Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

## **Supporting Information**

## Organo-photocatalytic dearomative hydrosilylation of indoles with silanes

Qiao Zhang, Yadi Xu, Congjian Xia, Wengang Xu,\* and Mingbo Wu\*

### **Table of Contents**

| 1. General Information                                       | S2  |
|--------------------------------------------------------------|-----|
| 2. Complementary Reaction Optimization Data                  | S3  |
| 3. Starting Material Preparation                             | S4  |
| 4. General Procedure for Hydrosilylation of Indole Ester     | S4  |
| 5. Analytical Data of the Products                           | S5  |
| 6. Gram-scale Preparation of <b>3aa</b> and <b>3af</b>       | S19 |
| 7. Transformations of the Products                           | S20 |
| References                                                   | S27 |
| <sup>1</sup> H, <sup>19</sup> F, <sup>13</sup> C-NMR Spectra | S28 |

#### **1. General Information**

Chemicals and solvents were purchased from commercial suppliers and used as received. Indole derivatives were prepared concerning literature. <sup>1</sup>H NMR, <sup>13</sup>C NMR, <sup>19</sup>F NMR spectra were recorded on Bruker AV-III400 (400 MHz) and Bruker AVANCE III HD 600 (600 MHz) spectrometers. Chemical shifts were calibrated using residual undeuterated solvent as an internal reference (CDCl<sub>3</sub>: 7.26 ppm <sup>1</sup>H NMR, 77.0 ppm <sup>13</sup>C NMR). Multiplicity was indicated as follows: brs (broad singlet), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet). High-resolution mass spectra (HRMS) were obtained on an Agilent 7200 GC-QTOF spectrometer (EI). Cyclic voltammetry was performed using a CHI660E Chenhua (China).

## 2. Complementary Reaction Optimization Data

Table S1. Screening of photocatalysts

| O<br>O<br>Me         | + Et₃SiH            | PC (3 mol%)<br>( <i>i</i> -Pr) <sub>3</sub> SiSH (20 mol%)<br>K <sub>2</sub> CO <sub>3</sub> (50 mol%)<br>CH <sub>3</sub> CN (2 mL), r.t., 24 |                           | e<br>Et <sub>3</sub> |
|----------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|
| Boc                  |                     | Blue LEDs                                                                                                                                     | Boc                       |                      |
| <b>1a</b> , 0.1 mmol | <b>2a</b> , 1.5 equ | ıiv                                                                                                                                           | 3aa                       |                      |
| entry                |                     | PC                                                                                                                                            | yield% (3aa) <sup>a</sup> |                      |
| 1                    |                     | 4-CzIPN                                                                                                                                       | 46                        |                      |
| 2                    |                     | lr(ppy) <sub>3</sub>                                                                                                                          | 0                         |                      |
| 3                    | lr[dF(C             | F <sub>3</sub> )ppy] <sub>2</sub> (dtbbpy)PF <sub>6</sub>                                                                                     | 0                         |                      |
| 4                    | lr(p                | py) <sub>2</sub> (dtbbpy)PF <sub>6</sub>                                                                                                      | 0                         |                      |
| 5                    |                     | 3DPA2FBN                                                                                                                                      | 65                        |                      |

<sup>a</sup> The yield was obtained with <sup>1</sup>H-NMR using trimethoxybenzene as the internal standard.

### Table S2. Screening of bases.

| H       Ligon 1       CH_3CN (2 mL), r.t., 24 h<br>Blue LEDs       Site         Boc       Bue LEDs       Boc         1a, 0.1 mmol       2a, 1.5 equiv       3aa         entry       base       yield% (3aa) <sup>a</sup> 1       NaOAc       0         2       K <sub>2</sub> HPO <sub>4</sub> 0         3       DABCO       0         4       KH <sub>2</sub> PO <sub>4</sub> 0         5       PhCOONa       0         6       DIPEA       0         7       K <sub>3</sub> PO <sub>4</sub> 40         8       NaOH       97         9 <sup>b</sup> Cs <sub>2</sub> CO <sub>3</sub> 92 | O<br>O<br>O<br>O<br>Me<br>Boc |                | + Et <sub>3</sub> SiH · | 3DPA2FBN (3 mol%)<br>( <i>i</i> -Pr) <sub>3</sub> SiSH (20 mol%)<br>base (50 mol%) |                 | OMe                   |                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|-------------------------|------------------------------------------------------------------------------------|-----------------|-----------------------|-------------------|
| 1a, 0.1 mmol       2a, 1.5 equiv       3aa         entry       base       yield% $(3aa)^a$ 1       NaOAc       0         2       K <sub>2</sub> HPO <sub>4</sub> 0         3       DABCO       0         4       KH <sub>2</sub> PO <sub>4</sub> 0         5       PhCOONa       0         6       DIPEA       0         7       K <sub>3</sub> PO <sub>4</sub> 40         8       NaOH       97         9 <sup>b</sup> Cs <sub>2</sub> CO <sub>3</sub> 92                                                                                                                               |                               |                |                         | CH <sub>3</sub> CN (2 n<br>Blue LEDs                                               | nL), r.t., 24 h |                       | SiEt₃<br>N<br>Boc |
| entry         base         yield% (3aa) <sup>a</sup> 1         NaOAc         0           2         K <sub>2</sub> HPO <sub>4</sub> 0           3         DABCO         0           4         KH <sub>2</sub> PO <sub>4</sub> 0           5         PhCOONa         0           6         DIPEA         0           7         K <sub>3</sub> PO <sub>4</sub> 40           8         NaOH         97           9 <sup>b</sup> Cs <sub>2</sub> CO <sub>3</sub> 92                                                                                                                           | 1a,                           | 0.1 mmol       | <b>2a</b> , 1.5 equ     | iiv                                                                                |                 |                       | 3aa               |
| $ \begin{array}{ c c c c c } \hline 1 & NaOAc & 0 \\ \hline 2 & K_2HPO_4 & 0 \\ \hline 3 & DABCO & 0 \\ \hline 4 & KH_2PO_4 & 0 \\ \hline 5 & PhCOONa & 0 \\ \hline 6 & DIPEA & 0 \\ \hline 7 & K_3PO_4 & 40 \\ \hline 8 & NaOH & 97 \\ \hline 9^b & Cs_2CO_3 & 92 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                               | -                             | entry          |                         | base                                                                               | yield           | I% (3aa) <sup>a</sup> |                   |
| $\begin{array}{cccc} 2 & K_2 HPO_4 & 0 \\ 3 & DABCO & 0 \\ 4 & KH_2 PO_4 & 0 \\ 5 & PhCOONa & 0 \\ 6 & DIPEA & 0 \\ 7 & K_3 PO_4 & 40 \\ 8 & NaOH & 97 \\ 9^b & Cs_2 CO_3 & 92 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                           | -                             | 1              |                         | NaOAc                                                                              |                 | 0                     |                   |
| 3     DABCO     0       4     KH <sub>2</sub> PO <sub>4</sub> 0       5     PhCOONa     0       6     DIPEA     0       7     K <sub>3</sub> PO <sub>4</sub> 40       8     NaOH     97       9 <sup>b</sup> Cs <sub>2</sub> CO <sub>3</sub> 92                                                                                                                                                                                                                                                                                                                                          |                               | 2              |                         | K <sub>2</sub> HPO <sub>4</sub>                                                    |                 | 0                     |                   |
| 4     KH2PO4     0       5     PhCOONa     0       6     DIPEA     0       7     K3PO4     40       8     NaOH     97       9 <sup>b</sup> Cs2CO3     92                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | 3              |                         | DABCO                                                                              |                 | 0                     |                   |
| 5         PhCOONa         0           6         DIPEA         0           7         K <sub>3</sub> PO <sub>4</sub> 40           8         NaOH         97           9 <sup>b</sup> Cs <sub>2</sub> CO <sub>3</sub> 92                                                                                                                                                                                                                                                                                                                                                                    |                               | 4              |                         | KH <sub>2</sub> PO <sub>4</sub>                                                    |                 | 0                     |                   |
| 6 DIPEA 0<br>7 K <sub>3</sub> PO <sub>4</sub> 40<br>8 NaOH 97<br>9 <sup>b</sup> Cs <sub>2</sub> CO <sub>3</sub> 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               | 5              |                         | PhCOONa                                                                            |                 | 0                     |                   |
| 7     K <sub>3</sub> PO <sub>4</sub> 40       8     NaOH     97       9 <sup>b</sup> Cs <sub>2</sub> CO <sub>3</sub> 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | 6              |                         | DIPEA                                                                              |                 | 0                     |                   |
| 8 NaOH 97<br>9 <sup>b</sup> Cs <sub>2</sub> CO <sub>3</sub> 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | 7              |                         | K <sub>3</sub> PO <sub>4</sub>                                                     |                 | 40                    |                   |
| 9 <sup>b</sup> Cs <sub>2</sub> CO <sub>3</sub> 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 8              |                         | NaOH                                                                               |                 | 97                    |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | 9 <sup>b</sup> |                         | Cs <sub>2</sub> CO <sub>3</sub>                                                    |                 | 92                    |                   |

