Supporting Information

Metal-Free Radical Cascade Cyclization/Haloazidation of enynones for the synthesis of functionalized 1-indanone

Hua-Feng Yan,^a Xiao Zou,^b Jian-Qiang Wang,^a Cheng Guo^{a*} and Hang-Dong Zuo^{c*}

^a College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China;

^b School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, P. R. China;

^c School of Safety Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China; guocheng@njtech.edu.cn, zhd0513@cczu.edu.cn

Contents

General Information	S2
General procedure for the synthesis of compounds 4 and 6	S2
Crystallographic Data of Compound 4a	S2-S3
Scale-Up Transformation of 4a	S3
The synthesis of 7	S3-S4
Radical inhibition experiments with TEMPO	S4
Radical inhibition experiments with BHT	S4
HRMS analysis of reaction solution	S5
Reference	S6
Characterization Data for Compounds 4a-4m, 6a-6k	S6-S11
Copies of ¹ H, ¹³ C, ¹⁹ F NMR Spectra for Compounds 4a-4m , 6a-6k , 7	S12-S64

General Information

PE refers to petroleum ether (b.p. 60-90 °C) and EA refers to ethyl acetate, as well as DCE refers to dichloroethane. All other starting materials and solvents were commercially available and were used without further purification unless otherwise stated. All reactions were heated by metal sand bath (WATTCAS, LAB-500, <u>http://www.wattcas.com</u>). ¹H NMR (¹³C NMR) spectra were measured on a Bruker DPX 400 MHz spectrometer in CDCl₃ with chemical shift (δ) given in ppm relative to TMS as internal standard [(s = singlet, d = doublet, m = multiplet), coupling constant (Hz)]. HRMS (APCI) was determined by using microTOF-QII HRMS/MS instrument (BRUKER). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer. The melting points were measured with digital melting point detector. Enynones 1 and 5 was prepared by the report¹.

General procedure for the synthesis of compounds 4 and 6

To a Schlenk tube (10 ml) were added enynones 1 or 5 (0.20 mmol, 1.0 equiv), halogen source (NIS, NCS, NBS) 2 (0.6 mmol, 3.0 equiv), azidotrimethylsilane 3 (0.40 mmol, 2.0 equiv), *tert*-butyl peroxybenzoate (TBPB, 0.40 mmol, 2.0 equiv) and anhydrous 1,4-dioxane (2.0 mL) under air condition. The resulting mixture was stirring at 85 °C in metal sand bath about 12 hours. After the reaction was complete (by TLC), the reaction mixture was cooled to room temperature and diluted with DCM (10 ml) and H₂O (20 ml). The organic layer was separated, and the aqueous layer was extracted with DCM (2 ×10 mL). The combined organic layer was washed with brine (10 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. Purified product 4 or 6 was obtained after column chromatography on silica gel (PE/EA= 60/1 v/v).

Crystallographic Data of Compound 4a

Fig. S1 ORTEP view of X-crystal structure of 4a (CCDC number 2390559).

Procedure for recrystallization of compounds 4a: the hexane was slowly added into the solution of 4a in chloroform

(with different concentration), then the chloroform was evaporated from the mixed solvent system at room temperature under dark and the crystals were obtained after a few days.

Table S1 Crystal data and structure refinement for 4a.			
Identification code	4a		
CCDC	2390559		
Empirical formula	$C_{18}H_{14}IN_3O$		
Formula weight	415.22		
Temperature/K	100.1(7)		
Crystal system	orthorhombic		
Space group	Ibam		
a/Å	10.5176(3)		
b/Å	42.1854(13)		
c/Å	7.4578(2)		
$\alpha ^{ m o}$	90		
β/°	90		
$\gamma^{\prime \circ}$	90		
Volume/Å ³	3308.95(16)		
Z	8		
$\rho_{calc}g/cm^3$	1.667		
μ/mm^{-1}	15.268		
F(000)	1632.0		
Crystal size/mm ³	0.12 imes 0.1 imes 0.09		
Radiation	Cu Ka ($\lambda = 1.54178$)		
20 range for data collection/°	8.384 to 152.154		
Index ranges	$-12 \le h \le 12, -51 \le k \le 49, -8 \le 1 \le 9$		
Reflections collected	5878		
Independent reflections	1752 $[R_{int} = 0.0594, R_{sigma} = 0.0435]$		
Data/restraints/parameters	1752/150/183		
Goodness-of-fit on F ²	1.174		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0787, wR_2 = 0.2101$		
Final R indexes [all data]	$R_1 = 0.0812, wR_2 = 0.2113$		
Largest diff. peak/hole / e Å-3	1.94/-0.85		

Scale-up transformation of 4a

To a Schlenk tube (50 ml) were added enynone **1a** (0.738 g, 3.0 mmol, 1.0 equiv), NIS **2a** (2.025 g, 9.0 mmol, 3.0 equiv), azidotrimethylsilane **3** (0.691 g, 6.0 mmol, 2.0 equiv), TBPB (1.165 g, 6.0 mmol, 2.0 equiv) and anhydrous 1,4-dioxane (20.0 mL) under air condition. The resulting mixture was stirring at 85 °C in metal sand bath about 12 hours. After the reaction was complete (by TLC), the reaction mixture was cooled to room temperature and diluted with DCM (50 ml) and H₂O (100 ml). The organic layer was separated, and the aqueous layer was extracted with DCM (2 ×50 mL). The combined organic layer was washed with brine (50 mL), dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. Purified product **4a** (0.68 g, 55%) was obtained after column chromatography on silica gel (PE/EA= 60/1 v/v).

