Chemodivergent Synthesis of *cis*-4-Hydroxyprolines from Diastereomerically Enriched Epoxides

Clement DaSilva,^a Grace Mauk,^a Lucas Forshee,^a Oliver Pope,^a Mathilde Doherty,^a Max Ongbongan,^a Nicholas Lutz,^a Zemirah Kamanya,^a Kara Chris Bhatt,^a Andrew Braham,^a Miranda Kubek,^a Summer Hawthorne,^a Gonzalo Campillo-Alvarado,^a Avik Bhattacharjee,^b Miriam A. Bowring,^a and Robert V. O'Brien.^{*a}

^b York University, 4700 Keele St., Toronto, ON, Canada, M3J 1P3.

* Email: <u>obrienb@reed.edu</u>

^a Reed College, 3203 SE Woodstock Blvd., Portland, OR, USA, 97202.

Table of Contents

Ι.	General information	S2
II.	Alkene synthesis by Ru-catalyzed alkene metathesis	S3
III.	Epoxide synthesis	S7
IV.	Epoxide opening	S10
V .	NMR data	S14
VI.	X-ray crystallographic data	S35
VII.	Computational data	S39

I. General information

All compounds were fully characterized by ¹H NMR, ¹³C NMR, IR, high resolution mass spectrometry (HRMS), and for enantiomerically pure products optical rotations were measured. IR spectra were collected on a Nicolet FT-IR with a diamond ATR plate. Optical rotations were measured on a Rudolph Research Analytical Autopol III polarimeter, with a 100 mm cell. Diastereomeric ratios were determined by ¹H NMR, and confirmed by HPLC, using an Agilent HP-1100 chromatography system equipped with a Regis Technologies, column (Reflect C-Cellulose B). X-ray quality crystals were grown for compounds 5, 8, and 9 by slow evaporation from acetone. Single crystal X-ray diffraction (SCXRD) data was collected on a Rigaku XtaLAB Mini II diffractometer with a CCD area detector (λ MoK α = 0.71073 Å, monochromator: graphite). The collected data was refined with CrysAlisPro through standard data reduction and background corrections. Crystals were mounted in Paratone oil on a Mitegen magnetic mount. Structure solution and refinement were performed using SHELXT and SHELXL, respectively within the Olex2 graphical user interface. The NMR spectra were recorded on a Brüker ASCEND EVO 400 (400 MHz) spectrometer. Chemical shifts (δ) are expressed in ppm, and J values are given in Hz, with deuterated CDCl₃ as solvent. All chemicals and solvents were used as received without further purification unless otherwise stated. Solvent was purchased from Sigma and Spectrum Chemical. (±)-Allylglycine, L-allylglycine, D-allylglycine, the D-Shi catalyst (1,2,4,5-Di-O-isopropylidene-B-D-erythro-2,3-hexodiulo-2,6-pyranose) were purchased from Ambeed. Oxone® was purchased from Oakwood. 2-Ethylbutene, 2-methyl-2-butene were purchased from TCI, America. Methylenecyclohexane, tosyl chloride, Second generation Grubbs catalyst, second generation Hoveyda-Grubbs catalyst, 1,2,3-trimethoxybenzene, tetrabutylammonium hydrogensulfate, dimethoxymethane, sodium hydroxide, thionyl chloride, triethylamine, and mchloroperbenzoic acid (m-CPBA) were purchased from Sigma. Chloroform-d was purchased from Cambridge Isotopes. Column chromatography was performed on silica gel (200-300 mesh). The residual solvent signals were used as references for ¹H and ¹³C NMR spectra (CDCl₃: $\delta H = 7.26 \text{ ppm}, \delta C = 77.16 \text{ ppm}$). The following abbreviations were used to describe multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. All splitting patterns were assigned based on the appearance of the multiplet, and clearly defined coupling constants. Splitting patterns that were difficult to interpret were designated as multiplet (m) or broad (br). IR spectral signals are designated strong (s), medium (m), weak (w). High resolution mass spectrometry analysis (HRMS) was performed on a Waters Synapt G2Si mass spectrometer. Analytical thin layer chromatography (TLC) was carried out on precoated silica gel plates (0.2 mm thickness). TLC plates were visualized with aqueous potassium permanganate stain.

