Cross-coupling reaction of cyclic quaternary ammonium salts with arylzinc reagents, arylboron reagents, and silylboronate

Hong-Xia Jiang and Zhong-Xia Wang*

CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

Contents

1.	Screening of reaction conditions	S2
	(1) Condition optimization of the reaction of cyclic quaternary	
	ammonium salts with arylzinc reagents	S2
	(2) Condition optimization of the reaction of cyclic quaternary	
	ammonium salts with arylboron reagents	S5
	(3) Condition optimization of the reaction of cyclic quaternary	
	ammonium salts with dimethyl(phenyl)(4,4,5,5-tetramethyl-1,3,2-	
	dioxaborolan-2-yl)silane	S 6
2.	Detection of PhSiMe ₃	S 7
3.	Spectral copies of the products	S7

1. Screening of reaction conditions

(1) Condition optimization of the reaction of cyclic quaternary ammonium salts with arylzinc reagents

Table S1. Optimization of conditions for the reaction of cyclic quaternary ammonium salt (1a) with phenylzinc chloride $(2a)^a$

24	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	80	12	THF		75
25	Ni(OTf) ₂ (10)	IPr·HCl (10)	3.0	80	12	THF		65
26	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	70	12	THF		73
27	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	12	THF		81
28	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	100	12	THF		78
29	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	10	THF		73
30	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	14	THF		83
31	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	THF		90
32	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	18	THF		90
33	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	dioxane		30
34	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	toluene		nr
35	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	NMP		46
36	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	DMF		5
37	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	DME		25
38	$Ni(OTf)_2(5)$	IPr·HCl (5)	2.5	90	16	THF		65
39	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	THF	NaH	82
40	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	THF	NaOtBu	85
41	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	THF	LiOtBu	86
42	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	THF	Cs ₂ CO ₃	95
43	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	THF	K ₂ CO ₃	95
44	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	THF	K ₃ PO ₄	88
45	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	THF	CsF	82
46	Ni(OTf) ₂ (10)	IPr·HCl (10)	2.5	90	16	THF	DBu	95 (93 ^c)
47	none	IPr·HCl (10)	2.5	90	16	THF	DBu	np

^{*a*} Preparation method of PhZnCl: PhMgBr + ZnCl₂ + 2 LiCl. ^{*b*} NMR yields using 1,1,2,2-tetrachloroethane as an internal standard. ^{*c*} Isolated yields.

Table S2. Preparation method of PhZnCl

1a (0.2 mmol)	Tf ⁺ ZnCl NI(OTf) ₂ (10 mol%) IPr·HCl (10 mol%) THF (2 mL) 90 °C, 16 h 2a (2.5 equiv.) 3a	2
Entry	Preparation method of ArZnCl	Yield (%)
1	$PhMgBr + ZnCl_2$	19
2	$PhMgBr + ZnCl_2 + LiCl$	75
3	$PhMgBr + ZnCl_2 + 2 LiCl$	90
4	$PhMgBr + ZnCl_2 + 3 LiCl$	68
5	PhLi + ZnCl ₂	40
6	$PhLi + ZnCl_2 + MgCl_2$	trace
7	$PhLi + ZnCl_2 + MgCl_2 + LiCl$	trace

Reaction of 1,1-dimethyl-1,2,3,4-tetrahydroquinolin-1-ium iodide

(2) Condition optimization of the reaction of cyclic quaternary ammonium salts with arylboron reagents

Table S3. Optimization of conditions for the reaction of quaternary ammonium salt (1a) with 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (4a)