The synthesis of 7

Under a nitrogen atmosphere, the following components were introduced into a 10 mL Schlenk tube: **4a** (0.20 mmol, 1.0 equiv), phenylboronic acid (0.3 mmol, 1.5 equiv), Pd(PPh₃)₄ (5 mol%), K₂CO₃ (0.60 mmol, 3.0 equiv), and 1,4-dioxane (2.0 mL). The resultant mixture was agitated in a metal sand bath at 80°C for an entire night. Upon completion of the reaction, confirmed by TLC analysis, the mixture was allowed to cool to ambient temperature. Subsequently, the solution was filtered and concentrated under reduced pressure. Then, the crude product was purified through flash

chromatography on silica gel using a PE/EA mixture (60/1 v/v) as the eluent, yielding the target product 7 (49 mg, 68% yield), as a pale yellow solid, mp: 120-121°C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.76 (d, J = 7.6 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.48 – 7.40 (m, 5H), 7.37 – 7.32 (m, 4H), 7.28 (d, J = 6.8 Hz, 2H), 7.24 (d, J = 7.6 Hz, 2H), 3.57 (d, J = 12.4 Hz, 1H), 3.36 (d, J = 12.4 Hz, 1H), 1.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 192.8, 154.9, 153.6, 142.0, 140.6, 138.4, 137.9, 135.0, 128.6, 128.5, 128.2, 128.2, 127.9, 127.8, 127.8, 124.1, 123.1, 59.4, 48.0, 26.1. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₁₉N₃NaO 388.1421; Found 388.1429.

Radical inhibition experiments with TEMPO

To a Schlenk tube (10 ml) were added enynones 1a (0.20 mmol, 1.0 equiv), NIS 2a (0.60 mmol, 3.0 equiv), azidotrimethylsilane 3 (0.40 mmol, 2.0 equiv), TBPB (0.40 mmol, 2.0 equiv), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO, 0.60 mmol, 3.0 equiv.) and anhydrous 1,4-dioxane (2.0 mL) under air condition. The resulting mixture was stirring at 85 °C in metal sand bath about 12 hours. The desired product 4a was not detected by TLC.

Radical inhibition experiments with BHT

To a Schlenk tube (10 ml) were added enynones **1a** (0.20 mmol, 1.0 equiv), NIS **2a** (0.60 mmol, 3.0 equiv), azidotrimethylsilane **3** (0.40 mmol, 2.0 equiv), TBPB (0.40 mmol, 2.0 equiv), 2,6-Di-tert-butylphenol (BHT, 0.60 mmol, 3.0 equiv.) and anhydrous 1,4-dioxane (2.0 mL) under air condition. The resulting mixture was stirring at 85 °C in metal sand bath about 12 hours. The desired product **4a** was not detected by TLC, but HRMS analysis of the solution revealed signal peaks at m/z 530.2785 corresponding to the BHT adduct **8**.

Fig. S2 HRMS analysis for the adduct BHT adduct 8.

HRMS analysis of reaction solution

To a Schlenk tube (10 ml) were added enynones **1a** (0.20 mmol, 1.0 equiv), NIS **2a** (0.60 mmol, 3.0 equiv), azidotrimethylsilane **3** (0.40 mmol, 2.0 equiv), TBPB (0.40 mmol, 2.0 equiv) and anhydrous 1,4-dioxane (2.0 mL) under air condition. The resulting mixture was stirring at 85 °C in metal sand bath about 12 hours. HRMS analysis of the solution revealed signal peaks at m/z 217.0670 and 172.0964 corresponding to trimethylsilyl 2-iodobenzoate **A** and1-(*tert*-butoxy)pyrrolidine-2,5-dione **B**, respectively.

Fig. S4 HRMS analysis for the detection of1-(tert-butoxy)pyrrolidine-2,5-dione B

Reference

1. F. Wu and S. Zhu, Org. Lett. 2019, 21, 1488-1492.

Characterization data

(Z)-3-(azidomethyl)-2-(iodo(phenyl)methylene)-3-methyl-2,3-dihydro-1H-inden-1-one (4a)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 50 mg, 60% yield, Z/E = 4: 1; mp: 143-144 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.14 (d, J = 7.6 Hz, 1H), 7.92 – 7.88 (m, 1H), 7.69 – 7.66 (m, 3H), 7.59 – 7.53 (m, 2H), 7.47 – 7.40 (m, 2H), 3.73 (d, J = 12.4 Hz, 1H), 3.46 (d, J = 12.4 Hz, 1H), 1.46 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) 190.3, 152.8, 144.9, 142.3, 137.2, 135.7, 130.2, 128.8, 128.6, 124.7, 122.6, 105.8, 59.1, 51.3, 25.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₄IN₃NaO 438.0074; Found 438.0082.