II. Alkene synthesis by Ru-catalyzed alkene metathesis

N-tosylallylglycine ethyl ester (Scheme S1, compound 13), was prepared according to a modified literature procedure.¹ 10.0 g (86.9 mmol, 1.00 equiv) Allylglycine was dissolved in 50 mL 200 proof ethanol in a 500 mL round bottom flask equipped with a stir bar, and cooled on an ice-bath. 13.0 mL thionyl chloride (21.3g, 179 mmol, 2.05 equiv) was added dropwise, and the resulting mixture stirred overnight as it slowly warmed to room temperature. Ethanol was distilled off under reduced pressure, and the resulting white solids were redissolved in 200 mL dichloromethane in a 500 mL round bottom flask equipped with a stir bar, which was cooled on an ice-bath and treated with 33.0 g tosyl chloride (174 mmol, 2.00 equiv) and 50 mL triethylamine (36.3 g, 358 mmol, 4.12 equiv). Mixture stirred as it slowly warmed to room temperature overnight. Reaction was quenched by addition of 1M HCl_(aq), aqueous layer was extracted with dichloromethane (5 x 50 mL), organics were pooled, washed in saturated aqueous sodium bicarbonate, then water, then brine, then dried with MgSO₄, filtered, and concentrated *in vacuo*. Crude product was purified by silica gel chromatography (gradient of 20% → 40% ethyl acetate/hexanes eluent), delivering 20.2 g product **13** as a yellow oil (78% isolated yield). Spectral data matched the values reported in the literature.¹

Trisubstituted alkenes were prepared by Ru-catalyzed cross-metathesis following a modified literature procedure:²

General procedure: 1.0 g Alkene **13** (3.71 mmol) was transferred to a 100 mL round bottom flask equipped with a stir bar. 15 mL of 2:1 anhydrous dichloromethane:2-methylbutene was added, followed by 64 mg (2 mol %) second generation Grubbs catalyst. Flask was sealed with a glass stopper, wrapped with Teflon tape, and heated at 40 °C for 24 h. An additional 64 mg catalyst was added (4 mol % total), and the reaction proceeded for an additional 24 h, at which point the mixture was concentrated *in vacuo*, yielding a brown oil. Crude product was purified

¹ Kotha, S.; Sreenivasachary, N. Eur. J. Org. Chem. 2001, 3375-3383.

² Elaridi, J. Jackson, W. R.; Robinson, A. J. *Tetrahedron: Asymmetry* **2005**, *16*, 2025-2029

by silica gel chromatography (gradient of $15\% \rightarrow 20\%$ ethyl acetate/hexanes eluent), delivering 1.15 g alkene **6** as a light brown oil (95% isolated yield).

(±)-*N*-tosyl-5,5-dimethylallylglycine ethyl ester (6). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8 Hz, 2H), 7.29 (d, *J* = 4 Hz, 2H), 5.16 (d, *J* = 8 Hz, 1H), 3.97 (dd, *J* = 4, 8 Hz, 1H), 3.99-3.94 (3H, m), 2.48-2.39 (5H, m), 1.68 (s, 3H), 1.58 (s, 3H), 1.14 (t, J = 6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): 171.4, 143.7, 137.1, 136.8, 129.7, 117.0, 61.7, 55.7, 31.2, 26.0, 21.6, 18.1, 14.1; IR (neat): 3273 (w), 2978 (w), 2917 (w), 1732 (s), 1598 (w), 1495 (w), 1444 (w), 1370 (w), 1339 (m), 1305 (w), 1201 (w), 1157 (s), 1090 (m), 1020 (w), 951 (w), 854 (w), 814 (m), 744 (w), 707 (w), 661 (m) cm⁻¹; HRMS: calcd for C₁₆H₂₄NO₄S: 326.1426, found: 326.1429 (M+H); (*R*)-enantiomer: [α]_D -0.81° (c = 1.31, CHCl₃); (*S*)-enantiomer: [α]_D +0.17° (*c* = 1.19, CHCl₃).

