C5	1.539(3)	C28	C29	1.386(4)
C4	C14	1.519(3)	C29	C30	1.381(4)
C5	C6	1.539(3)	C30	C31	1.394(3)
C5	C9	1.547(3)	C32	C33	1.405(3)
C6	C7	1.571(3)	C32	C37	1.404(3)
C6	C17	1.519(3)	C33	C34	1.392(3)
C7	C8	1.541(3)	C34	C35	1.383(4)
C7	C12	1.505(3)	C35	C36	1.381(4)
C8	C9	1.541(3)	C36	C37	1.390(3)

Table 5 Bond Angles for 22.

Atom Atom Atom		Angle/°	Atom	Atom Atom Atom		Angle/°	
01	Si1	C22	105.42(8)	C1	C9	C8	116.99(15)
01	Si1	C26	109.36(9)	C8	C9	C5	101.85(15)
01	Si1	C32	111.57(9)	C11	C10	C8	105.79(18)
C26	Si1	C22	107.36(9)	C12	C11	C10	109.98(18)
C26	Si1	C32	109.66(9)	C12	C11	C20	133.2(2)
C32	Si1	C22	113.29(9)	C20	C11	C10	116.8(2)
C3	01	Si1	134.70(13)	O4	C12	C7	112.11(18)
C12	O4	C21	118.7(2)	C11	C12	O4	134.40(19)
C9	C1	C2	109.02(15)	C11	C12	C7	113.45(19)
C13	C1	C2	110.59(17)	C15	C14	C4	120.73(19)
C13	C1	C9	113.95(17)	C15	C14	C16	121.0(2)
C3	C2	C1	113.70(16)	C16	C14	C4	118.27(18)
01	C3	C2	110.77(16)	C18	C17	C6	122.8(2)
01	C3	C4	106.19(15)	C18	C17	C19	121.7(2)
C2	C3	C4	113.22(15)	C19	C17	C6	115.5(2)
C5	C4	C3	109.33(15)	C23	C22	Si1	107.77(16)
C14	C4	C3	111.36(15)	C23	C22	C25	107.3(2)
C14	C4	C5	113.60(15)	C24	C22	Si1	111.14(15)
C4	C5	C6	117.06(15)	C24	C22	C23	109.5(2)
C4	C5	C9	111.19(15)	C24	C22	C25	108.6(2)

S15

			$\sim n_{FF}$:	1 1118 119			
C6	C5	C9	102.95(14)	C25	C22	Si1	112.42(15)
C5	C6	C7	102.26(15)	C27	C26	Si1	120.86(16)
C17	C6	C5	117.95(17)	C27	C26	C31	117.2(2)
C17	C6	C7	114.27(16)	C31	C26	Si1	121.58(16)
O3	C7	C6	112.88(16)	C28	C27	C26	121.2(2)
O3	C7	C8	109.00(15)	C29	C28	C27	120.2(2)
O3	C7	C12	108.84(15)	C30	C29	C28	119.8(2)
C8	C7	C6	107.30(15)	C29	C30	C31	119.7(2)
C12	C7	C6	114.54(16)	C30	C31	C26	121.7(2)
C12	C7	C8	103.76(17)	C33	C32	Si1	120.74(17)
C9	C8	C7	104.60(15)	C37	C32	Si1	122.49(16)
C10	C8	C7	105.24(16)	C37	C32	C33	116.8(2)
C10	C8	C9	116.74(17)	C34	C33	C32	121.5(2)
O2	C9	C1	112.14(16)	C35	C34	C33	120.2(2)
O2	C9	C5	110.91(15)	C36	C35	C34	119.7(2)
O2	C9	C8	105.53(15)	C35	C36	C37	120.2(2)
C1	C9	C5	108.94(15)	C36	C37	C32	121.7(2)

Supporting Information

 Table 6 Torsion Angles for 22.