(Z)-3-(azidomethyl)-2-(iodo(p-tolyl)methylene)-3-methyl-2,3-dihydro-1H-inden-1-one (syn isomer, 4b)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 41 mg, 48% yield, *Z/E* = 1.5: 1; mp: 169-170 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.93 (d, *J* = 7.6 Hz, 2H), 7.72 – 7.68 (m, 6H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.50 – 7.40 (m, 9H), 7.38 – 7.29 (m, 7H), 7.16 – 7.12 (m, 5H), 7.09– 7.04 (m, 9H), 4.65 (d, *J* = 12.4 Hz, 2H), 3.67 (d, *J* = 12.8 Hz, 2H), 3.55 – 3.48 (m, 3H), 3.30 – 3.24 (m, 3H), 2.39 (s, 9H), 2.37 (s, 6H), 1.78 (s, 6H), 1.26 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) (δ , ppm) δ 190.4, 187.5, 155.6, 152.8, 144.8, 143.5, 142.3, 138.9, 138.7, 137.3, 136.3, 135.7, 135.4, 129.1, 128.9, 128.8(2), 128.8(0), 126.6, 124.8, 124.6, 123.6, 122.6, 117.5, 106.5, 59.1, 56.5, 51.3, 49.9, 25.3, 22.6, 21.5, 21.4. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁9H₁₆IN₃NaO 452.0231; Found 452.0236.

(Z)-3-(azidomethyl)-2-(iodo(m-tolyl)methylene)-3-methyl-2,3-dihydro-1H-inden-1-one (4c, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 39 mg, 45% yield, *Z/E* = 4: 1; mp: 111-112 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.93 (d, *J* = 7.6 Hz, 1H), 7.73 – 7.67 (m, 2H), 7.50 – 7.45 (m, 2H), 7.20 – 7.15 (m, 3H), 3.52 (d, *J* = 12.4 Hz, 1H), 3.28 (d, *J* = 12.0 Hz, 1H), 2.43 (s, 3H), 1.26 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) (δ, ppm) 187.4, 155.6, 146.2, 144.8, 137.9, 136.3, 135.7, 135.4, 129.5, 128.8, 128.0, 127.0, 124.6, 123.6, 117.2, 56.5, 49.8, 22.6, 21.6. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₆IN₃NaO 452.0231; Found 452.0235.

(Z)-3-(azidomethyl)-2-((4-(tert-butyl)phenyl)iodomethylene)-3-methyl-2,3-dihydro-1H-inden-1-one (4d, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 58 mg, 62% yield, *Z/E* = 5: 1; mp: 151-152 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.93 (d, *J* = 7.6 Hz, 1H), 7.71 – 7.67 (m, 1H), 7.48 – 7.45 (m, 4H), 7.23 – 7.17 (m, 2H), 3.52 (d, *J* = 12.4 Hz, 1H), 3.27 (d, *J* = 12.0 Hz, 1H), 1.36 (s, 9H), 1.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 190.4, 152.8, 152.1, 142.3, 142.1, 137.3, 135.7, 128.8, 126.5, 125.3, 124.8, 122.6, 106.7, 59.2, 51.3, 34.8, 31.4, 25.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₂₂IN₃NaO 494.0700; Found 494.0707.

(Z)-3-(azidomethyl)-2-((4-chlorophenyl)iodomethylene)-3-methyl-2,3-dihydro-1H-inden-1-one (4e, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 52 mg, 58% yield, Z/E = 5: 1; mp: 155-156 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.94 (d, J = 7.6 Hz, 1H), 7.73 – 7.70 (m, 1H), 7.52 – 7.44 (m, 4H), 7.21 (d, J = 8.4 Hz, 2H), 3.55 (d, J = 12.4 Hz, 1H), 3.24 (d, J = 12.4 Hz, 1H), 1.26 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) (δ , ppm) 187.5, 155.6, 145.6, 144.5, 136.1, 135.7, 134.5, 129.0, 128.5, 128.1, 124.7, 123.6, 114.6, 56.4, 49.9, 22.6. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₃ClIN₃NaO 471.9685; Found 471.9691.

(Z)-3-(azidomethyl)-2-((4-bromophenyl)iodomethylene)-3-methyl-2,3-dihydro-1H-inden-1-one (4f, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 59 mg, 60% yield, Z/E = 10: 1; mp: 164-165 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.94 (d, J = 7.6 Hz, 1H), 7.73 – 7.70 (m, 1H), 7.60 (s, 2H), 7.50 – 7.46 (m, 2H), 7.20 – 7.08 (m, 2H), 3.55 (d, J = 12.4 Hz, 1H), 3.24 (d, J = 12.4 Hz, 1H), 1.27 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) (δ , ppm) 190.1, 152.6, 143.8, 135.9, 135.6, 131.7, 131.4, 129.0, 128.3, 124.9, 124.6, 123.6, 122.6, 114.5, 59.2, 51.4, 22.5. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₃BrIN₃NaO 515.9179; Found 515.9186.