(2*R*)-*N*-tosyl-2-amino-4-cyclohexylidenebutanoic acid ethyl ester (6b). Following the general procedure (substituting methylenecyclohexane for 2-methy-2-butene), following purification by silica gel chromatography, alkene **6b** was obtained in 70% isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8 Hz, 2H), 7.28 (d, *J* = 4 Hz, 2H), 5.08 (d, *J* = 12 Hz, 1H), 4.90 (t, *J* = 8 Hz, 1H), 3.98-3.91 (3H, m), 2.47-2.40 (5H, m), 2.06-2.01 (m, 4H), 1.55-1.45 (m, 6H, overlapping with H₂O), 1.12 (t, J = 8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 145.0, 143.5, 137.0, 130.0, 127.3, 113.3, 61.6, 55.7, 37.2, 31.1, 28.9, 28.5, 27.8, 26.7, 21.5, 14.0; IR (neat): 2988 (w), 2927 (m), 2853 (w) 2185 (w), 2160 (w) 1753 (s), 1598 (w), 1446 (w), 1369 (w), 1341 (m), 1305 (w) 1201 (w) 1162 (s), 1093 (w), 1020 (w), 952 (w), 853 (w), 815 (w), 707 (w), 664 (w); HRMS: calcd for C₁₉H₂₈NO₄S: 366.1739, found: 366.1738 (M+H); (*R*)-enantiomer: [α]_D -0.12° (*c* = 1.69, CHCl₃).

(2R)-N-tosyl-5,5-diethylallylglycine ethyl ester (6c). Following the general procedure, with the following modifications: substituting 2-ethyl-1-butene for 2-methy-2-butene; substituting second generation Grubbs catalyst for second generation Hoveyda-Grubbs catalyst; substituting

toluene for dichloromethane; carrying out reaction at 80 °C instead of 40 °C. Following purification by silica gel chromatography, alkene **6c** was obtained in 39% isolated yield. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8 Hz, 2H), 7.27 (d, *J* = 4 Hz, 2H), 5.12 (d, *J* = 12 Hz, 1H), 4.90 (t, *J* = 8 Hz, 1H), 3.97-3.91 (3H, m), 2.50-2.39 (5H, m), 1.98 (q, *J* = 8 Hz, 4H), 1.12 (t, *J* = 8 Hz, 3H), 0.92 (q, *J* = 8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 147.8, 143.6, 137.0, 129.6, 127.3, 114.8, 61.6, 56.7, 31.6, 29.1, 23.3, 21.5, 14.0, 13.1, 12.7; IR (neat): 3275 (br), 2965 (w), 2934 (w), 1732 (s), 1598 (w), 1444 (w), 1369 (w), 1340 (m), 1189 (w), 1157 (s), 1090 (m), 1019 (w), 919 (w), 853 (w), 813 (w), 707 (w), 661 (w), 552 (w), 429 (w) cm⁻¹; HRMS: calcd for C₁₈H₂₈NO₄S: 354.1739, found: 354.1734 (M+H); (*R*)-enantiomer: [α]_D -0.21° (*c* = 1.22, CHCl₃).

(2R)-N-tosyl-5,5-dimethylallylglycine methyl ester (6d). Ethyl ester 6 (1.06 g, 3.26 mmol, 1 equiv) was dissolved in 100 mL 10:1 THF:30% aqueous sodium hydroxide and stirred overnight at room temperature. 2.0 M HCl was added until pH reached 4, then the mixture was extracted with five volumes of 50 mL ethyl acetate. Organic layers were pooled, washed with brine, dried with MgSO₄, filtered, and concentrated in vacuo. The resulting oily residue was redissolved in 50 mL methanol and cooled on an ice bath. 1.0 mL thionyl chloride (1.64 g, 13.8 mmol, 4.2 equiv) was added dropwise, and mixture stirred overnight as it slowly warmed to room temperature. Quenched by addition of saturated aqueous sodium bicarbonate, extracted with five volumes of 50 mL ethyl acetate. Organic layers were pooled, washed with brine, dried with MgSO₄, filtered, and concentrated *in vacuo*. Following purification by silica gel chromatography, 582 mg alkene **6d** was obtained (57% isolated yield). ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, , J = 8 Hz, 2H) 7.28 (d, J = 8 Hz, 2H), 5.13 (d, J = 8 Hz, 1H), 4.93 (t, J = 8 Hz, 1H), 3.99-3.94 (m, 1H), 3.51 (s, 3H), 2.45-2.37 (m, 5H), 1.65 (s, 3H), 1.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.8, 143.7, 137.0, 129.7, 127.4, 116.9, 55.6, 52.5, 32.0, 26.0, 21.6, 18.0; IR (neat): 3267 (br), 3073 (w), 3035 (w), 2971 (w), 2952 (w), 2918 (w) 1736 (s), 1701 (w), 1671 (w), 1598 (w), 1497 (w) 1449 (m), 1442 (m), 1377 (w), 1358 (w), 1339 (s), 1321 (w), 1309 (w), 1279 (w), 1224 (w), 1199 (w), 1161 (s) 1111 (w), 1081 (s), 1018 (w), 988 (m), 950 (m), 907 (w), 863 (m), 817 (m), 801 (w), 783 (w), 726 (w), 699 (s) cm⁻¹; HRMS: calcd for $C_{15}H_{22}NO_4S$: 312.1270, found: 312.1273 (M+H); (*R*)enantiomer: $[\alpha]_{D}$ -0.23° (*c* = 14.1, CHCl₃).