 $^a$  The yield was obtained with  $^1\mbox{H-NMR}$  using trimethoxybenzene as the internal standard.  $^b$  Isolated yield.

#### **3. Starting Material Preparation**

The indole esters (1a-1B) were synthesized according to the literature procedures<sup>1</sup>.

#### 4. General Procedure for Hydrosilylation of Indole Ester



In a 20 mL Schlenk tube with a magnetic stir bar were placed 3DPA2FBN (**PC**, 4 mg, 0.006 mmol, 3 mol%), Cs<sub>2</sub>CO<sub>3</sub> (32 mg, 0.1 mmol, 0.5 equiv), and silanes (**2**, 0.3 mmol, 1.5 equiv). Under nitrogen atmosphere, indole esters (**1**, 0.2 mmol, 1 equiv), (*i*-Pr)<sub>3</sub>SiSH (8  $\mu$ L, 0.04 mmol, 20 mol%), CH<sub>3</sub>CN (4 mL) were added, subsequently. The resulting mixture was sealed and degassed via freeze-pump-thaw for three times. Then, the reaction was placed under a blue LED (2-meter strips, 20 W) and irradiated for 24 hrs at rt. The solvent was removed under vacuum. Silica gel chromatography (PE: EA = 20:1) of the crude product afforded the desired compound **3**.

#### 5. Analytical Data of the Products



**1-**(*tert*-**Butyl**)-**3-**methyl-*trans*-**2-**(**triethylsilyl**)indoline-1,**3-**dicarboxylate (**3**aa): colorless oil (71 mg, 92%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.52 (brs, 1H), 7.29 (d, *J* = 7.5 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 4.59 (d, J = 2.7 Hz, 1H), 3.86 (d, *J* = 2.7 Hz, 1H), 3.68 (s, 3H), 1.57 (s, 9H), 0.87 (t, *J* = 7.9 Hz, 9H), 0.55 (q, *J* = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.64, 152.36, 142.75, 129.54, 128.78, 125.37, 122.60, 116.63, 81.04, 52.48, 51.77, 47.59, 28.42, 7.19, 1.95. HRMS (EI): Calcd for C<sub>21</sub>H<sub>34</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 392.2252, found 392.2253.



**1-**(*tert*-**Butyl**)-**3-**ethyl-*trans*-**2-**(triethylsilyl)indoline-1,**3**-dicarboxylate (3ba): colorless oil (49 mg, 60%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (brs, 1H), 7.29 (d, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.8 Hz, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 4.58 (d, *J* = 2.8 Hz, 1H), 4.13 (qd, *J* = 7.2, 5.2 Hz, 2H), 3.84 (d, *J* = 2.8 Hz, 1H), 1.57 (s, 9H), 1.23 (t, *J* = 7.1 Hz, 3H), 0.87 (t, *J* = 7.9 Hz, 9H), 0.56 (q, *J* = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.12, 152.36, 142.83, 129.68, 128.69, 125.25, 122.55, 116.59, 80.96, 61.23, 51.67, 47.73, 28.41, 14.05, 7.19, 1.93. HRMS (EI): Calcd for C<sub>22</sub>H<sub>36</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 406.2408, found 406.2410.



1-(*tert*-Butyl)-3-isopropyl-*trans*-2-(triethylsilyl)indoline-1,3-dicarboxylate (3ca): colorless oil (59 mg, 72%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (brs, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.19 (t, J

= 7.8 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 4.96 (hept, J = 6.3 Hz, 1H), 4.57 (d, J = 2.9 Hz, 1H), 3.80 (d, J = 2.9 Hz, 1H), 1.56 (s, 9H), 1.19 (dd, J = 9.8, 6.3 Hz, 6H), 0.87 (t, J = 7.9 Hz, 9H), 0.56 (q, J = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.57, 152.36, 142.81, 129.76, 128.60, 125.07, 122.48, 116.52, 80.86, 68.59, 51.57, 47.91, 28.38, 21.64, 7.16, 1.91. HRMS (EI): Calcd for C<sub>23</sub>H<sub>38</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 420.2565, found 420.2565.



di-*tert*-Butyl-*trans*-2-(triethylsilyl)indoline-1,3-dicarboxylate (3da): colorless oil (58 mg, 68%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (brs, 1H), 7.27 (d, J = 7.5 Hz, 1H), 7.19 (t, J = 7.8, 1H), 6.94 (t, J = 7.5, 1H), 4.52 (d, J = 3.0 Hz, 1H), 3.75 (d, J = 3.0 Hz, 1H), 1.56 (s, 9H), 1.40 (s, 9H), 0.87 (t, J = 7.9 Hz, 9H), 0.56 (q, J = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.24, 152.37, 142.83, 130.08, 128.48, 125.01, 122.42, 116.44, 81.18, 80.83, 51.63, 48.80, 28.40, 27.88, 7.19, 1.94. HRMS (EI): Calcd for C<sub>24</sub>H<sub>40</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 434.2721, found 434.2721.



**3-Benzyl-1-**(*tert*-butyl)-*trans*-2-(triethylsilyl)indoline-1,3-dicarboxylate (3ea): colorless oil (45 mg, 49%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.69 (brs, 1H), 7.34 (dd, *J* = 8.1, 2.4 Hz, 3H), 7.31 – 7.27 (m, 3H), 7.23 (t, *J* = 7.7 Hz, 1H), 6.96 (t, *J* = 7.4 Hz, 1H), 5.13 (s, 2H), 4.64 (d, *J* = 2.7 Hz, 1H), 3.93 (d, *J* = 2.7 Hz, 1H), 1.56 (s, 9H), 0.88 (t, *J* = 7.9 Hz, 9H), 0.57 (q, *J* = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 171.84, 152.24, 142.78, 135.61, 129.35, 128.78, 128.46, 128.11, 127.77, 125.27, 122.54, 116.55, 80.93, 66.89, 51.59, 47.71, 28.32, 7.15, 1.87. HRMS (EI): Calcd for C<sub>27</sub>H<sub>38</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 468.2565, found 468.2566.