methyl (Z)-4-((1-(azidomethyl)-1-methyl-3-oxo-1,3-dihydro-2H-inden-2-ylidene)iodomethyl)benzoate (syn isomer, 4g)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 67 mg, 71% yield, Z/E = 1: 1; mp: 134-135 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.13 – 8.08 (m, 4H), 7.94 (d, J = 7.6 Hz, 1H), 7.73 – 7.70 (m, 3H), 7.57 (d, J = 8.0 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.46 (d, J = 8.0 Hz, 2H), 7.37 – 7.32 (m, 4H), 4.64 (d, J = 12.4 Hz, 1H), 3.97 (s, 3H), 3.93 (s, 3H), 3.68 (d, J = 12.4 Hz, 1H), 3.52 (d, J = 12.4 Hz, 1H), 3.21 (d, J = 12.4 Hz, 1H), 1.79 (s, 3H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 187.5, 166.5, 155.6, 152.7, 150.5, 149.0, 145.7, 142.6, 136.0(1), 136.0(8), 135.7, 130.4, 129.9, 129.6, 129.0, 126.5, 124.9, 124.7, 123.6, 122.6, 114.1, 103.8, 59.2, 56.5, 52.5, 52.2, 51.4, 49.9, 25.2, 22.5. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₀H₁₆IN₃NaO₃ 496.0129; Found 496.0135.

(Z)-3-(azidomethyl)-2-(iodo(phenyl)methylene)-3,5-dimethyl-2,3-dihydro-1H-inden-1-one (4h, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 49 mg, 57% yield, Z/E = 4: 1; mp: 146-147 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.86 (d, J = 7.6 Hz, 1H), 7.54 – 7.43 (m, 3H), 7.39 – 7.36 (m, 1H), 7.34 – 7.28 (m, 3H), 3.54 (d, J = 12.0 Hz, 1H), 3.28 (d, J = 12.4 Hz, 1H), 2.51 (s, 3H), 1.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 187.1, 156.1, 146.9, 145.3, 142.6, 134.1, 130.2, 128.6, 128.2, 126.5, 124.5, 123.8, 116.0, 56.4, 49.7, 22.6, 22.5. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₁₆IN₃NaO 452.0231; Found 452.0233.

(Z)-3-(azidomethyl)-5-fluoro-2-(iodo(phenyl)methylene)-3-methyl-2,3-dihydro-1H-inden-1-one (4i, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 61 mg, 71% yield, *Z/E* = 5: 1; mp: 152-153°C; ¹H NMR (400 MHz, CDCl₃) (ô, ppm) 7.97 – 7.93 (m, 1H), 7.45 – 7.39 (m, 3H), 7.37 – 7.33 (m, 1H), 7.20 – 7.16 (m, 2H),

7.12 (d, J = 8.4 Hz, 1H), 3.48 (d, J = 12.4 Hz, 1H), 3.27 (d, J = 12.0 Hz, 1H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 188.7, 167.6 (${}^{1}J_{CF} = 255.9$ Hz), 155.8 (${}^{3}J_{CF} = 9.2$ Hz), 144.8, 142.0, 133.7, 129.0, 127.4, 127.3, 117.3 (${}^{2}J_{CF} = 23.5$ Hz), 109.8, 109.6, 106.3, 58.9, 51.2, 25.1. ¹⁹F NMR (282 MHz, CDCl₃) δ ppm: -100.55. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₃FIN₃NaO 455.9980; Found 455.9986.

(Z)-3-(azidomethyl)-6-chloro-2-(iodo(phenyl)methylene)-3-methyl-2,3-dihydro-1H-inden-1-one (4j, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 42 mg, 47% yield, *Z/E* = 10: 1; mp: 151-152 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.87 (d, *J* = 1.2 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.41 (d, *J* = 8.4 Hz, 1H), 7.37 – 7.33 (m, 1H), 7.30 – 7.25 (m, 2H), 3.49 (d, *J* = 12.4 Hz, 1H), 3.27 (d, *J* = 12.0 Hz, 1H), 1.24 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ, ppm) 189.1, 150.9, 144.8, 142.1, 138.6, 135.8, 135.2, 129.0, 128.3, 126.4, 124.5, 124.1, 107.2, 58.9, 51.1, 25.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₃ClIN₃NaO 471.9685; Found 471.9694. (*Z*)-3-(*azidomethyl*)-2-(*chloro(phenyl)methylene)-3-methyl-2,3-dihydro-1H-inden-1-one (4k, major)*

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 19 mg, 30% yield, Z/E > 19: 1; mp: 148-149°C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.12 – 8.10 (m, 2H), 7.70 – 7.64 (m, 2H), 7.53 (d, J = 7.6 Hz, 1H), 7.46 (s, 3H), 7.40 – 7.37 (m, 1H), 4.26 (d, J = 15.2 Hz, 2H), 1.70 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) (δ , ppm) 188.8, 155.1, 146.4, 137.4, 135.5, 131.0, 129.7, 128.8, 128.4, 128.2, 128.1, 124.4, 123.3, 57.2, 49.5, 22.5. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₄ClN₃NaO 346.0718; Found 346.0727.