(2R)-N-tosyl-5,5-dimethylallylglycine isopropyl ester (6e). Ethyl ester 6 (1.06 g, 3.26 mmol, 1 equiv) was dissolved in 100 mL 10:1 THF:30% aqueous sodium hydroxide and stirred overnight at room temperature. 2.0 M HCl was added until pH reached 4, then the mixture was extracted with five volumes of 50 mL ethyl acetate. Organic layers were pooled, washed with brine, dried

with MgSO₄, filtered, and concentrated *in vacuo*. The resulting oily residue was redissolved in 50 mL isopropanol and cooled on an ice bath. 1.0 mL thionyl chloride (1.64 g, 13.8 mmol, 4.2 equiv) was added dropwise, and mixture stirred overnight as it slowly warmed to room temperature. Quenched by addition of saturated aqueous sodium bicarbonate, extracted with five volumes of 50 mL ethyl acetate. Organic layers were pooled, washed with brine, dried with MgSO₄, filtered, and concentrated *in vacuo*. Following purification by silica gel chromatography, 447 mg alkene **6e** was obtained (40% isolated yield). ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8 Hz, 2H), 7.27 (d, *J* = 8 Hz, 2H), 5.13 (d, *J* = 12 Hz, 1H), 4.96 (t, *J* = 8 Hz, 1H), 4.81-4.72 (m, 1H), 3.93-3.88 (m, 1H), 2.45-2.36 (m, 5H), 1.66 (s, 3H), 1.57 (s, 3H), 1.11 (d, *J* = 8 Hz, 3H), 1.05 (d, *J* = 4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 171.0, 143.7, 137.1, 136.6, 129.7, 127.4, 117.1, 69.5, 55.7, 33.3, 26.0, 21.62, 21.59, 18.1; IR (neat): 3329 (br), 2973 (w), 2919 (w), 1736 (s), 1597 (w), 1496 (w), 1450 (w), 1423 (w), 1375 (w), 1352 (w), 1331 (s), 1307 (w), 1291 (w), 1276 (w), 1234 (w), 1203 (m), 1188 (w), 1156 (s), 1108 (w), 1087 (s), 1017 (w), 939 (m), 911 (w), 864 (w), 853 (w), 816 (s), 743 (m), 704 (w), 669 (s) cm⁻¹; HRMS: calcd for C₁₇H₂₆NO₄S: 340.1583, found: 340.1580 (M+H); (*R*)-enantiomer: [α]_D -0.72° (*c* = 7.7, CHCl₃).