A	B	С	D	Angle/°	A B C D	Angle/°
Si1	01	C3	C2	72.6(2)	C8 C7 C12C11	-10.8(2)
Si1	01	C3	C4	-164.09(14)	C8 C10C11C12	5.3(2)

Si1C26C27C28 -174.70(17)	C8 C10C11C20 -176.94(19)
Si1C26C31C30 172.33(18)	C9 C1 C2 C3 -54.4(2)
Si1C32C33C34 179.56(17)	C9 C5 C6 C7 -38.79(17)
Si1C32C37C36 179.94(18)	C9 C5 C6 C17 -165.04(17)
O1 Si1 C22 C23 68.3(2)	C9 C8 C10C11 104.0(2)
O1 Si1 C22 C24 -171.73(18)	C10 C8 C9 O2 -34.8(2)
O1 Si1 C22 C25 -49.8(2)	C10 C8 C9 C1 90.7(2)
O1 Si1 C26C27 -5.56(19)	C10 C8 C9 C5 -150.72(17)
O1 Si1 C26C31 -178.98(16)	C10C11C12 O4 -178.9(2)
O1 Si1 C32C33 -106.52(17)	C10C11C12 C7 3.6(2)
O1 Si1 C32C37 72.61(19)	C12 C7 C8 C9 -110.45(16)
O1 C3 C4 C5 -172.38(15)	C12 C7 C8 C10 13.11(19)
O1 C3 C4 C14 61.26(19)	C13 C1 C2 C3 179.61(17)
O3 C7 C8 C9 133.70(15)	C13 C1 C9 O2 60.4(2)
O3 C7 C8 C10 -102.74(17)	C13 C1 C9 C5 -176.41(17)
O3 C7 C12 O4 -72.9(2)	C13 C1 C9 C8 -61.7(2)
O3 C7 C12C11 105.1(2)	C14 C4 C5 C6 -59.6(2)
C1 C2 C3 O1 169.79(16)	C14 C4 C5 C9 -177.55(15)
C1 C2 C3 C4 50.6(2)	C17 C6 C7 O3 25.6(2)
C2 C1 C9 O2 -63.63(19)	C17 C6 C7 C8 145.68(18)
C2 C1 C9 C5 59.53(19)	C17 C6 C7 C12 -99.7(2)
C2 C1 C9 C8 174.26(16)	C20C11C12 O4 3.8(4)

C2 C3 C4 C5	-50.6(2)	C20C11C12 C7	-173.7(2)
C2 C3 C4 C14	-176.98(16)	C21 O4 C12 C7	177.83(19)
C3 C4 C5 C6	175.29(16)	C21 O4 C12C11	0.4(4)
C3 C4 C5 C9	57.38(19)	C22 Si1 O1 C3	140.68(18)
C3 C4 C14C15	-126.1(2)	C22 Si1 C26 C27	108.33(18)
C3 C4 C14C16	53.9(2)	C22 Si1 C26 C31	-65.08(19)
C4 C5 C6 C7	-161.07(15)	C22 Si1 C32 C33	134.70(17)
C4 C5 C6 C17	72.7(2)	C22 Si1 C32 C37	-46.2(2)
C4 C5 C9 O2	60.7(2)	C26 Si1 O1 C3	-104.18(18)
C4 C5 C9 C1	-63.22(19)	C26 Si1 C22 C23	-48.2(2)
C4 C5 C9 C8	172.57(15)	C26 Si1 C22 C24	71.8(2)
C5 C4 C14C15	109.9(2)	C26 Si1 C22 C25	-166.32(18)
C5 C4 C14C16	-70.1(2)	C26 Si1 C32 C33	14.79(19)
C5 C6 C7 O3	-103.03(17)	C26 Si1 C32 C37	-166.09(17)
C5 C6 C7 C8	17.07(19)	C26C27C28C29	2.1(3)
C5 C6 C7 C12	131.66(18)	C27 C26 C31 C30	-1.3(3)
C5 C6 C17C18	49.7(3)	C27 C28 C29 C30	-0.9(4)
C5 C6 C17C19	-132.7(2)	C28C29C30C31	-1.4(4)
C6 C5 C9 O2	-65.48(18)	C29C30C31C26	2.5(4)
C6 C5 C9 C1	170.63(15)	C31 C26 C27 C28	-1.0(3)
C6 C5 C9 C8	46.42(17)	C32 Si1 O1 C3	17.3(2)
C6 C7 C8 C9	11.15(19)	C32 Si1 C22 C23	-169.5(2)