Entry	[Ni] (mol%)	х	Solvent	Base (2 equiv.)	Temp. (°C)	Time (h)	Yield ^{<i>a</i>} (%)
1	NiCl ₂ (10)	2.0	THF	NaOtBu	80	16	29
2	$NiF_{2}(10)$	2.0	THF	NaOtBu	80	16	nr
3	$Ni(OTf)_2(10)$	2.0	THF	NaOtBu	80	16	41
4	$NiCl_2(DME)(10)$	2.0	THF	NaOtBu	80	16	27
5	$NiCl_2(PCy_3)_2(10)$	2.0	THF	NaOtBu	80	16	70
6	$NiCl_2(PPh_3)_2(10)$	2.0	THF	NaOtBu	80	16	14
7	NiCl ₂ (dppe) (10)	2.0	THF	NaOtBu	80	16	18
8	NiCl ₂ (dppp)(10)	2.0	THF	NaOtBu	80	16	18
9	NiCl ₂ (dppf)(10)	2.0	THF	NaOtBu	80	16	28
10	NiCl ₂ (PCy ₃) ₂ (10)	2.0	dioxane	NaOtBu	80	16	80 (78 ^b)
11	NiCl ₂ (PCy ₃) ₂ (10)	2.0	DME	NaOtBu	80	16	23
12	NiCl ₂ (PCy ₃) ₂ (10)	2.0	toluene	NaOtBu	80	16	42
13	NiCl ₂ (PCy ₃) ₂ (10)	2.0	dioxane	NaOtBu	90	16	75
14	NiCl ₂ (PCy ₃) ₂ (10)	2.0	dioxane	NaOtBu	70	16	70
15	$NiCl_2(PCy_3)_2(10)$	2.5	dioxane	NaOtBu	80	16	77
16	$NiCl_2(PCy_3)_2(10)$	1.5	dioxane	NaOtBu	80	16	31
17	$NiCl_2(PCy_3)_2(15)$	2.0	dioxane	NaOtBu	80	16	46
18	$NiCl_2(PCy_3)_2(5)$	2.0	dioxane	NaOtBu	80	16	55
19	NiCl ₂ (PCy ₃) ₂ (10)	2.0	dioxane	NaOtBu	80	18	78
20	NiCl ₂ (PCy ₃) ₂ (10)	2.0	dioxane	KOtBu	80	16	42
21	NiCl ₂ (PCy ₃) ₂ (10)	2.0	dioxane	LiOtBu	80	16	12
22	NiCl ₂ (PCy ₃) ₂ (10)	2.0	dioxane	NaOH	80	16	nr
23	NiCl ₂ (PCy ₃) ₂ (10)	2.0	dioxane	КОН	80	16	nr
24	NiCl ₂ (PCy ₃) ₂ (10)	2.0	dioxane	Cs ₂ CO ₃	80	16	nr
25	$NiCl_2(PCy_3)_2(10)$	2.0	dioxane	KF	80	16	nr

^{*a*} NMR yields using 1,1,2,2-tetrachloroethane as an internal standard. ^{*b*} Isolated yields.

(3) Condition optimization of the reaction of cyclic quaternary ammonium salts with dimethyl(phenyl)(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)silane

Table S4. Optimization of conditions for the reaction of quaternary ammonium salt (1a) with dimethyl(phenyl)(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)silane (5)

	OTf + Ph	Me Si-Bpin - Me	base, solvent temp. time	SiMe ₂ P	NMe ₂		
/ 1a (0.2 m	mol) 5 ((x equiv)	equiv) 6a				
Entry	х	T/°C	time/h	Solvent/2ml	Base (2.0 equiv)	$\operatorname{Yield}^{a}(\%)$	
1	2.0	60	12	THF	LiOtBu	88	
2	2.0	60	12	THF	NaOtBu	78	
3	2.0	60	12	THF	KOtBu	64	
4	2.0	60	12	THF	NaHMDS	74	
4	2.0	60	12	THF	CsF	65	
5	2.0	60	12	THF	КОН	nr	
6	2.0	60	12	THF	NaOH	nr	
7	2.0	40	12	THF	LiOtBu	95(95 ^b)	
8	2.0	25	12	THF	LiOtBu	88	
9	2.0	40	8	THF	LiOtBu	74	
10	2.0	40	12	Et ₂ O	LiOtBu	70	
11	2.0	40	12	DME	LiOtBu	nr	
12	2.0	40	12	1,4-dioxane	LiOtBu	nr	
13	2.5	40	10	THF	LiOtBu	95	

^{*a*} NMR yields using 1,1,2,2-tetrachloroethane as an internal standard. ^{*b*} Isolated yields.

2. Detection of PhSiMe₃

calcd. for $C_9H_{15}Si^{\ast}$ 151.0938 $\mbox{[M+H]}^{\ast}$ HRMS (ESI) found 151.0934

3. Spectral copies of the products

(1) 1,1-dimethyl-1,2,3,4-tetrahydroquinolin-1-ium triflate (1a)

f1 (ppm)

(2) 1,1,6-trimethyl-1,2,3,4-tetrahydroquinolin-1-ium triflate (1b)

(3) 6-methoxy-1,1-dimethyl-1,2,3,4-tetrahydroquinolin-1-ium triflate (1c)

(4) 6-fluoro-1,1-dimethyl-1,2,3,4-tetrahydroquinolin-1-ium triflate (1d)

(5) 6-chloro-1,1-dimethyl-1,2,3,4-tetrahydroquinolin-1-ium triflate (1e)

(6) 6-(methoxycarbonyl)-1,1-dimethyl-1,2,3,4-tetrahydroquinolin-1-ium triflate (**1f**)

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

(7) 1,1,7-trimethyl-1,2,3,4-tetrahydroquinolin-1-ium triflate (1g)

(8) 7-chloro-1,1-dimethyl-1,2,3,4-tetrahydroquinolin-1-ium triflate (1h)

S15

(9) 1,1,2-trimethyl-1,2,3,4-tetrahydroquinolin-1-ium triflate (1i)

(10) 1,1,3-trimethyl-1,2,3,4-tetrahydroquinolin-1-ium triflate (1j)