**1-**(*tert*-**Butyl**)-3-((dimethyl- $\lambda^3$ -chloraneyl)methyl)-*trans*-2-(triethylsilyl)indoline-1,3dicarboxylate (3fa): colorless oil (51 mg, 57%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.54 (brs, 1H), 7.27 (d, *J* = 7.7 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 4.57 (d, *J* = 2.5 Hz, 1H), 4.34 – 4.15 (m, 2H), 3.85 (d, *J* = 2.6 Hz, 1H), 3.51 (t, *J* = 6.4 Hz, 2H), 2.04 (p, *J* = 6.3 Hz, 2H), 1.57 (s, 9H), 0.87 (t, *J* = 7.9 Hz, 9H), 0.56 (q, *J* = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 171.93, 152.28, 142.79, 129.49, 128.86, 125.12, 122.64, 116.66, 81.08, 61.85, 51.75, 47.74, 40.91, 31.40, 28.38, 7.17, 1.90. HRMS (EI): Calcd for C<sub>23</sub>H<sub>37</sub>ClNO<sub>4</sub>Si [M+H]<sup>+</sup> 454.2175, found 454.2175.



 $1-(tert-Butyl)-3-((dimethyl-\lambda^3-bromaneyl)) methyl)-trans-2-(triethylsilyl)) indoline-1,3-$ 

dicarboxylate (3ga): colorless oil (71 mg, 72%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 (brs, 1H), 7.27 (d, *J* = 7.7 Hz, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 4.57 (d, *J* = 2.6 Hz, 1H), 4.23 (td, *J* = 5.7, 4.2 Hz, 2H), 3.85 (d, *J* = 2.6 Hz, 1H), 3.51 (t, *J* = 6.4 Hz, 2H), 2.04 (p, *J* = 6.3 Hz, 2H), 1.57 (s, 9H), 0.87 (t, *J* = 7.9 Hz, 9H), 0.55 (q, *J* = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.93, 152.29, 142.81, 129.51, 128.86, 125.12, 122.64, 116.68, 81.07, 61.86, 51.79, 47.76, 40.90, 31.42, 28.39, 7.17, 1.92. HRMS (EI): Calcd for C<sub>23</sub>H<sub>37</sub>BrNO<sub>4</sub>Si [M+H]<sup>+</sup> 498.1670, found 498.1672.



**1-**(*tert*-**Butyl**)-3-(2-methylallyl)-*trans*-2-(triethylsilyl)indoline-1,3-dicarboxylate (3ha): colorless oil (34 mg, 40%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (brs, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.20 (t, J = 7.8 Hz, 1H), 6.94 (t, J = 7.5, 1H), 5.72 (m, 1H), 5.20 – 4.93 (m, 2H), 4.59 (d, J = 2.7 Hz, 1H), 4.13 (tt, J = 7.2, 3.7 Hz, 2H), 3.85 (d, J = 2.7 Hz, 1H), 2.35 (m, 2H), 1.57 (s, 9H), 0.87 (t, J = 7.9 Hz, 9H), 0.56 (q, J = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.06, 152.32, 142.83, 133.73, 129.56, 128.72, 125.36, 122.53, 117.36, 116.55, 80.96, 64.19, 51.63, 47.75, 33.01, 28.41, 7.20, 1.92. HRMS (EI): Calcd for C<sub>24</sub>H<sub>37</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 431.2486, found 431.2489.



1-(*tert*-Butyl)-3-methyl-*trans*-5-fluoro-2-(triethylsilyl)indoline-1,3-dicarboxylate (3ia): colorless oil (43 mg, 53%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 (brs, 1H), 7.01 (dd, J = 8.0, 2.7 Hz, 1H), 6.91 (td, J = 8.9, 2.7 Hz, 1H), 4.60 (d, J = 2.6 Hz, 1H), 3.82 (d, J = 2.7 Hz, 1H), 3.70 (s, 3H), 1.56 (s, 9H), 0.87 (t, J = 7.9 Hz, 9H), 0.55 (q, J = 7.9 Hz, 6H); <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  -120.89 (d, J = 230.9 Hz); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.04, 158.65 (d, J = 241.2 Hz), 152.29, 138.95, 131.09, 117.29, 115.26 (d, J = 23.1 Hz), 112.61 (d, J = 24.3 Hz), 81.19, 52.63, 52.10, 47.52, 28.39, 7.17, 1.90. HRMS (EI): Calcd for C<sub>21</sub>H<sub>33</sub>FNO4Si [M+H]<sup>+</sup> 410.2157, found 410.2154.



1-(*tert*-Butyl)-3-methyl-*trans*-5-chloro-2-(triethylsilyl)indoline-1,3-dicarboxylate (3ja):

colorless oil (60 mg, 71%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 (brs, 1H), 7.26 (d, *J* = 2.2 Hz, 1H), 7.17 (dd, *J* = 8.6, 2.2 Hz, 1H), 4.59 (d, *J* = 2.8 Hz, 1H), 3.82 (d, *J* = 2.8 Hz, 1H), 3.70 (s, 3H), 1.55 (s, 9H), 0.87 (t, *J* = 7.9 Hz, 9H), 0.55 (q, *J* = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.99, 152.14, 141.57, 131.17, 128.79, 127.41, 125.48, 117.40, 81.42, 52.68, 52.01, 47.31, 28.34, 7.18, 1.91. HRMS (EI): Calcd for C<sub>21</sub>H<sub>33</sub>ClNO<sub>4</sub>Si [M+H]<sup>+</sup> 426.1862, found 426.1861.



**1-**(*tert*-**Butyl**)-3-methyl-*trans*-5-methoxy-2-(triethylsilyl)indoline-1,3-dicarboxylate (3ka): colorless oil (58 mg, 70%). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (brs, 1H), 6.85 (s, 1H), 6.75 (d, J = 9.1 Hz, 1H), 4.56 (s, 1H), 3.80 (s, 1H), 3.77 (s, 3H), 3.68 (s, 3H), 1.55 (s, 9H), 0.87 (t, J = 8.0 Hz, 9H), 0.55 (q, J = 8.0 Hz, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  172.45, 155.53, 152.61, 136.45, 130.82, 117.12, 113.65, 111.35, 80.68, 55.63, 52.47, 51.94, 47.69, 28.41, 7.19, 1.88. HRMS (EI): Calcd for C<sub>22</sub>H<sub>36</sub>NO<sub>5</sub>Si [M+H]<sup>+</sup> 422.2357, found 422.2358.



**1**-(*tert*-Butyl)-3-methyl-*trans*-5-(benzyloxy)-2-(triethylsilyl)indoline-1,3-dicarboxylate (3la): colorless oil (62 mg, 63%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 – 7.28 (m, 6H), 6.95 (d, *J* = 2.6 Hz, 1H), 6.85 (dd, *J* = 8.9, 2.7 Hz, 1H), 5.03 (s, 2H), 4.59 (d, *J* = 2.6 Hz, 1H), 3.88 – 3.74 (m, 1H), 3.67 (s, 3H), 1.56 (s, 9H), 0.88 (t, *J* = 7.9 Hz, 9H), 0.56 (q, *J* = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.38, 154.62, 152.10, 146.17, 136.97, 130.72, 128.47, 127.85, 127.48, 117.09, 114.89, 112.45, 80.71, 70.51, 52.46, 51.83, 47.70, 28.39, 7.20, 1.87. HRMS (EI): Calcd for C<sub>28</sub>H<sub>40</sub>NO<sub>5</sub>Si [M+H]<sup>+</sup> 498.2670, found 498.2672.