S18

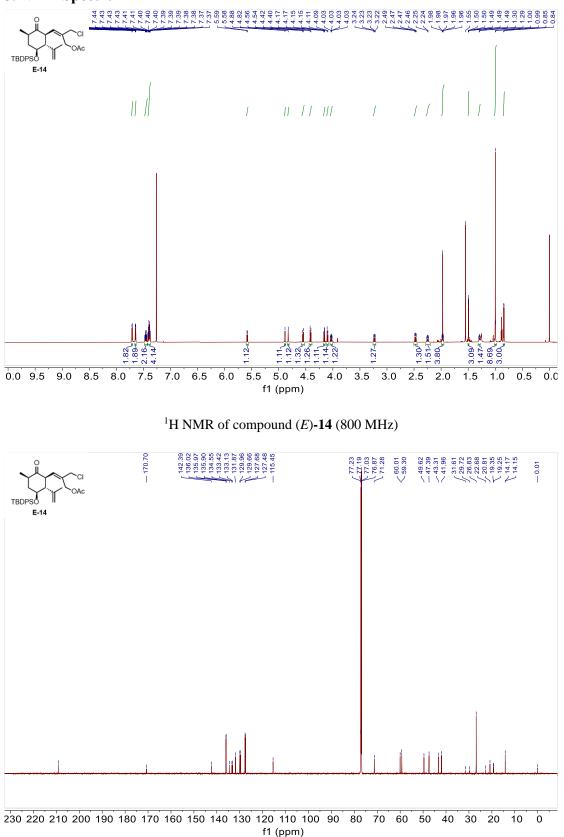
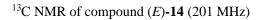
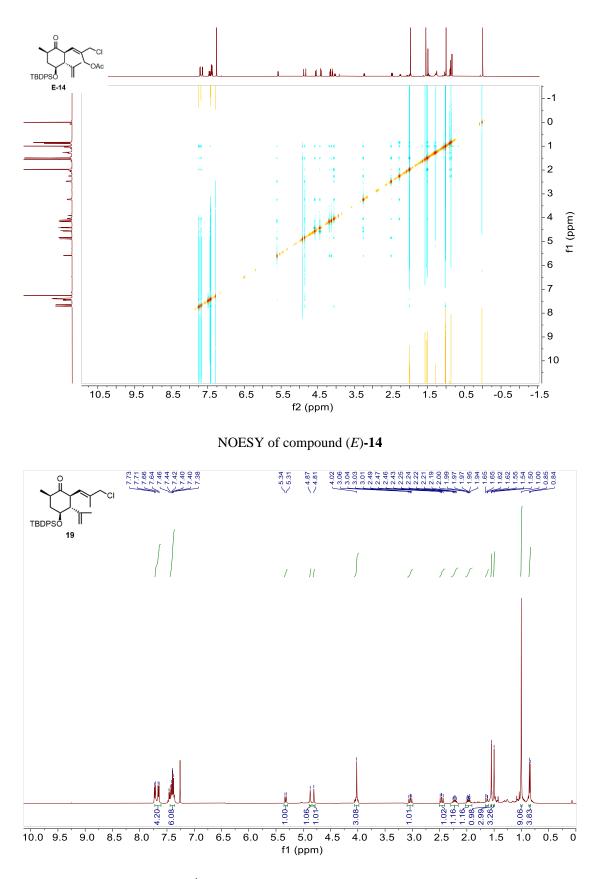
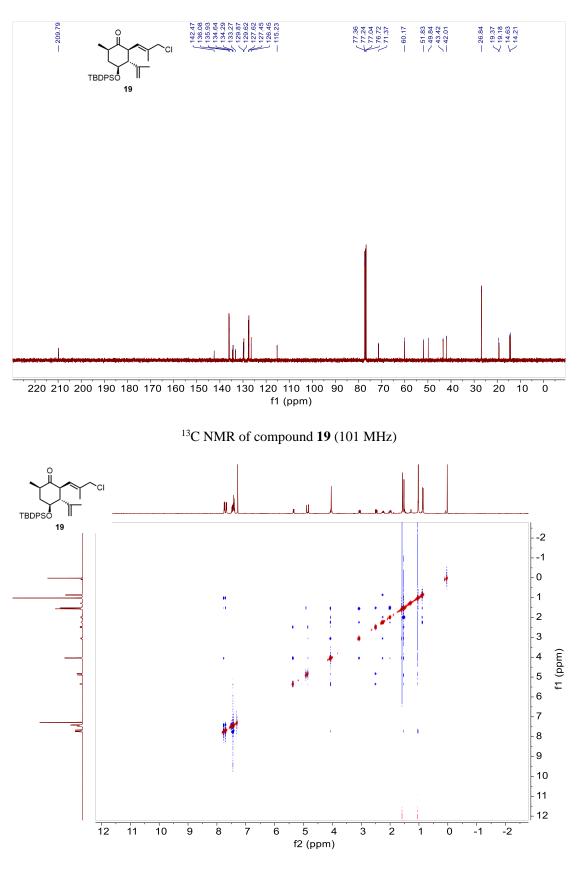

