Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information for:

Diastereoselective β -Hydroxy Vinylsulfone Isomerizations

G. W. O'Neil,* T. D. Clark, A. P. Jones, C. Wallace, D. M. Carnahan, and H. Crockett

Department of Chemistry, Western Washington University, Bellingham, WA 98225 (USA)

*Corresponding author. Email: <u>oneilg@wwu.edu</u>

Contents:

NMR Spectra for Compound:	Page
(E)-(Hex-1-en-1-ylsulfonyl)benzene (2)	S2
(E)-(Hex-2-en-1-ylsulfonyl)benzene (5)	S2
(E)-Triisopropyl((6-(phenylsulfonyl)hex-5-en-1-yl)oxy)silane	S3
(E)-7-(Phenylsulfonyl)dodec-7-en-6-ol (3)	S4
(E)-7-(Phenylsulfonyl)dodec-8-en-6-ol (4)	S5
(E)-2-Methyl-4-(phenylsulfonyl)non-4-en-3-ol (6)	S6
(E)-Triethyl((2-methyl-4-(phenylsulfonyl)non-4-en-3-yl)oxy)silane (6-Si)	S7
(E)-2-Methyl-4-(phenylsulfonyl)non-4-en-3-yl acetate (6-Ac)	S8
(E)-2-Methyl-4-(phenylsulfonyl)non-5-en-3-ol (7)	S9
(E)-3-(Phenylsulfonyl)oct-3-en-2-ol (8v)	S10
(E)-3-(Phenylsulfonyl)oct-4-en-2-ol (8a)	S11
(E)-2-Methyl-5-(phenylsulfonyl)dec-5-en-4-ol (9v)	S12
(E)-2-Methyl-5-(phenylsulfonyl)dec-6-en-4-ol (9a)	S13
(<i>E</i>)-2,2-Dimethyl-4-(phenylsulfonyl)non-4-en-3-ol (10v)	S14
(E)-2,2-Dimethyl-4-(phenylsulfonyl)non-5-en-3-ol (10a)	S15
(<i>E</i>)-1-Phenyl-2-(phenylsulfonyl)hept-2-en-1-ol (11v)	S16
(E)-2-Methyl-4-(phenylsulfonyl)-9-((triisopropylsilyl)oxy)non-4-en-3-ol (12v)	S17
(E)-2-Methyl-4-(phenylsulfonyl)-9-((triisopropylsilyl)oxy)non-5-en-3-ol (12a)	S18
(E)-2,2-Dimethyl-4-(phenylsulfonyl)-9-((triisopropylsilyl)oxy)non-4-en-3-ol (13v)	S19
(E)-2,2-Dimethyl-4-(phenylsulfonyl)-9-((triisopropylsilyl)oxy)non-5-en-3-ol (13a)	S20
(E)-2-Methyl-7-phenyl-4-(phenylsulfonyl)hept-4-en-3-ol (14v)	S21
(E)-2-Methyl-7-phenyl-4-(phenylsulfonyl)hept-5-en-3-ol (14a)	S22
(E)-2,6-Dimethyl-4-(phenylsulfonyl)hept-4-en-3-ol (15)	S23
((3Z,5E)-2-Methylnona-3,5-dien-4-yl)(phenylperoxy)sulfane (17)	S24
Figure S1. Comparison of crude product mixtures by ¹ H NMR.	S27
Table S1. Comparison of ¹ H NMR coupling constants for stereochemical analysis.	S27

¹³C{¹H} NMR spectrum (CDCl₃, 126 MHz)

f1 (ppm) o -10

110 100 f1 (ppm) -10

7.839 7.7328 7.7

ò -10 f1 (ppm)

ò -10 f1 (ppm)

f1 (ppm)

S19

S20

14v

¹³C{¹H} NMR spectrum (CDCl₃, 126 MHz)

110 100 f1 (ppm) -10

14a (*mixture of diastereomers*)

¹³C{¹H} NMR spectrum (CDCl₃, 126 MHz)

S23

¹³C{¹H} NMR spectrum (CDCl₃, 126 MHz)

S26

Figure S1. Comparison of crude product mixtures by ¹H NMR obtained from the DBU isomerization of different vinylsulfone starting materials. β-hydroxysulfones **4** (top, spectrum A) and **3** (spectrum B) gave primarily the isomerized allylic sulfone product, whereas **11v** produced almost exclusively the C-C bond cleavage product **5** (spectrum C). All β-hydroxysulfones gave **5** with high *trans*-selectivity, whereas vinylsulfone **2** produced **5** as a ~1:1 *cis:trans* mixture (spectrum D).

Table S1. Tables of ¹H NMR coupling constants for various beta-hydroxysulfones stereoisomers previously reported by Mase and coworkers¹ (left) and from our work (right). Across both data sets, a clear trend can be observed where the *major/erythro*-isomer displayed smaller coupling constants (0.9-1.5 Hz) than the *minor/threo*-isomer.

			PhO ₂ S R ¹	$X_{\text{OH}}^{\text{H}_{X}}$	H _X SO ₂ Ph						
erythro threo											
R1	R ²		J _{XY} (Hz)		R ¹	R ²		J _{XY} (Hz)			
Ph	<i>i</i> -Pr	erythro	1.2		Pr	Me	major	1.5			
		threo	8.6				minor	8.6			
Ph	Et	erythro	1.2		Pr	<i>n</i> -pent	major	1.4			
		threo	8.8				minor	8.3			
Me	<i>i</i> -Pr	erythro	1.4		Pr	<i>i-</i> Bu	major	1.3			
		threo	6.7				minor	8.4			
Me	Bu	erythro	1.4		Pr	<i>i</i> -Pr	major	1.4			
		threo	6.7				minor	9.5			
Me	Et	erythro	1.4		Pr	<i>t</i> -Bu	major	0.9			
		threa	67				minor	NAa			

Notes for Table: ¹H NMR spectra were acquired in CDCl₃ as solvent. ^aNot available since only a single diastereomer was obtained as detected by NMR.

¹ Mase, N.; Watanabe, Y.; Toru, T.; Kakumoto, T.; Hagiwara, T. Diastereoselective Radical Hydrogenation of α-(1-Hydroxyalkyl)vinyl Sulfoxides and Sulfones Controlled by Intramolecular Hydrogen Bonding. *J. Org. Chem.* **2000**, *65*, 7083-7090.