(Z)-3-(azidomethyl)-2-(bromo(phenyl)methylene)-3-methyl-2,3-dihydro-1H-inden-1-one (4l, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 26 mg, 36% yield, Z/E = 10: 1; mp: 134-136 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.72 – 7.69 (m, 2H), 7.56 (d, J = 7.6 Hz, 1H), 7.47 – 7.42 (m, 4H), 7.38 (d, J = 7.6 Hz, 2H), 4.70 (d, J = 10.4 Hz, 1H), 3.83 (d, J = 10.4 Hz, 1H), 1.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) δ 188.1, 155.4, 141.2, 140.3, 138.5, 137.1, 135.5, 129.3, 128.8, 128.2, 127.9, 124.4, 122.8, 49.8, 38.6, 23.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₈H₁₄BrN₃NaO 390.0213; Found 390.0220.

(Z)-6-(azidomethyl)-5-(iodo(phenyl)methylene)-6-methyl-5,6-dihydro-4H-cyclopenta[b]thiophen-4-one (syn isomer, 4l)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 27 mg, 32% yield, Z/E = 1: 1; mp: 134-136 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.91 – 7.88 (m, 2H), 7.49 – 7.44 (m, 2H), 7.41 – 7.30 (m, 4H), 7.27 (s, 1H), 7.26 – 7.19 (m, 3H), 7.15 (d, J = 4.8 Hz, 1H), 7.06 (d, J = 4.8 Hz, 1H), 4.39 (d, J = 12.4 Hz, 1H), 3.78 (d, J = 12.4 Hz, 1H), 3.43 (d, J = 12.4 Hz, 1H), 3.19 (d, J = 12.0 Hz, 1H), 1.78 (s, 3H), 1.24 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) (δ , ppm) δ 181.8, 179.2, 168.5, 165.6, 147.7, 145.6, 145.2, 144.7, 142.6, 141.2, 140.5, 140.4, 128.8, 128.6, 128.1, 126.6, 121.9, 120.9, 113.8, 103.9, 58.6, 56.0, 50.2, 49.1, 24.3, 21.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₆H₁₂IN₃NaOS 443.9638; Found 443.9640.

(Z)-3-(azidomethyl)-2-(iodo(phenyl)methylene)-3-phenyl-2,3-dihydro-1H-inden-1-one (6a, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 48 mg, 50% yield, *Z/E* = 5: 1; mp: 130-131 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.77 (d, *J* = 7.6 Hz, 1H), 7.59 – 7.54 (m, 2H), 7.41 (d, *J* = 7.6 Hz, 3H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.33 – 7.31 (m, 3H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.10 (d, *J* = 8.0 Hz, 1H), 6.65 (d, *J* = 7.2 Hz, 1H), 5.04 (d, *J* = 11.6 Hz, 1H), 4.31 (d, *J* = 12.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) (δ , ppm) 187.6, 155.2, 145.4, 141.6, 136.9, 135.6, 129.0, 128.8, 128.5, 128.1, 127.5, 127.3, 126.8, 125.1, 124.6, 119.7, 107.3, 57.8, 55.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₁₆IN₃NaO 500.0231; Found 500.0239.

(Z)-3-(azidomethyl)-2-(iodo(phenyl)methylene)-3-(p-tolyl)-2,3-dihydro-1H-inden-1-one (6b, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 46 mg, 47% yield, *Z/E* = 5: 1; mp: 183-184 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.75 (d, *J* = 7.2 Hz, 1H), 7.58 – 7.56 (m, 1H), 7.42 – 7.39 (m, 4H), 7.34 – 7.33 (m, 1H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 4H), 5.02 (d, *J* = 11.6 Hz, 1H), 4.27 (d, *J* = 11.6 Hz, 1H), 2.34 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) (δ , ppm) 187.7, 155.4, 146.6, 145.5, 138.5, 137.0, 136.8, 135.6, 129.7, 128.8(9), 128.8(6), 128.1, 127.3, 126.7, 125.0, 124.5, 119.6, 57.5, 55.9, 21.2. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₁₈IN₃NaO 514.0387; Found 514.0391.

(Z)-3-(azidomethyl)-3-(4-(tert-butyl)phenyl)-2-((4-chlorophenyl)iodomethylene)-2,3-dihydro-1H-inden-1-one (syn isomer, 6c)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 59 mg, 52% yield, Z/E = 2: 1; mp: 208-209 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.99 (d, J = 7.6 Hz, 1H), 7.76 (d, J = 7.6 Hz, 2H), 7.60 – 7.56 (m, 3H), 7.51 – 7.47 (m, 2H), 7.44 – 7.40 (m, 3H), 7.38 – 7.34 (m, 8H), 7.26 – 7.19 (m, 8H), 7.14 – 7.10 (m, 7H), 6.57 (d, J = 8.0 Hz, 2H), 5.01 (d, J = 11.6 Hz, 2H), 4.26 (d, J = 11.6 Hz, 2H), 4.09 (d, J = 11.6 Hz, 1H), 3.83 (d, J = 12.0 Hz, 1H), 1.31 (s, 18H), 1.29 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 190.9, 187.9, 155.3, 152.9, 150.4, 150.3, 147.1, 143.8, 142.7, 138.1, 137.7, 136.7, 136.2, 135.8, 134.6, 129.0, 128.9, 128.4, 128.3, 127.9, 127.4, 127.0, 126.4, 125.9, 125.4, 125.1, 124.5, 117.5, 57.5, 57.4, 57.2, 55.8, 34.5, 31.3, 31.3, 29.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₇H₂₃ClIN₃NaO 590.0467; Found 590.0476.