C6 C7 C8 C10	134.72(16)	C32 Si1 C22 C24	-49.5(2)
C6 C7 C12 O4	54.5(2)	C32 Si1 C22 C25	72.5(2)
C6 C7 C12C11	-127.48(19)	C32 Si1 C26C27	-128.19(17)
C7 C6 C17C18	-70.5(3)	C32 Si1 C26C31	58.39(19)
C7 C6 C17C19	107.1(2)	C32C33C34C35	0.3(3)
C7 C8 C9 O2	80.99(17)	C33C32C37C36	-0.9(3)
C7 C8 C9 C1	-153.53(16)	C33C34C35C36	-0.5(3)
C7 C8 C9 C5	-34.91(18)	C34C35C36C37	0.0(4)
C7 C8 C10C11	-11.5(2)	C35C36C37C32	0.7(4)
C8 C7 C12 O4	171.12(16)	C37C32C33C34	0.4(3)

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 22.

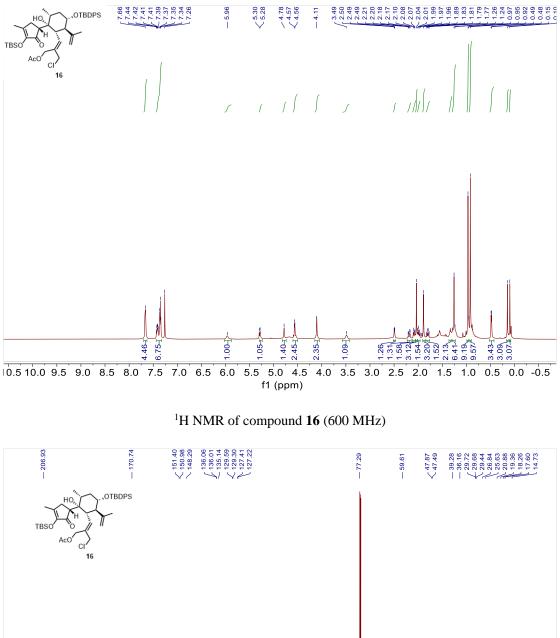

Atom	x	у	Z.	U(eq)
H2	-6220(30)	-3930(30)	-4770(20)	42(9)
H3	-2300(30)	-7190(40)	-5220(20)	50(10)
H1	-6757.87	-7021.33	-4353.17	22
H2A	-7440.72	-4480.27	-3873.44	21
H2B	-8026.67	-5749.93	-3486.31	21
H3A	-6155.95	-6254.02	-2691.62	19
H4	-4975.37	-4070.55	-3434.61	18
H5	-4577.39	-6688.52	-3895.07	17