III. Epoxide synthesis

- (A) *m*-CPBA oxidation: 3.42 g (10.5 mmol, 1 equiv) alkene (±)-6 was combined with 150 mL dichloromethane in a 500 mL round bottom flask equipped with a stir bar, and the resulting mixture was cooled on an ice-bath. 2.6 g (15.1 mmol, 1.43 equiv) *m*-CPBA was dissolved in 50 mL dichloromethane, and the resulting solution was added dropwise to the reaction mixture. Mixture stirred as it slowly warmed to room temperature overnight. The reaction was quenched in saturated aqueous sodium thiosulfate, and the organic layer was separated in a separatory funnel. The aqueous layer was extracted 5 x 25 mL dichloromethane, and organic layers were pooled, washed in saturated aqueous sodium bicarbonate, then deionized water, then brine. The organic layer was then dried with MgSO₄, filtered, and concentrated *in vacuo*. Crude product was purified by silica gel chromatography (gradient of 30% → 40% ethyl acetate/hexanes eluent), affording 9.43 g epoxide (±)-**7** as a yellow oil (70% yield), as a 49:51 mixture of *cis:trans* diastereomers (as determined by HPLC and ¹H NMR).
- (B) Shi epoxidation: 512 mg (1.57 mmol, 1 equiv) alkene (R)-6 was combined with 204 mg D-Shi catalyst (0.790 mmol, 50 mol %), 266 mg tetra-n-butylammonium hydrogensulfate (0.783 mmol, 50 mol %) in a 250 mL round bottom flask equipped with a stir bar. The mixture of solids was dissolved in 42 mL 2:1 dimethoxymethane:acetonitrile, and 28 mL borate buffer (0.05 M Na₂B₄O₇, 0.0004 M Na₂EDTA₂) was added while stirring vigorously. Resulting mixture was cooled on an ice-bath, and 20 mL 0.68 M aqueous Oxone® and 20 mL 1.27 M aqueous K_2CO_3 were added via syringe pump, at a flow rate of 20 mL/hour, over 1 hour. When the syringe pump additions were complete, the reaction was quenched in saturated aqueous sodium thiosulfate, and the organic layer was separated in a separatory funnel. The aqueous layer was extracted 5 x 25 mL ethyl acetate, and organic layers were pooled, washed in saturated aqueous sodium bicarbonate, then deionized water, then brine. The organic layer was then dried with MgSO₄, filtered, and concentrated in vacuo. Crude product was purified by chromatography using basified silica gel³ (gradient of $30\% \rightarrow 40\%$ ethyl acetate/hexanes eluent), delivering 499 mg epoxide (2R,4R)-7 as a yellow oil (93% yield), as a 89:11 mixture of cis:trans diastereomers (as determined by ¹H NMR).

(±)-*N*-tosyl-4,5-epoxyhomoleucine ethyl ester (7). ¹H NMR (400 MHz, CDCl₃): (49:51 *cis:trans*) δ 7.68-7.65 (m, 4H, overlapping *cis/trans*), 7.24-7.21 (m, 4H, overlapping *cis/trans*), 5.37 (d, *J* = 8

³ Silica gel was basified by flushing with 1% triethylamine/hexanes prior to equilibrating the column. All the epoxides we synthesized proved sensitive to degradation on normal silica gel, causing generation of unknown byproducts and reduction of yield. Even with basified silica some degradation still occurs, making purification more difficult than the alkene or proline compounds.

Hz, 1H, *trans*, NH), 5.23 (d, J = 8 Hz, 1H, *cis*, NH), 4.06-3.87 (m, 6H, overlapping *cis/trans*), 2.78-2.70 (m, 2H, overlapping *cis/trans*), 2.35 (apparent d, J = 4 Hz, 6H, overlapping *cis/trans*), 2.04 (dt, J = 12, 4 Hz, 1H, *cis*), 1.90-1.80 (m, 3H, overlapping *cis/trans*), 1.24 (s, 3H, *trans*); 1.21 (3H, s, *cis*), 1.17 (s, 6H, overlapping *cis/trans*), 1.08 (t, J = 8 Hz, 3H, *trans*), 1.04 (t, J = 6 Hz, 3H, *cis*); ¹³C NMR (100 MHz, CDCl₃): (49:51 *cis:trans*) δ 171.3, 171.0, 143.94 143.87, 136.9, 136.7, 129.9, 129.3, 127.5, 127.4, 62.3, 62.1, 60.6, 60.0, 54.2, 54.0, 33.2, 32.7, 24.71, 24.68, 21.66, 19.1, 19.0, 14.0; ; IR (neat): 3271 (w), 2980 (w), 2927 (w), 1735 (s), 1598 (w), 1495 (w), 1447 (w), 1370 (w), 1338 (m), 1305 (w), 1217 (w), 1185 (w), 1159 (s), 1119 (w), 1091 (w), 1020 (w), 895 (w), 855 (w), 814 (m), 736, 706, 661 (s) cm⁻¹; HRMS: calcd for C₁₆H₂₄NO₅S: 342.137, found: 342.1368 (M+H).