(Z)-3-(azidomethyl)-2-(iodo(p-tolyl)methylene)-3-phenyl-2,3-dihydro-1H-inden-1-one (syn isomer, 6d)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 47 mg, 48% yield, *Z/E* = 1: 1; mp: 118-119 °C; ¹H NMR (400 MHz, CDCl₃) (δ, ppm) 7.99 (d, *J* = 7.6 Hz, 1H), 7.77 (d, *J* = 7.2 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.49 – 7.45 (m, 1H), 7.43 – 7.39 (m, 2H), 7.36 (d, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 7.2 Hz, 1H), 7.25 – 7.18 (m, 6H), 7.14 – 7.08 (m, 6H), 6.97 – 6.80 (m, 2H), 6.67 (d, *J* = 7.6 Hz, 2H), 5.03 (d, *J* = 11.6 Hz, 1H), 4.30 (d, *J* = 11.6 Hz, 1H), 4.10 (d, *J* = 11.6

Hz, 1H), 3.81 (d, J = 12.0 Hz, 1H), 2.41 (s, 3H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 191.0, 187.6, 155.1, 153.0, 146.3, 144.0, 143.2, 142.6, 141.7, 141.6, 138.9, 138.1, 137.8, 136.9, 136.0, 135.5, 129.0, 128.8(4), 128.8(1), 128.8(9), 128.5, 128.4, 127.5, 127.2, 126.9, 126.8, 126.7, 125.9, 125.1, 124.6, 124.5, 124.3, 120.5, 107.9, 57.8, 57.3, 56.7, 55.9, 21.5, 21.3. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₁₈IN₃NaO 514.0387; Found 514.0396.

(Z)-3-(azidomethyl)-2-((4-(benzyloxy)phenyl)iodomethylene)-3-phenyl-2,3-dihydro-1H-inden-1-one (6e, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 78 mg, 67% yield, Z/E = 2.5:1; mp: 144-145 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.02 (d, J = 7.6 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.47 – 7.43 (m, 6H), 7.42 – 7.36 (m, 4H), 7.13 – 7.10 (m, 3H), 7.03 (d, J = 8.8 Hz, 1H), 6.69 (d, J = 6.8 Hz, 1H), 5.13 (s, 1H), 5.06 (d, J = 4.8 Hz, 1H), 4.21 – 4.10 (m, 1H), 3.93 – 3.80 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 191.0, 158.3, 152.9, 144.3, 143.3, 137.8, 137.2, 136.6, 136.0, 128.9, 128.7, 128.5, 128.2, 128.1, 127.7, 127.5, 126.9, 126.7, 124.5, 124.3, 114.2, 70.0, 57.3, 56.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₂₂IN₃NaO₂ 606.0649; Found 606.0651.

(Z)-3-(azidomethyl)-2-((4-fluorophenyl)iodomethylene)-3-phenyl-2,3-dihydro-1H-inden-1-one (6f, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 62 mg, 63% yield, Z/E = 10: 1; mp: 133-134 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.77 (d, J = 7.6 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.36 (d, J = 7.2 Hz, 2H), 7.31 (d, J = 7.2 Hz, 3H), 7.24 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 1H), 7.11 – 7.07 (m, 2H), 5.03 (d, J = 12.0 Hz, 1H), 4.29 (d, J = 12.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 187.7, 162.8 (${}^{I}J_{CF} = 247.7$ Hz), 155.1, 147.0, 141.5, 141.3 (${}^{3}J_{CF} = 3.6$ Hz), 136.8, 135.8, 129.0(4), 129.0(6), 127.4, 127.3, 126.7, 125.1, 124.6, 118.2, 115.2 (${}^{2}J_{CF} = 21.9$ Hz), 57.8, 55.8. ¹⁹F NMR (282 MHz, CDCl₃) δ ppm: -111.99. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₁₅FIN₃NaO 518.0137; Found 518.0144.

(Z)-3-(azidomethyl)-2-((4-chlorophenyl)iodomethylene)-3-phenyl-2,3-dihydro-1H-inden-1-one (syn isomer, 6g)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 57 mg, 56% yield, Z/E = 2: 1; mp: 136-137 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.77 (d, J = 7.6 Hz, 3H), 7.60 – 7.56 (m, 3H), 7.45 – 7.41 (m, 4H), 7.38 (d, J = 7.2 Hz, 7H), 7.35 (d, J = 4.8 Hz, 6H), 7.32 – 7.29 (m, 4H), 7.24 (d, J = 8.4 Hz, 8H), 7.18 – 7.14 (m, 4H), 5.08 (d, J = 9.6 Hz, 1H), 5.02 (d, J = 11.6 Hz, 2H), 4.29 (d, J = 12.0 Hz, 2H), 4.14 (d, J = 9.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) (δ , ppm) 187.6, 155.1, 147.1, 144.8, 143.7, 142.9, 142.7, 141.4, 137.7, 136.7, 136.2, 135.8, 134.7, 134.1, 129.0(2), 129.0(6), 128.6, 128.4, 128.3, 128.1, 127.8, 127.4, 127.3, 127.2, 126.7, 125.1, 124.6, 124.3, 117.5, 105.1, 57.7, 57.4, 57.0, 55.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₁₅ClIN₃NaO 533.9841; Found 533.9845.