1-(*tert*-Butyl)-3-methyl-*trans*-6-methyl-2-(triethylsilyl)indoline-1,3-dicarboxylate (3ma): colorless oil (64 mg, 79%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.53 (brs, 1H), 7.16 (d, J = 7.6 Hz, 1H), 6.77 (dt, J = 7.6, 1.1 Hz, 1H), 4.57 (d, J = 2.6 Hz, 1H), 3.81 (d, J = 2.6 Hz, 1H), 3.67 (s, 3H), 2.32 (s, 3H), 1.57 (s, 9H), 0.87 (t, J = 7.9 Hz, 9H), 0.55 (q, J = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.78, 152.44, 142.93, 138.78, 126.65, 124.87, 123.42, 117.37, 80.90, 52.40, 52.04, 47.31, 28.38, 21.73, 7.20, 1.92. HRMS (EI): Calcd for C<sub>22</sub>H<sub>36</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 406.2408, found 406.2409.



1-(*tert*-Butyl)-3-methyl-*trans*-6-fluoro-2-(triethylsilyl)indoline-1,3-dicarboxylate (3na): colorless oil (54 mg, 66%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.27 (brs, 1H), 7.21 (dd, J = 8.3, 5.6 Hz, 1H), 6.64 (td, J = 8.6, 2.5 Hz, 1H), 4.61 (d, J = 2.7 Hz, 1H), 3.83 (d, J = 2.7 Hz, 1H), 3.69 (s, 3H), 1.57 (s, 9H), 0.88 (t, J = 7.9 Hz, 9H), 0.56 (q, J = 8.2 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.46, 163.38 (d, J = 243.5 Hz), 151.99, 144.17, 125.95 (d, J = 10.3 Hz), 124.89, 109.15 (d, J = 23.2 Hz), 104.56 (d, J = 28.8 Hz), 81.58, 52.63,52.53, 46.83, 28.31, 7.16, 1.92; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>) δ -112.64. HRMS (EI): Calcd for C<sub>21</sub>H<sub>33</sub>FNO<sub>4</sub>Si [M+H]<sup>+</sup> 410.2157, found 410.2155.



**1-Benzyl-3-methyl-***trans***-2-(triethylsilyl)indoline-1,3-dicarboxylate (3oa):** colorless oil (45 mg, 54%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.88(brs, 1H), 7.44 (d, *J* = 7.9 Hz, 2H), 7.41 – 7.28 (m, 4H), 7.22 (d, *J* = 8.0 Hz, 1H), 6.99 (t, *J* = 7.5 Hz, 1H), 5.36 (d, *J* = 12.2 Hz, 1H), 5.20 (d, *J* = 12.8 Hz,

1H), 4.67 (d, *J* = 2.9 Hz, 1H), 3.93 (d, *J* = 3.0 Hz, 1H), 3.69 (s, 3H), 0.82 (t, *J* = 7.9 Hz, 9H), 0.50 (q, *J* = 8.2 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.42, 152.91, 142.87, 136.12, 128.91, 128.45, 128.31, 128.26, 128.12, 125.33, 123.04, 116.50, 67.28, 52.54, 51.68, 47.72, 7.09, 1.87. HRMS (EI): Calcd for C<sub>24</sub>H<sub>32</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 426.2095, found 426.2096.



#### tert-Butyl-trans-3-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-2-(triethylsilyl)indoline-1-

**carboxylate (3pa):** colorless oil (37 mg, 41%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (brs, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.20 (td, J = 7.8, 1.4 Hz, 1H), 6.90 (t, J = 7.5 Hz, 1H), 5.99 (d, J = 1.2 Hz, 1H), 5.27 (s, 1H), 4.58 (d, J = 2.3 Hz, 1H), 2.47 (d, J = 0.9 Hz, 3H), 2.30 (s, 3H), 1.58 (s, 9H), 0.88 (t, J = 7.9 Hz, 9H), 0.63 (q, J = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.45, 152.05, 144.70, 130.25, 128.65, 125.77, 122.50, 116.49, 111.48, 80.93, 52.70, 46.59, 28.43, 17.67, 14.34, 13.80, 12.23, 7.24, 2.21. HRMS (EI): Calcd for C<sub>25</sub>H<sub>38</sub>N<sub>3</sub>O<sub>3</sub>Si [M+H]<sup>+</sup> 456.2677, found 456.2678.



*tert*-Butyl-*trans*-3-cyano-2-(triethylsilyl)indoline-1-carboxylate (3qa): colorless oil (30 mg, 43%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ7.59 (brs, 1H), 7.38 – 7.14 (m, 2H), 7.00 (t, *J* = 7.5 Hz, 1H), 4.42 (d, *J* = 2.8 Hz, 1H), 3.98 (d, *J* = 2.8 Hz, 1H), 1.56 (s, 9H), 0.86 (t, *J* = 7.9 Hz, 9H), 0.55 (q, *J* = 8.1 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 151.85, 142.45, 129.97, 125.91, 124.87, 123.36, 119.94, 116.90, 81.92, 53.44, 32.20, 28.32, 7.09, 1.89. HRMS (EI): Calcd for C<sub>20</sub>H<sub>31</sub>N<sub>2</sub>O<sub>2</sub>Si [M+H]<sup>+</sup> 359.2149, found 359.2148.



*tert*-Butyl-*trans*-3-acetyl-2-(triethylsilyl)indoline-1-carboxylate (3ra): colorless oil (54 mg, 73%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 (s, 1H), 7.25 – 7.14 (m, 2H), 6.96 (t, *J* = 7.5 Hz, 1H), 4.46 (d, *J* = 2.2 Hz, 1H), 3.77 (d, *J* = 2.2 Hz, 1H), 2.07 (s, 3H), 1.57 (s, 9H), 0.86 (t, *J* = 7.9 Hz, 9H), 0.54 (q, *J* = 7.7 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.74, 152.24, 143.14, 130.03, 128.90, 124.93, 122.92, 117.04, 81.24, 56.35, 51.70, 28.39, 25.60, 7.17, 1.90. HRMS (EI): Calcd for C<sub>21</sub>H<sub>34</sub>NO<sub>3</sub>Si [M+H]<sup>+</sup> 376.2302, found 376.2301.



*tert*-Butyl-*trans*-3-acetyl-4-fluoro-2-(triethylsilyl)indoline-1-carboxylate (3sa): colorless oil (47 mg, 60%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 (brs, 1H), 7.19 (td, J = 8.2, 5.9 Hz, 1H), 6.69 (t, J = 8.6 Hz, 1H), 4.54 (d, J = 2.1 Hz, 1H), 3.89 (d, J = 2.0 Hz, 1H), 2.14 (d, J = 0.8 Hz, 3H), 1.56 (s, 9H), 0.87 (t, J = 7.9 Hz, 9H), 0.55 (q, J = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  204.53, 158.90 (d, J = 245.9 Hz), 151.91, 145.44, 130.68 (d, J = 8.2 Hz), 116.51, 112.74, 109.58 (d, J = 20.0 Hz), 81.56, 52.55, 52.24, 28.31, 26.81, 7.10, 1.86; <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>)  $\delta$  - 117.38. HRMS (EI): Calcd for C<sub>21</sub>H<sub>33</sub>FNO<sub>3</sub>Si [M+H]<sup>+</sup> 394.2208, found 394.2209.