(2*R*,4*R*)-*N*-tosyl-2-amino-4,5-epoxy-4-cyclohexylidenebutanoic acid ethyl ester (7b). ¹H NMR (400 MHz, CDCl₃): (91:9 *cis*:*trans*) δ 7.75-7.71 (m, 2H, overlapping *cis*/*trans*), 7.30-7.26 (m, 2H, overlapping *cis*/*trans*), 5.46 (d, *J* = 8 Hz, 1H, *trans*, NH), 5.33 (d, *J* = 12 Hz, 1H, *cis*, NH), 4.17-4.10 (m, 1H, overlapping *cis*/*trans*), 4.09-3.94 (m, 2H, overlapping *cis*/*trans*), 2.87-2.84 (m, 1H, overlapping *cis*/*trans*), 2.43 (s, 3H, overlapping *cis*/*trans*), 1.98-1.87 (m, 2H, overlapping *cis*/*trans*), 1.73-1.65 (m, 2H, overlapping *cis*/*trans*), 1.59-1.44 (m, 8H, overlapping *cis*/*trans*); 1.17 (t, *J* = 6 Hz, 3H, *trans*), 1.12 (t, *J* = 8 Hz, 3H, *cis*); ¹³C NMR (100 MHz, CDCl₃): (91:9 *cis*:*trans*) δ 171.3, 171.1, 143.9 143.8, 136.9, 136.6, 129.9, 129.8, 127.5, 127.4, 63.0, 62.8, 60.6, 60.0, 54.2, 54.0, 33.2, 32.7, 24.71, 24.68, 21.66, 19.1, 19.0, 14.0; ; IR (neat): 3270 (w), 2857 (w), 2931 (w), 1734 (s), 1598 (w), 1494 (w), 1447 (m), 1369 (w), 1339 (w), 1289 (w), 1184 (w), 1160 (s), 1118 (w), 1091 (m), 1020 (w), 905 (w), 854 (w), 814 (m), 735 (w), 706 (w), 662 (s); HRMS: calcd for C₁₉H₂₈NO₅S: 382.1688, found: 382.1685 (M+H).

(2*R*,4*R*)-*N*-tosyl-2-amino-4,5-epoxy-5-ethylheptanoic acid ethyl ester (7c). ¹H NMR (400 MHz, CDCl₃): (88:12 *cis:trans*) δ 7.73 (d, J = 12 Hz, 2H, overlapping *cis/trans*), 7.30 (d, J = 12 Hz, 2H, overlapping *cis/trans*), 5.44 (d, J = 8 Hz, 1H, *cis*), 5.31 (d, J = 8 Hz, 1H, *trans*), 4.10-3.94 (m, 3H, overlapping *cis/trans*), 2.85-2.82 (m, 1H, overlapping *cis/trans*), 2.41 (s, 3H, overlapping *cis/trans*), 2.18-2.12 (m, 1H, overlapping *cis/trans*), 1.94-1.87 (m, 1H, overlapping *cis/trans*), 1.54-1.40 (m, 4H, overlapping *cis/trans*), 1.15 (t, J = 8 Hz, 3H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, overlapping *cis/trans*), 1.15 (t, J = 8 Hz, 3H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, overlapping *cis/trans*), 1.15 (t, J = 8 Hz, 3H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, overlapping *cis/trans*), 0.95 (t, J = 12 Hz, 2H, 0.05 Hz, 0.05

8 Hz, 3H, overlapping *cis/trans*), 0.88 (t, *J* = 8 Hz, 3H, overlapping *cis/trans*); ¹³C NMR (100 MHz, CDCl₃): (88:12 *cis:trans*) δ 175.4, 143.4, 138.1, 129.3, 128.0, 79.3, 77.7, 62.1, 60.9, 36.4, 30.0, 29.3, 21.5, 13.8, 10.5, 9.9; IR (neat): 3261 (w), 2965 (w), 2939 (w), 2879 (w), 1738 (s), 1728 (w), 1597 (w), 1497 (w), 1450 (w), 1420 (w), 1370 (w), 1339 (s), 1309 (w), 1276 (w), 1215 (w), 1185 (w), 1160 (s), 1121 (w), 1086 (m), 1017 (w), 967 (w), 927 (w), 896 (w), 865 (w), 852 (w), 818 (w), 735 (w), 705 (w), 666 (s), 608 (w), 569 (w), 554 (m), 504 (w), 490 (w), 443 (w), 425 (w) cm⁻¹; HRMS: calcd for C₁₈H₂₈NO₅S: 370.1688, found: 370.1685 (M+H).