(Z)-3-(azidomethyl)-2-((4-bromophenyl)iodomethylene)-3-phenyl-2,3-dihydro-1H-inden-1-one (6h, major)

Isolation by column chromatography (PE/EA=60/1 v/v) Pale yellow solid; 44 mg, 40% yield, Z/E = 10: 1; mp: 132-133 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.77 (d, J = 7.6 Hz, 1H), 7.60 – 7.56 (m, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.45

-7.41 (m, 1H), 7.39 - 7.35 (m, 2H), 7.31 (d, J = 6.8 Hz, 1H), 7.23 (d, J = 7.2 Hz, 2H), 7.17 (d, J = 8.0 Hz, 3H), 5.01 (d, J = 11.6 Hz, 1H), 4.29 (d, J = 11.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 187.7, 155.2, 147.1, 144.2, 141.3, 136.7, 135.9, 131.3, 129.0(4), 129.0(0), 128.5, 127.4, 127.4, 125.1, 124.6, 123.0, 117.5, 57.7, 55.8. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₁₅BrIN₃NaO 577.9336; Found 577.9340.

(Z)-4-((1-(azidomethyl)-3-oxo-1-phenyl-1,3-dihydro-2H-inden-2-ylidene)iodomethyl)benzonitrile (6i, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 72 mg, 72% yield, Z/E = 4: 1; mp: 145-146°C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.80 – 7.76 (m, 2H), 7.70 (d, J = 8.0 Hz, 2H), 7.62 – 7.58 (m, 1H), 7.46 – 7.43 (m, 1H), 7.40 – 7.35 (m, 4H), 7.23 (d, J = 7.6 Hz, 2H), 7.19 (d, J = 8.0 Hz, 1H), 5.01 (d, J = 11.6 Hz, 1H), 4.29 (d, J = 11.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) (δ , ppm) 187.7, 155.3, 149.6, 147.9, 141.0, 136.4, 136.1, 132.8, 132.0, 129.1, 127.6, 127.5, 127.4, 125.1, 124.6, 118.5, 114.8, 112.3, 57.6, 55.7. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₄H₁₅IN₄NaO 525.0183; Found 525.0188.

(Z)-3-(azidomethyl)-6-chloro-2-(iodo(phenyl)methylene)-3-phenyl-2,3-dihydro-1H-inden-1-one (6j, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 82 mg, 80% yield, Z/E = 5: 1; mp: 141-142 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) δ 7.70 (s, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.41 – 7.38 (m, 3H), 7.35 (d, J = 5.6 Hz, 2H), 7.31 – 7.28 (m, 3H), 7.23 (d, J = 7.6 Hz, 2H), 7.10 (d, J = 8.4 Hz, 1H), 5.03 (d, J = 11.8 Hz, 1H), 4.28 (d, J = 12.0 Hz, 1H), 4.06 (d, J = 11.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 186.3, 153.3, 146.3, 145.1, 141.0, 138.2, 135.7, 135.2, 129.1, 129.0, 128.2, 127.5, 127.4, 126.7, 126.6, 124.2, 120.8, 57.5, 55.6. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₁₅CIIN₃NaO 533.9841; Found 533.9848.

(Z)-3-(azidomethyl)-7-fluoro-2-(iodo(phenyl)methylene)-3-phenyl-2,3-dihydro-1H-inden-1-one (6k, major)

Isolation by column chromatography (PE/EA= 60/1 v/v) Pale yellow solid; 51 mg, 52% yield, Z/E = 10: 1; mp: 165-166 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.55 – 7.50 (m, 1H), 7.40 – 7.38 (m, 5H), 7.34 – 7.28 (m, 5H), 7.04 – 7.00 (m, 1H), 6.95 (d, J = 7.6 Hz, 1H), 5.05 (d, J = 11.6 Hz, 1H), 4.28 (d, J = 11.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 184.2, 159.5 (${}^{1}J_{CF} = 247.7$ Hz), 157.2, 145.9, 145.1, 141.2, 137.1 (${}^{3}J_{CF} = 8.3$ Hz), 129.1, 128.9, 128.6, 128.2, 127.9, 127.5, 127.4, 126.6, 120.9 (${}^{4}J_{CF} = 4.1$ Hz), 120.3, 115.6 (${}^{2}J_{CF} = 18.9$ Hz), 57.7, 55.9. ¹⁹F NMR (282 MHz, CDCl₃) δ ppm: -114.54. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₁₅FIN₃NaO 518.0137; Found 518.0143.