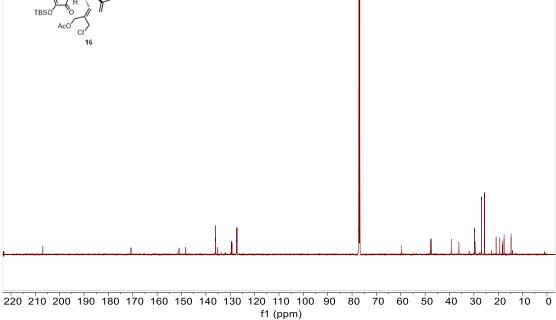

	Supporting Information						
H6	-3373.67	-4489.77	-4586.74	20			
H8	-5218.55	-7234.47	-5552.49	21			
H10A	-5603.01	-6546.73	-6939.98	29			
H10B	-6174.11	-5269.22	-6536.17	29			
H13A	-8744.28	-6396.17	-5009.44	42			
H13B	-7753.99	-6597.5	-5750.37	42			
H13C	-8106.88	-5189.29	-5446.86	42			
H15A	-2558.14	-4139.86	-1796.91	38			
H15B	-3289.08	-3298.11	-2589.55	38			
H16A	-4503.52	-6449.02	-1659.45	41			
H16B	-3004.34	-6269.35	-1597.41	41			
H16C	-3683.55	-7001.92	-2422.81	41			
H18A	-1109.23	-7173.41	-3443.04	41			
H18B	-2557.14	-7599.98	-3764.26	41			
H19A	-1002.12	-4459	-4560.67	59			
H19B	-352.62	-5131.34	-3699.72	59			
H19C	-1424.24	-4079.3	-3599.96	59			
H20A	-3661.56	-3966.41	-7807.45	59			
H20B	-5151.53	-3854.08	-7722.41	59			
H20C	-4575.83	-5087.8	-8168.1	59			
H21A	-1749.2	-4358.04	-7352.49	58			
H21B	-863.19	-3606.22	-6634.77	58			

	Supporting Information						
H21C	-2283.11	-3143.54	-6859.09	58			
H23A	-5893.91	-2309.14	-1204.04	77			
H23B	-5943.03	-1982.22	-174.99	77			
H23C	-7203.63	-1921.34	-810.98	77			
H24A	-8224.44	-3370.32	212.12	63			
H24B	-6959.78	-3527.87	835.05	63			
H24C	-7658.77	-4758.76	418.41	63			
H25A	-5525.55	-5301.09	-108.2	58			
H25B	-4938.55	-3964.46	215.65	58			
H25C	-4887.49	-4385.77	-796.69	58			
H27	-8135.57	-2732.76	-2992.05	28			
H28	-9698.43	-1236.67	-3370.39	35			
H29	-11323.34	-869.57	-2433.15	38			
H30	-11412.08	-2043.71	-1130.31	35			
H31	-9926.79	-3638.83	-798	30			
H33	-9942.45	-5800.97	-1919.35	29			
H34	-10769.61	-7820.77	-1693.9	35			
H35	-9551.38	-9370.89	-938.78	35			
H36	-7487.33	-8901.9	-424.08	35			
H37	-6638.84	-6898.12	-663.54	31			