(2*R*,4*R*)-*N*-tosyl-4,5-epoxyhomoleucine methyl ester (7d). ¹H NMR (400 MHz, CDCl₃): (89:11 *cis:trans*) δ 7.73 (d, J = 8 Hz, 2H, overlapping *cis/trans*), 7.29 (d, , J = 8 Hz, 2H, overlapping *cis/trans*), 5.40 (d, J = 8 Hz, 1H, *trans*), 5.28 (d, J = 8 Hz, 1H, *cis*), 4.16-4.11 (m, 1H, overlapping *cis/trans*), 4.05-4.00 (m, 1H, *trans*), 3.59 (s, 3H, *trans*), 3.53 (s, 3H, *cis*), 2.83-2.80 (m, 1H, overlapping *cis/trans*), 1.29 (s, 3H, *overlapping cis/trans*), 1.96-1.85 (2H, m, overlapping *cis/trans*), 1.29 (s, 3H, *cis*), 1.28 (s, 3H, *trans*), 1.23 (s, 3H, overlapping *cis/trans*; ¹³C NMR (100 MHz, CDCl₃): (89:11 *cis:trans*) δ 171.8, 143.9, 136.9, 129.9, 129.8, 127.4, 60.5, 58.7, 54.2, 52.8, 33.0, 24.7, 21.7, 19.0; IR (neat): 3276 (br), 2923 (w), 2853 (w), 1741 (s), 1598 (w), 1436 (m), 1379 (w), 1337 (s), 1275 (w), 1220 (w), 1159 (s), 1120 (w), 1091 (m), 1019 (w), 952 (w), 845 (w), 841 (m), 776 (w), 706 (w), 662 (s), 575 (w), 555 (s) cm⁻¹; HRMS: calcd for C₁₅H₂₂NO₅S: 328.1219, found: 328.1219 (M+H).

(2*R*,4*R*)-*N*-tosyl-4,5-epoxyhomoleucine isopropyl ester (7e). ¹H NMR (400 MHz, CDCl₃): (89:11 *cis:trans*) δ 7.72 (d, *J* = 8 Hz, 2H, overlapping *cis/trans*), 7.27 (d, *J* = 8 Hz, 2H, overlapping *cis/trans*), 5.46 (d, *J* = 8 Hz, 1H, *trans*), 5.33 (d, *J* = 12 Hz, 1H, *cis*), 4.81-4.74 (m, 1H, overlapping *cis/trans*), 4.06-4.00 (m, 1H, *cis*), 3.97-3.90 (m, 1H, *trans*), 2.86-2.83 (m, 1H, overlapping *cis/trans*), 2.40 (s, 3H, overlapping *cis/trans*), 1.93-1.79 (m, 2H, overlapping *cis/trans*), 1.33 (s, 3H, *trans*), 1.28 (s, 3H, *trans*), 1.24 (s, 3H, *cis*), 1.14 (d, *J* = 8 Hz, 3H, *trans*), 1.11 (d, *J* = 4 Hz, 3H, *cis*), 1.07 (d, *J* = 4 Hz, 3H, *trans*), 1.01 (d, *J* = 8 Hz, 3H, *cis*); ¹³C NMR (100 MHz, CDCl₃): (89:11 *cis:trans*) δ 170.8, 143.8, 136.9, 129.8, 127.5, 70.0, 60.7, 58.8, 54.3, 33.3, 24.71, 24.69, 21.6, 21.51, 19.1; IR (neat): 3289 (br), 2981 (w), 2928 (w), 2878 (w), 1735 (s), 1597 (w), 1496 (w), 1442 (w), 1422 (w), 1402 (w), 1374 (w), 1357 (w), 1331 (s), 1307 (w), 1283 (w), 1214 (m), 1185 (w), 1192 (w), 1160 (s), 1139 (w), 1111 (s) 1088 (s), 1045 (w), 1016 (m), 943 (m), 915 (w), 893 (w), 858 (m) 816 (s), 800 (w), 784 (m), 736 (m), 683 (w), 668 (s) 633 (w) cm⁻¹; HRMS: calcd for C₁₇H₂₆NO₅S: 356.1532, found: 356.1530 (M+H).