(11) 1,1,4-trimethyl-1,2,3,4-tetrahydroquinolin-1-ium triflate (1k)

(13) 1,1-dimethylindolin-1-ium triflate (1m)

(14) 1,1-dimethyl-2,3,4,5-tetrahydro-1*H*-benzo[*b*]azepin-1-ium triflate (1n)

2. NMR spectral copies of the coupling products

(1) 3-([1,1'-biphenyl]-2-yl)-N,N-dimethylpropan-1-amine (3a)

(2) N,N-dimethyl-3-(4-methyl-[1,1'-biphenyl]-2-yl)propan-1-amine (3b)

 $\begin{array}{c} 22559\\ 22559\\ 11111255\\ 22111255\\ 2211255\\ 2211255\\ 221255\\ 22255\\ 22255\\ 22555$

(3) 3-(4-methoxy-[1,1'-biphenyl]-2-yl)-N,N-dimethylpropan-1-amine (3c)

(4) 3-([1,1':4',1"-terphenyl]-2'-yl)-N,N-dimethylpropan-1-amine (**3d**)

(5) N,N-dimethyl-3-(3-methyl-[1,1'-biphenyl]-2-yl)propan-1-amine (3e)

(6) 3-([1,1':3',1"-terphenyl]-4'-yl)-N,N-dimethylpropan-1-amine (3f)

(7) 4-([1,1'-biphenyl]-2-yl)-N,N-dimethylbutan-2-amine (**3g**)

(8) 3-([1,1'-biphenyl]-2-yl)-N,N,2-trimethylpropan-1-amine (**3h**)

(9) 3-([1,1'-biphenyl]-2-yl)-N,N-dimethylbutan-1-amine (3i)

(10) 2-([1,1'-biphenyl]-2-yl)-N,N-dimethylethan-1-amine (3j)

(11) 4-([1,1'-biphenyl]-2-yl)-N,N-dimethylbutan-1-amine (3k)

(12) N,N-dimethyl-3-(4'-methyl-[1,1'-biphenyl]-2-yl)propan-1-amine (31)

(13) 3-(4'-(tert-butyl)-[1,1'-biphenyl]-2-yl)-N,N-dimethylpropan-1-amine (**3m**)

(14) 3-(4'-methoxy-[1,1'-biphenyl]-2-yl)-N,N-dimethylpropan-1-amine (**3n**)

(15) 2'-(3-(dimethylamino)propyl)-N,N-dimethyl-[1,1'-biphenyl]-4-amine (30)

(16) 3-([1,1':4',1"-terphenyl]-2-yl)-N,N-dimethylpropan-1-amine (**3p**)

(17) N,N-dimethyl-3-(3'-methyl-[1,1'-biphenyl]-2-yl)propan-1-amine (3q)

(18) 3-(3',5'-dimethyl-[1,1'-biphenyl]-2-yl)-N,N-dimethylpropan-1-amine (3r)

(19) N,N-dimethyl-3-(2-(naphthalen-2-yl)phenyl)propan-1-amine (3s)

(20) 3-(2-(dimethyl(phenyl)silyl)phenyl)-N,N-dimethylpropan-1-amine (6a)

(22) 3-(2-(dimethyl(phenyl)silyl)-5-fluorophenyl)-N,N-dimethylpropan-1-amine (6c)

100 -101 -102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -12 f1 (ppm)

(23) 3-(5-chloro-2-(dimethyl(phenyl)silyl)phenyl)-N,N-dimethylpropan-1-amine (6d)

(24) methyl 4-(dimethyl(phenyl)silyl)-3-(3-(dimethylamino)propyl)benzoate (6e)

(25) 3-(2-(dimethyl(phenyl)silyl)-6-methylphenyl)-N,N-dimethylpropan-1-amine (6f)

(26) 3-(2-(dimethyl(phenyl)silyl)-4-methylphenyl)-N,N-dimethylpropan-1-amine (6g)

(27) 3-(4-chloro-2-(dimethyl(phenyl)silyl)phenyl)-N,N-dimethylpropan-1-amine (6h)

(28) 4-(2-(dimethyl(phenyl)silyl)phenyl)-N,N-dimethylbutan-2-amine (6i)

(29) 3-(2-(dimethyl(phenyl)silyl)phenyl)-N,N,2-trimethylpropan-1-amine (6j)

(30) 3-(2-(dimethyl(phenyl)silyl)phenyl)-N,N-dimethylbutan-1-amine (6k)

(31) 4-(2-(dimethyl(phenyl)silyl)phenyl)-N,N-dimethylbutan-1-amine (61)

(32) 2-([1,1'-biphenyl]-2-yl)-N,N,N-trimethylethan-1-aminium iodide

- 3.50 3.50 3.50 3.54 3.44 3.44 3.44 3.04 3.04 3.07