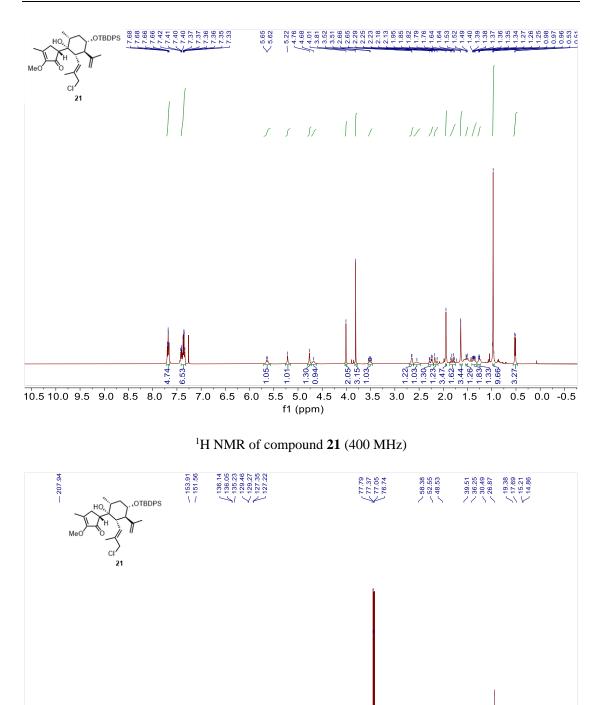


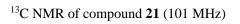
5. NMR Spectrum



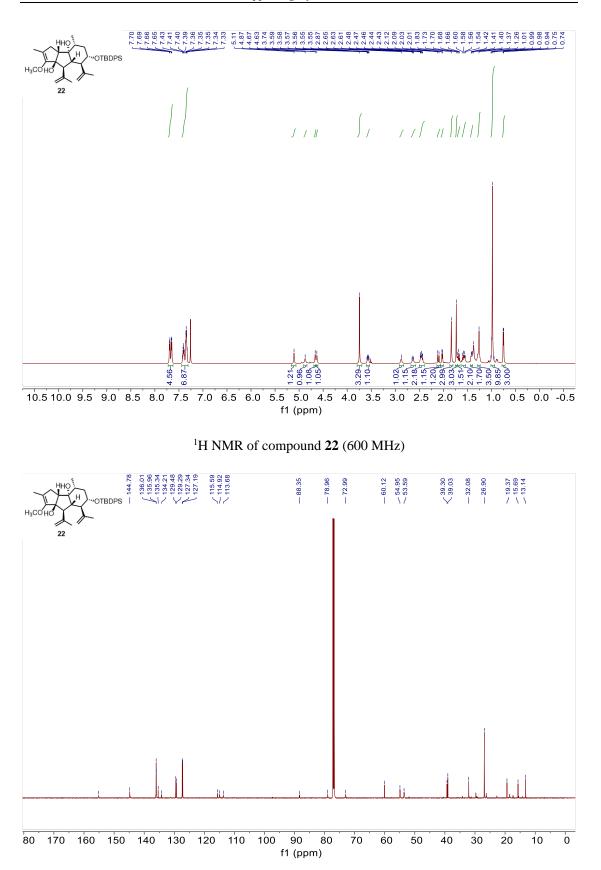


¹H NMR of compound **19** (400 MHz)