*tert*-Butyl-*trans*-3-acetyl-4-chloro-2-(triethylsilyl)indoline-1-carboxylate (3ta): colorless oil (25 mg, 31%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (brs, 1H), 7.18 (t, J = 8.1 Hz, 1H), 6.96 (d, J = 8.0 Hz, 1H), 4.28 (d, J = 2.7 Hz, 1H), 3.86 (d, J = 2.7 Hz, 1H), 2.07 (s, 3H), 1.55 (s, 9H), 0.88 (t, J = 7.9 Hz, 9H), 0.56 (q, J = 7.6 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  204.91, 151.89, 144.30,

130.78, 130.27, 128.98, 122.92, 115.12, 81.72, 54.81, 53.09, 28.30, 26.78, 7.09, 1.78. HRMS (EI): Calcd for C<sub>21</sub>H<sub>33</sub>ClNO<sub>3</sub>Si [M+H]<sup>+</sup> 410.1913, found 410.1914.

*tert*-Butyl-*trans*-3-acetyl-4-methoxy-2-(triethylsilyl)indoline-1-carboxylate (3ua): colorless oil (29 mg, 36%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 (brs, 1H), 7.19 (t, *J* = 8.1 Hz, 1H), 6.53 (d, *J* = 8.4 Hz, 1H), 4.37 (d, *J* = 2.2 Hz, 1H), 3.82 (s, 4H), 2.05 (s, 3H), 1.55 (s, 9H), 0.86 (t, *J* = 7.9 Hz, 9H), 0.55 (q, *J* = 7.8 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.54, 155.90, 152.16, 144.43, 130.15, 117.35, 109.83, 105.10, 81.12, 55.34, 52.88, 28.37, 26.59, 19.15, 7.14, 1.85. HRMS (EI): Calcd for C<sub>22</sub>H<sub>36</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 406.2408, found 406.2409.



*tert*-Butyl-*trans*-3-acetyl-5-methoxy-2-(triethylsilyl)indoline-1-carboxylate (3va): colorless oil (28 mg, 35%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (brs, 1H), 6.78 (d, *J* = 2.6 Hz, 1H), 6.75 (s, 1H), 4.42 (s, 1H), 3.76 (d, *J* = 0.8 Hz, 3H), 3.70 (s, 1H), 2.06 (s, 3H), 1.55 (s, 9H), 0.86 (t, *J* = 7.9 Hz, 9H), 0.54 (q, *J* = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.78, 155.76, 152.38, 136.99, 131.29, 117.60, 113.62, 110.91, 80.91, 56.56, 55.59, 51.98, 28.37, 25.45, 7.17, 1.82. HRMS (EI): Calcd for C<sub>22</sub>H<sub>36</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 406.2408, found 406.2409.



*tert*-Butyl-*trans*-3-acetyl-7-methyl-2-(triethylsilyl)indoline-1-carboxylate (3wa): colorless oil (42 mg, 55%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.07 (d, J = 7.4 Hz, 2H), 6.98 (dd, J = 8.3, 6.6 Hz,

1H), 4.56 (d, J = 1.5 Hz, 1H), 3.59 (d, J = 1.5 Hz, 1H), 2.29 (s, 3H), 2.12 (s, 3H), 1.53 (s, 9H), 0.83 (t, J = 7.9 Hz, 9H), 0.47 (q, J = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.00, 154.22, 142.94, 132.76, 131.09, 129.63, 124.82, 122.06, 80.86, 57.16, 54.63, 28.28, 25.92, 19.81, 7.11, 1.59. HRMS (EI): Calcd for C<sub>22</sub>H<sub>36</sub>NO<sub>3</sub>Si [M+H]<sup>+</sup> 390.2459, found 390.2460.



**1-**(*tert*-**Butyl**)-3-(furan-2-ylmethyl)-*trans*-2-(triethylsilyl)indoline-1,3-dicarboxylate (3xa): colorless oil (53 mg, 58%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (brs, 1H), 7.40 (t, J = 1.2 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.23 – 7.17 (t, J = 7.5 Hz, 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.40 – 6.30 (m, 2H), 5.06 (d, J = 3.2 Hz, 2H), 4.58 (d, J = 2.8 Hz, 1H), 3.89 (d, J = 2.9 Hz, 1H), 1.55 (s, 9H), 0.85 (t, J = 7.9 Hz, 9H), 0.55 (q, J = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.68, 152.30, 149.13, 143.18, 142.80, 132.72, 129.17, 128.78, 125.31, 122.57, 116.53, 110.54, 80.97, 58.82, 51.50, 47.51, 28.34, 7.14, 1.88. HRMS (EI): Calcd for C<sub>25</sub>H<sub>36</sub>NO<sub>5</sub>Si [M+H]<sup>+</sup> 458.2357, found458.2359.



#### 1-(tert-Butyl)-3-((4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methyl)-trans-2-

(triethylsilyl)indoline-1,3-dicarboxylate (3ya): colorless oil (57 mg, 56%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.60 (brs, 1H), 7.29 (d, *J* = 7.5 Hz, 1H), 7.24 – 7.17 (m, 1H), 6.95 (t, *J* = 7.5, 1H), 5.73 – 5.63 (m, 1H), 4.71 (d, *J* = 9.9, 2H), 4.60 (dd, *J* = 2.6, 1.6 Hz, 1H), 4.45 (d, *J* = 3.7 Hz, 2H), 3.87 (d, *J* = 2.7 Hz, 1H), 2.20 – 2.06 (m, 2H), 1.98 (dd, *J* = 7.3, 3.8 Hz, 3H), 1.86 – 1.77 (m, 1H), 1.72 (t, *J* = 1.0 Hz, 3H), 1.57 (s, 9H), 1.51 – 1.38 (m, 1H), 0.87 (t, *J* = 7.9 Hz, 9H), 0.56 (q, *J* = 7.9 Hz, 9H)

6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 171.97, 152.31, 149.50, 142.84, 132.33, 129.62, 128.74, 125.84, 125.28, 122.52, 116.57, 108.75, 80.94, 69.22, 51.68, 47.86, 40.73, 30.39, 28.40, 27.20, 26.18, 20.70, 7.19, 1.94. HRMS (EI): Calcd for C<sub>30</sub>H<sub>46</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 512.3191, found 512.3193.



## 1-(*tert*-Butyl)-3-((*E*)-3,7-dimethylocta-2,6-dien-1-yl)-*trans*-2-(triethylsilyl)indoline-1,3dicarboxylate (3za): colorless oil (42 mg, 41%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.58 (brs, 1H),

area boxylate (62a): coloress on (42 mg, 4176). In third (466 MHz, CDCl3) 6 7.56 (613, 411), 7.29 (d, J = 7.5 Hz, 1H), 7.20 (t, J = 7.8 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 5.30 (t, J = 7.1 Hz, 1H), 5.07 (t, J = 6.6 Hz, 1H), 4.70 - 4.50 (m, 3H), 3.86 (d, J = 3.0 Hz, 1H), 2.04 (dd, J = 12.2, 6.3 Hz, 4H), 1.71 - 1.58 (m, 9H), 1.57 (s, 9H), 0.87 (t, J = 7.9 Hz, 9H), 0.56 (q, J = 7.9 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.12, 152.34, 142.62, 131.80, 129.62, 128.68, 125.30, 123.69, 122.52, 118.89, 117.96, 116.53, 80.94, 62.17, 51.58, 47.70, 39.46, 28.40, 26.28, 25.66, 17.66, 16.48, 7.21, 1.93. HRMS (EI): Calcd for C<sub>30</sub>H<sub>48</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 514.3347, found 514.3348.