∠3.741 ∠3.710 √3.445 √3.445	
	3.7413.7103.4763.445

-1.459

¹H NMR, CDCI₃, 400 HMz

¹H NMR Spectrum of Compound 4a

¹³C NMR Spectrum of Compound 4a

maxiaoming12 yhf-q2	7.391 7.724 7.724 7.726 7.726 7.566 7.566 7.567 7.567 7.567 7.567 7.567 7.547 7.547 7.547 7.543 7.401 7.419 7.419 7.419 7.419 7.413 7.334 7.336 7.3376 7.336 7.336 7.336 7.336 7.336 7.336 7.336 7.336 7.336 7.336 7.336 7.336 7.337777777777	-4.661 -4.630	-2.3691 -2.3554 -3.5542 -3.5542 -3.5542 -3.5542 -3.555 -3.304 -2.367 -2.367 -2.367	-1.784	-1.262
		SZ			

Z configuration

E configuration

Z/E=1.5: 1 ¹H NMR, CDCI₃, 400 HMz

¹H NMR Spectrum of Compound 4b

¹³C NMR Spectrum of Compound 4b

¹H NMR Spectrum of Compound 4c

¹³C NMR Spectrum of Compound 4c

¹H NMR Spectrum of Compound 4d

¹³C NMR Spectrum of Compound 4d

¹H NMR Spectrum of Compound 4e

¹³C NMR Spectrum of Compound 4e

¹H NMR Spectrum of Compound 4f

¹³C NMR Spectrum of Compound 4f

$$\begin{array}{c} 8.66 \\ 8.001 \\ \hline 8.66 \\ \hline 8.66 \\ \hline 8.66 \\ \hline 8.66 \\ \hline 7.55 \\ \hline 7.55$$

Z/E=1: 1 ¹H NMR, CDCI₃, 400 HMz

¹H NMR Spectrum of Compound 4g

¹³C NMR Spectrum of Compound 4g

¹H NMR Spectrum of Compound 4h

¹³C NMR Spectrum of Compound 4h

¹H NMR Spectrum of Compound 4i

¹³C NMR Spectrum of Compound 4i

3maxiaoming yhf14

¹⁹F NMR Spectrum of Compound 4i

¹H NMR Spectrum of Compound 4j

¹³C NMR Spectrum of Compound 4j

¹H NMR Spectrum of Compound 4k

¹³C NMR Spectrum of Compound 4k

Z/E= 10: 1 ¹H NMR, CDCI₃, 400 HMz

¹H NMR Spectrum of Compound 41

¹³C NMR Spectrum of Compound 41

¹H NMR Spectrum of Compound 4m

5.0 4.5 fl (ppm)

3.0

2.5

3.5

3.01 -≖

1.0

0.5

0.0

1.5

۲

3.01-

2.0

1.00-≖

4.0

000.00 000.00

က်

7.0

6.5

6.0

5.5

2.00 ⊣

8.0

9.5

9.0

8.5

2.00

4

7.5

¹³C NMR Spectrum of Compound 4m

maxi @setimes 1.2.2.3.2.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	-5.054 -5.025	~4.325 ~4.295
	\mathbf{Y}	\searrow

¹H NMR Spectrum of Compound 6a

¹³C NMR Spectrum of Compound 6a

¹H NMR Spectrum of Compound 6b

¹³C NMR Spectrum of Compound 6b

¹H NMR Spectrum of Compound 6c

¹³C NMR Spectrum of Compound 6c

¹H NMR Spectrum of Compound 6d

¹³C NMR Spectrum of Compound 6d

VIIIT	0	07	10	~	C: 1	
YHE-	-7.	21-	-1b.	1.	t1d	
	.			•••	1 1 1	

026 007	4473 4474 451 451 451 433 333 3372 3372 3372 3372 3372 3372 3	206 182 130 925 901 834 804
യ്യ്	ファック・ション ちょう ア う ち う ち ち ち ち ち ち ち ち ち ち ち ち ち ち ち	44440000
\searrow		

¹H NMR, CDCI₃, 400 HMz

¹H NMR Spectrum of Compound 6e

¹³C NMR Spectrum of Compound 6e

Z configuration E configuration

Z/E= 10: 1 ¹H NMR, CDCI₃, 400 HMz

¹H NMR Spectrum of Compound 6f

¹³C NMR Spectrum of Compound 6f

¹⁹F NMR Spectrum of Compound 6f

¹H NMR Spectrum of Compound 6g

¹³C NMR Spectrum of Compound 6g

Z/E= 10: 1 ¹H NMR, CDCI₃, 400 HMz

¹H NMR Spectrum of Compound 6h

¹³C NMR Spectrum of Compound 6h

¹H NMR Spectrum of Compound 6i

¹³C NMR Spectrum of Compound 6i

¹H NMR Spectrum of Compound 6j

¹³C NMR Spectrum of Compound 6j

Z/E= 10: 1 ¹H NMR, CDCI₃, 400 HMz

¹H NMR Spectrum of Compound 6k

¹³C NMR Spectrum of Compound 6k

3maxiaoming yhf28

¹⁹F NMR Spectrum of Compound 6k

¹H NMR Spectrum of Compound 7

¹³C NMR Spectrum of Compound 7