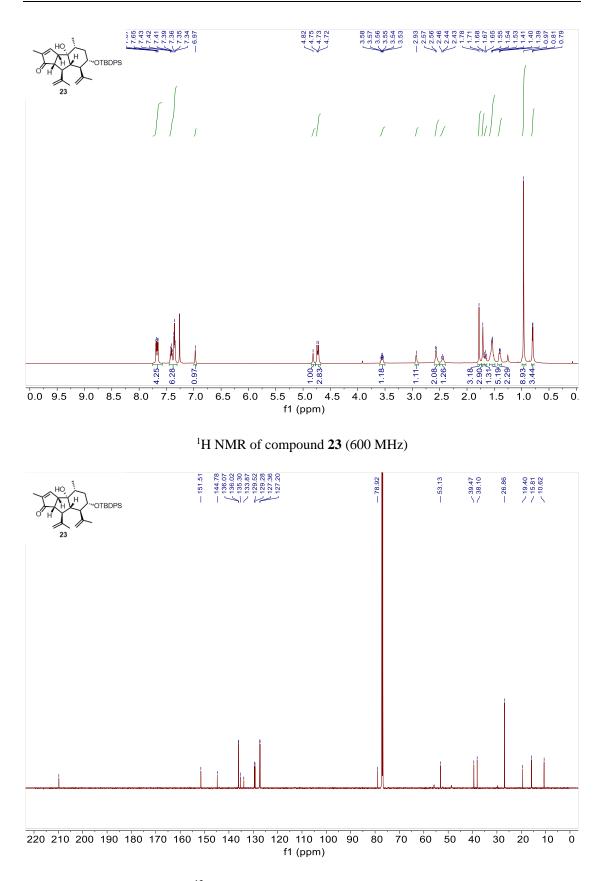



NOESY of compound 19

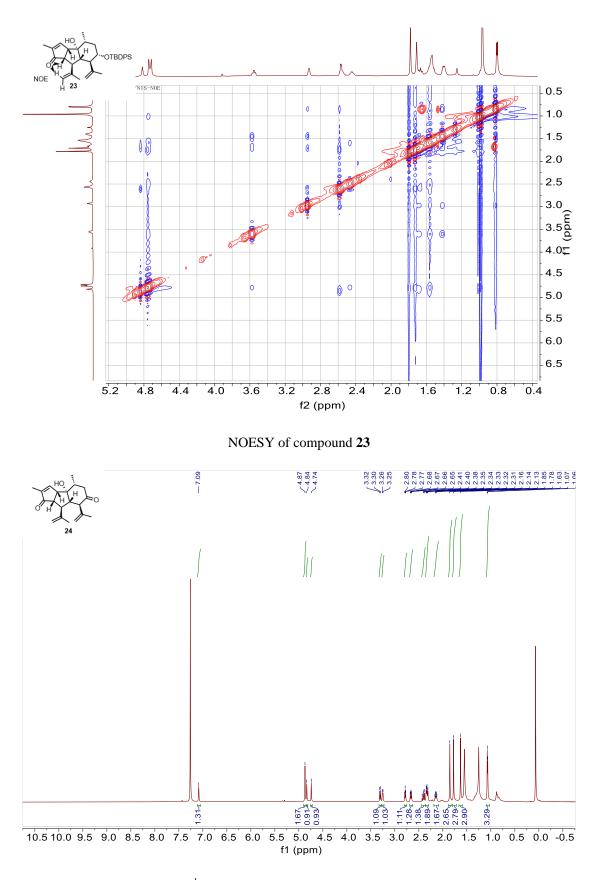
¹³C NMR of compound **16** (151 MHz)

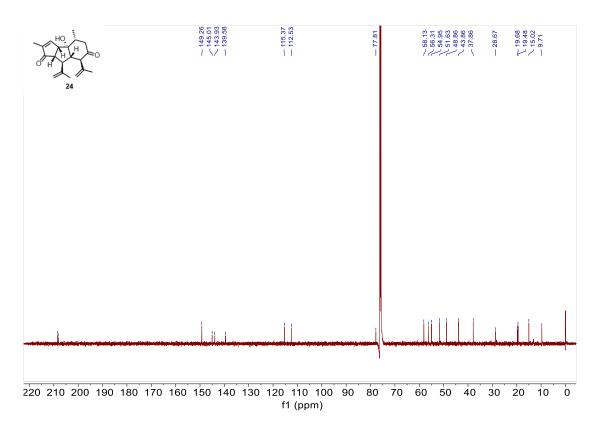


f1 (ppm)


20 10

ò


220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30


¹³C NMR of compound **22** (151 MHz)

¹³C NMR of compound **23** (151 MHz)

¹H NMR of compound **24** (600 MHz)

¹³C NMR of compound **24** (151 MHz)

6. Reference

- A. L. García-Cabeza, R. Marín-Barrios, R. Azarken, F. J. MorenoDorado, M. J. Ortega, H. Vidal, J. M. M. Gatica, G. M. Massanet, F. M. Guerra, *Eur. J. Org. Chem.*, 2013, **2013**, 8307-8314.
- (2) T. Yu, Y. Sun, C. Tu, T. Chen, S. Fu, B. Liu, Chem. Sci., 2020, 11, 7177-7181.