1-(tert-Butyl)-3-((1R,2R,4S)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl)-trans-2-

(triethylsilyl)indoline-1,3-dicarboxylate (3A): colorless oil (32 mg, 32%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.76 (brs, 1H), 7.29 – 7.23 (m, 1H), 7.20 (t, *J* = 7.8 Hz, 1H), 6.93 (t, *J* = 7.4 Hz, 1H), 4.58 (s, 1H), 4.29 (dd, *J* = 10.9, 1.9 Hz, 1H), 3.86 (t, *J* = 2.4 Hz, 1H), 1.75 – 1.60 (m, 3H), 1.56 (s,

9H), 1.53 - 1.47 (m, 1H), 1.42 - 1.33 (m, 1H), 1.25 (s, 1H), 1.18 - 0.95 (m, 7H), 0.88 (t, J = 7.9 Hz, 9H), 0.80 (s, 1H), 0.71 (s, 1H), 0.57 (q, J = 7.6 Hz, 6H), 0.51 (s, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.79, 152.08, 142.96, 129.82, 128.69, 125.19, 122.47, 116.42, 86.76, 80.92, 52.16, 48.28, 41.23, 39.52, 29.54, 28.39, 26.46, 25.71, 20.11, 19.65, 19.39, 19.00, 7.18, 1.92. HRMS (EI): Calcd for C<sub>30</sub>H<sub>48</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 514.3347, found 514.3348.



**1-**(*tert*-**Butyl**)-3-((1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)-*trans*-2-(triethylsilyl)indoline-**1,3-dicarboxylate (3B):** colorless oil (64 mg, 63%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 (brs, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 4.62 (td, *J* = 10.9, 4.3 Hz, 1H), 4.55 (dd, *J* = 9.5, 2.6 Hz, 1H), 3.83 (d, *J* = 2.9 Hz, 1H), 1.90 (dd, *J* = 12.1, 4.7 Hz, 1H), 1.63 (td, *J* = 10.9, 3.3 Hz, 3H), 1.56 (s, 9H), 1.10 – 0.92 (m, 3H), 0.87 (t, *J* = 7.6 Hz, 12H), 0.84 (s, 3H), 0.79 (d, *J* = 7.0 Hz, 2H), 0.59 (dq, *J* = 27.1, 8.0, 7.4 Hz, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  171.78, 152.32, 142.92, 129.83, 128.59, 124.79, 122.48, 116.56, 80.80, 74.92, 51.82, 48.13, 47.14, 40.58, 34.18, 31.29, 28.39, 26.12, 23.37, 21.92, 20.60, 16.15, 7.17, 1.89. HRMS (EI): Calcd for C<sub>30</sub>H<sub>50</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 516.3504, found 516.3505.



**1-**(*tert*-**Butyl**)-**3-methyl**-*trans*-**2-**(**tripropylsilyl**)**indoline**-**1,3-dicarboxylate (3ab):** colorless oil (69 mg, 80%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.57 (brs, 1H), 7.28 (d, *J* = 7.5 Hz, 1H), 7.20 (t, *J* = 7.8 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 4.56 (d, *J* = 2.5 Hz, 1H), 3.85 (d, *J* = 2.6 Hz, 1H), 3.68 (s,

3H), 1.57 (s, 9H), 1.30 – 1.16 (m, 6H), 0.87 (t, J = 7.2 Hz, 9H), 0.69 – 0.45 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.62, 152.36, 142.80, 129.56, 128.73, 125.28, 122.59, 116.61, 80.94, 52.43, 52.17, 47.61, 28.38, 18.54, 17.20, 13.66. HRMS (EI): Calcd for C<sub>24</sub>H<sub>40</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 434.2721, found 434.2723.



**1-**(*tert*-**Butyl**)-3-methyl-*trans*-2-(triisopropylsilyl)indoline-1,3-dicarboxylate (3ac): colorless oil (37 mg, 43%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (brs, 1H), 7.30 (d, J = 7.5 Hz, 1H), 7.25 – 7.21 (t, J = 7.8, 1H), 6.96 (t, J = 7.5, 1H), 4.88 (d, J = 2.4 Hz, 1H), 3.92 (d, J = 2.4 Hz, 1H), 3.68 (s, 3H), 1.55 (s, 9H), 1.24 – 1.14 (m, 3H), 0.99 (dd, J = 11.2, 7.4 Hz, 18H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.60, 152.62, 143.20, 130.38, 128.67, 125.31, 122.82, 117.61, 81.05, 52.45, 51.30, 48.20, 28.38, 18.50, 18.44, 11.01. HRMS (EI): Calcd for C<sub>24</sub>H<sub>40</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 434.2721, found 434.2720.



**1-**(*tert*-Butyl)-3-methyl-*trans*-2-(ethyldimethylsilyl)indoline-1,3-dicarboxylate (3ad): colorless oil (44 mg, 61%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) 7.60 (brs, 1H), 7.29 (d, J = 7.5 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H), 6.95 (td, J = 7.5, 1.1 Hz, 1H), 4.48 (d, J = 2.9 Hz, 1H), 3.85 (d, J = 3.0Hz, 1H), 3.69 (s, 3H), 1.57 (s, 9H), 0.88 (t, J = 7.9 Hz, 3H), 0.51 (q, J = 7.9 Hz, 2H), -0.00 (s, 3H), -0.03 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.62, 152.40, 142.69, 129.26, 128.79, 125.31, 122.54, 116.33, 81.02, 52.59, 52.49, 47.44, 28.40, 7.10, 5.05, -5.38. HRMS (EI): Calcd for C<sub>19</sub>H<sub>30</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 364.1939, found 364.1941.



1-(*tert*-Butyl)-3-methyl-*trans*-2-(tert-butyldimethylsilyl)indoline-1,3-dicarboxylate (3ae): colorless oil (57 mg, 74%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.74 (brs, 1H), 7.28 (d, J = 7.5 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H), 6.95 (td, J = 7.5, 1.1 Hz, 1H), 4.65 (d, J = 2.3 Hz, 1H), 3.89 (d, J = 2.3 Hz, 1H), 3.69 (s, 3H), 1.56 (s, 9H), 0.94 (s, 9H), 0.01 (s, 3H), -0.19 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 172.53, 152.47, 142.84, 129.69, 128.76, 125.33, 122.68, 116.62, 80.96, 52.50, 51.02, 48.64, 28.40, 26.72, 16.98, -7.06, -7.39. HRMS (EI): Calcd for C<sub>21</sub>H<sub>34</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 392.2252, found 392.2254.



**1-**(*tert*-**Butyl**)-3-methyl-*trans*-2-(dimethyl(phenyl)silyl)indoline-1,3-dicarboxylate (3af): colorless oil (58 mg, 71%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (brs, 1H), 7.51 – 7.42 (m, 2H), 7.34 (ddd, J = 13.8, 7.5, 5.8 Hz, 3H), 7.26 –7.12 (m, 2H), 6.93 (t, J = 7.5 Hz, 1H), 4.71 (d, J = 3.1Hz, 1H), 3.80 (d, J = 3.2 Hz, 1H), 3.65 (s, 3H), 1.56 (s, 9H), 0.42 (s, 3H), 0.26 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.29, 152.33, 142.53, 135.72, 133.87, 129.38, 129.07, 128.69, 127.75, 125.24, 122.49, 116.13, 81.00, 52.63, 52.34, 47.67, 28.28, -3.61, -5.50. HRMS (EI): Calcd for C<sub>23</sub>H<sub>30</sub>NO<sub>4</sub>Si [M+H]<sup>+</sup> 412.1939, found 412.1941.



**1-(***tert***-Butyl)-3-methyl-***trans***-2-((4-(dimethylsilyl)phenyl)dimethylsilyl)indoline-1,3dicarboxylate (3ag):** colorless oil (68 mg, 74%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.60 (s, 1H), 7.56 -7.49 (m, 2H), 7.50 - 7.42 (m, 2H), 7.29 - 7.19 (m, 2H), 6.96 (td, J = 7.5, 1.1 Hz, 1H), 4.72 (dd, J = 3.2, 1.2 Hz, 1H), 4.46 (tt, J = 7.5, 3.7 Hz, 1H), 3.82 (d, J = 3.1 Hz, 1H), 3.68 (s, 3H), 1.56 (s, 9H), 0.50 - 0.33 (m, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.35, 152.36, 142.59, 140.71, 138.81, 136.79, 133.26, 132.30, 128.75, 125.30, 122.55, 116.19, 81.05, 52.43, 47.72, 28.29, 0.87, -3.94, -5.58. HRMS (EI): Calcd for C<sub>25</sub>H<sub>36</sub>NO<sub>4</sub>Si<sub>2</sub> [M+H]<sup>+</sup> 470.2177, found 470.2178.

#### 6. Gram-scale Preparation of 3aa and 3af



In a 100 mL Schlenk tube with a magnetic stir bar were placed 3DPA2FBN (PC, 40 mg, 0.06 mmol, 3 mol%),  $Cs_2CO_3$  (320 mg, 1 mmol, 0.5 equiv), and  $Et_3SiH$  (**2a**, 480 µL, 3 mmol, 1.5 equiv). Under nitrogen atmosphere, 1-(*tert*-butyl) 3-methyl 1*H*-indole-1,3-dicarboxylate (**1a**, 552 mg, 2 mmol, 1 equiv), (*i*-Pr)<sub>3</sub>SiSH (80 µL, 0.4 mmol, 20 mol%), CH<sub>3</sub>CN (20 mL) were added, subsequently. The resulting mixture was sealed and degassed via freeze-pump-thaw for three times. Then, the reaction was placed under a blue LED (2-meter strips, 20 W) and irradiated for 24 hrs at room temperature. The solvent was removed under vacuum. Silica gel chromatography (eluent: PE) of the crude product afforded 1-(*tert*-butyl)-3-methyl-*trans*-2-(triethylsilyl)indoline-1,3-dicarboxylate (**3aa**, 0.54 g) as a colorless oil.



In a 100 mL Schlenk tube with a magnetic stir bar were placed 3DPA2FBN (**PC**, 40 mg, 0.06 mmol, 3 mol%), Cs<sub>2</sub>CO<sub>3</sub> (320 mg, 1 mmol, 0.5 equiv), and PhMe<sub>2</sub>SiH (**2f**, 480 µL, 1.5 mmol, 1.5 equiv). Under nitrogen atmosphere, 1-(*tert*-butyl) 3-methyl 1*H*-indole-1,3-dicarboxylate (**1a**, 552

mg, 2 mmol, 1 equiv),  $(i\text{-Pr})_3$ SiSH (80 µL, 0.4 mmol, 20 mol%), EtOAc (20 mL) were added, subsequently. The resulting mixture was sealed and degassed via freeze-pump-thaw for three times. Then, the reaction was placed under a blue LED (2-meter strips, 20 W) and irradiated for 24 hrs at room temperature. The solvent was removed under vacuum. Silica gel chromatography (eluent: PE) of the crude product afforded 1-(*tert*-butyl)-3-methyl-*trans*-2-(dimethyl(phenyl)silyl)indoline-1,3-dicarboxylate (**3af**, 0.48 g) as a colorless oil.

#### 7. Transformations of the Products



According to literature report<sup>2</sup>, **3aa** (78.3 mg, 0.2 mmol) was added portionwise at 0 °C to 0.4 mL (0.4 mmol) of a 1 M LiAlH<sub>4</sub> solution (in THF). Then, the reaction mixture was continued to stir at 0 °C for 1 hour. The crude product was purified by column chromatography (PE/EA = 3:1) on silica gel to afford colorless oil (70 mg, 96% yield).



*tert*-Butyl-*trans*-3-(hydroxymethyl)-2-(triethylsilyl)indoline-1-carboxylate (4): colorless oil (69 mg, 96%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 (s, 1H), 7.16 (d, J = 7.4 Hz, 2H), 6.93 (t, J = 7.4 Hz, 1H), 4.03 (s, 1H), 3.56 (d, J = 6.8 Hz, 2H), 3.17 (td, J = 6.9, 1.8 Hz, 1H), 1.55 (s, 9H), 0.86 (t, J = 7.9 Hz, 9H), 0.53 (q, J = 8.1 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  152.63, 142.43, 133.34, 128.08, 124.76, 122.43, 116.36, 80.85, 66.28, 52.10, 45.19, 28.36, 7.17, 1.93. HRMS (EI): Calcd for C<sub>20</sub>H<sub>34</sub>NO<sub>3</sub>Si [M+H]<sup>+</sup> 364.2302, found 364.2303.



According to literature report<sup>3</sup>, to a flame-dried 20 mL flask charged with **3aa** (78 mg, 0.2 mmol) and THF (1 mL) was added LDA (0.15 mL, 2 M in heptane/ethylbenzene, 0.3 mmol, 1.5 equiv) at -78 °C dropwise. The resulting mixture was allowed at the same temperature for 30 min. The allyl bromide (26 µL, 0.3 mmol, 1.5 equiv) was then added slowly at -78 °C. The reaction mixuture was then allowed to warm to room temerature and continued to stir at the same temperature for 12 h. After removal of the solvent, the residue was purified by column chromatography on silica gel using PE/EtOAc (30:1) as the eluent to afford **5** as a colorless oil (52 mg, 60% yield).



**1-**(*tert*-**Butyl**)-3-methyl-*trans*-3-allyl-2-(triethylsilyl)indoline-1,3-dicarboxylate (5): colorless oil (51 mg, 60%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 7.63 (brs, 1H), 7.54 (d, *J* = 7.6 Hz, 1H), 7.20 (t, *J* = 7.8 Hz, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 5.53 (ddt, *J* = 17.3, 10.1, 7.4 Hz, 1H), 5.03 (d, *J* = 10.0 Hz, 1H), 4.97 (dd, *J* = 17.0, 1.9 Hz, 1H), 4.24 (s, 1H), 3.77 (s, 3H), 2.55 (s, 1H), 2.47 (dd, *J* = 13.1, 6.9 Hz, 1H), 1.56 (s, 9H), 0.79 (t, *J* = 7.9 Hz, 9H), 0.46 (t, *J* = 7.9, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  172.77, 152.46, 141.63, 133.95, 132.54, 128.03, 125.48, 122.71, 119.00, 116.92, 80.95, 58.04, 57.35, 51.67, 46.04, 28.45, 7.24, 2.87. HRMS (EI): Calcd for C<sub>24</sub>H<sub>38</sub>NO4Si [M+H]<sup>+</sup> 432.2565, found 432.2566.

#### 8. Additional Control Experiments to Elucidate the Mechanism

8.1 Radical Inhibition Experiments



The radical initiator, TEMPO, can totally inhibit the formation of product, **3aa**, thus supporting a radical-based mechanism.

8.2 Deuterium-Labeling Experiments





**2f-D** (20.6 mg, 0.15 mmol) was used to perform dearomatization under the standard conditions. The product (**3af-D**) was analyzed by <sup>1</sup>H NMR to determine the ratio of H-D exchange. It was found that 0% of the hydrogen at the C3 position was deuterated, which proved that it generated the carbon anion at the C3 position.

#### 8.3 Stern-Volmer Fluorescence Quenching Experiments

In a typical experiment, a solution of 3DPA2FBN in anhydrous reaction solvent (CH<sub>3</sub>CN) ( $5.0 \times 10^{-6}$  M) was added with an appropriate amount of quencher in a quartz cuvette. Then the emission of the sample was collected. The emission intensity was collected with the excited wavelength of photocatalysts, respectively.





#### 8.4 Quantum Yield Measurement

Determination of the light intensity at 470 nm: Following Yoon's protocol,<sup>4</sup> the photon flux of the spectrophotometer was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving 2.21 g of potassium ferrioxalate hydrate in 30 mL of 0.05 M H<sub>2</sub>SO<sub>4</sub>. A buffered solution of phenanthroline was prepared by dissolving 50 mg of phenanthroline and 11.25 g of sodium acetate in 50 mL of 0.5 M H<sub>2</sub>SO<sub>4</sub>. Both solutions were stored in the dark. To determine the photon flux of the spectrophotometer, 2.0 mL of the ferrioxalate solution was placed in a cuvette and irradiated for 90.0 seconds at  $\lambda = 470$  nm with an emission slit width at 10.0 nm. After irradiation, 0.35 mL of the phenanthroline solution was added to the cuvette. The solution was then allowed to rest for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A non-irradiated sample was also prepared and the absorbance at 510 nm measured. Conversion was calculated using eq (1).

mol Fe<sup>2+</sup> =  $\frac{V \cdot \Delta A}{1 \cdot \epsilon}$  (1)

Where V is the total volume (0.00235 L) of the solution after addition of phenanthroline,  $\Delta A$  is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, 1 is the path length (1.000 cm), and  $\varepsilon$  is the molar absorptivity at 510 nm (11,100 L mol<sup>-1</sup> cm<sup>-1</sup>). The photon flux can be calculated using eq (2).

 $Photon flux = \frac{\text{mol Fe}^{2+}}{\Phi \cdot t \cdot f} (2)$ 

Where  $\Phi$  is the quantum yield for the ferrioxalate actinometer (0.92 for a 0.15 M solution at  $\lambda = 468 \text{ nm}$ ),<sup>5</sup> t is the time (90.0 s), and f is the fraction of light absorbed at  $\lambda = 470 \text{ nm}$  (0.14, vide infra). The photon flux was calculated (average of three experiments) to be  $3.22 \times 10^{-8}$  einstein s<sup>-1</sup>.

mol Fe<sup>2+</sup> = 
$$\frac{0.00235 \text{ L} \cdot 1.76}{1.000 \text{ cm} \cdot 11100 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}} = 3.73 \times 10^{-7} \text{ mol}$$
  
Photon flux =  $\frac{3.73 \times 10^{-7} \text{ mol}}{0.92 \cdot 90.0 \text{ s} \cdot 0.14} = 3.22 \times 10^{-8} \text{ mol}$ 

**Determination of quantum yield:** 



A cuvette was charged with **1a** (27.6 mg, 0.1 mmol), **2a** (24  $\mu$ L, 0.15mmol), 3DPA2FBN (2 mg, 0.03 mmol, 3 mol%), Cs<sub>2</sub>CO<sub>3</sub> (16 mg, 0.05 mmol, 0.5 equiv), (*i*-Pr)<sub>3</sub>SiSH (4  $\mu$ L, 0.02 mmol, 20 mol%), and CH<sub>3</sub>CN (2 mL). The cuvette was then capped with a PTFE stopper. The sample was stirred and irradiated ( $\lambda$  = 470 nm, slit width = 10.0 nm) for 2400 s (40 min). After irradiation, the solvent was removed. The yield of product formed was determined as 50% by crude <sup>1</sup>H NMR using a dibromomethane as the internal standard. The quantum yield was determined using eq (3). Essentially all incident light (f > 0.999, vide infra) is absorbed by the 3DPA2FBN at the reaction conditions described above.  $\Phi$  (50%) = 0.65.

$$\Phi = \frac{mol \, product}{flux \cdot t \cdot f} \quad (3)$$

$$\Phi = \frac{0.5 \times 0.1 \times 10^{-3} mol}{3.22 \times 10^{-8} \, \text{mol} \cdot 2400 \, \text{s} \cdot 1.00} = 0.65$$

#### References

- (a) Zhang, Q., Xu, W., Liu, Q., Xia, C., Shao, Q., Ma, L. and Wu, M., Diastereoselective dearomatization of indoles via photocatalytic hydroboration on hydramine-functionalized carbon nitride, *Nat. Commun.*, 2024, **15**, 4371; (b) Chen, L., Shen, J. J., Gao, Q. and Xu, S., Synthesis of cyclic chiral α-amino boronates by copper-catalyzed asymmetric dearomative borylation of indoles, *Chem. Sci.*, 2018, **9**, 5855; (c) Zhang, Y., Ji, P., Gao, F., Dong, Y., Huang, H., Wang, C., Zhou, Z. and Wang, W., Organophotocatalytic dearomatization of indoles, pyrroles and benzo(thio)furans via a giese-type transformation, *Commun. Chem.*, 2021, **4**, 20.
- 2. Tan, G., Das, M., Keum, H., Bellotti, P., Daniliuc, C. and Glorius, F., Photochemical singlestep synthesis of beta-amino acid derivatives from alkenes and (hetero)arenes, *Nat. Chem.*, 2022, **14**, 1174.
- 3. Shi, Y., Gao, Q. and Xu, S., NHC-copper-catalyzed asymmetric dearomative silulation of indoles, *J. Org. Chem.*, 2018, **83**, 14758.
- 4. Cismesia, M. A. and Yoon, T. P., Characterizing chain processes in visible light photoredox catalysis, *Chem. Sci.*, 2015, **6**, 5426.
- 5. Hatchard C. G. and Parker C. A., A new sensitive chemical actinometer- II potassium ferrioxalate as a standard chemical actinometer, *P. Roy. Soc. A-Math. Phy.*, 1956, **235**, 518.

# <sup>1</sup>H, <sup>19</sup>F, <sup>13</sup>C-NMR Spectra







S29

















S34



S35


































S48

















f1 (ppm) S55















S61


















































| 66 25 24 20 25 25 25 25 25 25 25 25 25 25 25 25 25 | 2 2 2 2 2 2 2 2 2 2 | 8888998889 | 3 2 2 4 5 5 6 1 2 2 3 3 4 5 | 5 2 2 2 0 0 5 2 8 8 8 8 3 3 3 <b>4</b> 8 8 8 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
|----------------------------------------------------|---------------------|------------|-----------------------------|------------------------------------------------------------------------------|
| <b>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</b>       | 444444              | ***        |                             |                                                                              |









