IV. Epoxide opening

- A. A 20 mL scintillation vial was charged with 48.6 mg (0.142 mmol, 1 equiv) epoxide *cis*-7 and equipped with a stir bar. Anhydrous dichloromethane (5 mL) was added and mixture was cooled on an ice-bath. 10 μL (17 mg, 0.11 mmol, 75 mol %) trifluoromethanesulfonic acid was added via syringe and the mixture stirred for 1 hour. Mixture was filtered through a plug of anhydrous K₂CO₃, plug was washed in 5 x 2 mL dichloromethane, and solution was concentrated *in vacuo*. Percent conversion was assayed by ¹H NMR using 1,2,3-trimethoxybenzene as an internal standard in CDCl₃. Crude product was purified by silica gel chromatography (gradient of 20% → 30% ethyl acetate/hexanes eluent), and 26.1 mg proline **5** was obtained as a white solid residue (54% yield).
- B. A 20 mL scintillation vial was charged with 50.3 mg (0.147 mmol, 1 equiv) epoxide *cis*-7 inside a glovebox. Anhydrous dichloromethane (5 mL) was added and mixture was transferred via syringe to a second 20 mL scintillation vial containing 5.0 mg (0.014 mmol, 10 mol %) InBr₃ and 500 mg 4 Å molecular sieves (which were dried in the oven at 150 °C for 24 hours and cooled under vacuum prior to use). Vial was equipped with a stir bar, and mixture stirred for 3 hours at room temperature, and was then removed from the glovebox and filtered through a plug of Celite. Plug was washed in 5 x 2 mL dichloromethane, and solution was concentrated *in vacuo*. Percent conversion was assayed by ¹H NMR using 1,2,3-trimethoxybenzene as an internal standard in CDCl₃. Crude product was purified by silica gel chromatography (gradient of 20% → 30% ethyl acetate/hexanes eluent), and 20.3 mg proline **5** was obtained as a white solid residue (40% yield).
- C. A 20 mL scintillation vial was charged with 22.4 mg (0.0656 mmol, 1 equiv) epoxide trans-7, and vial was equipped with a stir bar. Anhydrous dichloromethane (5 mL) was added and mixture was transferred via syringe to a second 20 mL scintillation vial containing 3.6 mg (0.0064 mmol, 10 mol %) In(OTf)₃. Mixture stirred for 24 hours at room temperature, and was then filtered through a plug of Celite. Plug was washed in 5 x 2 mL dichloromethane, and solution was concentrated *in vacuo*. Percent conversion was assayed by ¹H NMR using 1,2,3-trimethoxybenzene as an internal standard in CDCl₃. Crude product was purified by silica gel chromatography (gradient of 20% → 30% → 40% ethyl acetate/hexanes eluent), and 20.3 mg proline 5 was obtained as a white solid residue (38% yield).

(2*R*,4*R*)-*N*-tosyl-4-hydroxy-5,5-dimethylproline ethyl ester (5). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8 Hz, 2H), 7.27 (d, *J* = 8 Hz, 2H), 4.46 (dd, *J* = 8 Hz, 2 Hz, 1H), 4.14-4.03 (m, 2H), 3.74-3.67 (m, 2H), 2.57-2.50 (m, 1H), 2.41 (s, 3H), 1.88 (d, , *J* = 12 Hz, 1H), 1.51 (s, 3H), 1.33 (s, 3H), 1.24 (t, *J* = 8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃: δ 175.3, 143.7, 138.3, 129.51, 129.47, 128.1, 127.8, 80.6, 71.0, 62.3, 60.3, 34.9, 26.4, 23.1, 21.7, 14.0; IR (neat): 3529 (m), 2987 (w), 2924 (w), 1757 (s), 1596 (w), 1497 (w), 1449 (w), 1326 (s), 1308 (w), 1245 (w), 1231 (w), 1210 (w), 1147 (w), 1132 (s), 1098 (w), 1075 (w), 1040 (w), 1026 (w), 1013 (w), 983 (w), 931 (w), 867 (w), 855 (w), 817 (m), 714 (m), 676 (m), 652 (m) cm⁻¹; HRMS: calcd for C₁₆H₂₄NO₅S: 342.1375, found: 342.1378 (M+H); (2*R*,4*R*)-enantiomer: [α]_D -0.96° (*c* = 1.45, CHCl₃).

Ethyl (2*R***,4***R***)-***N***-tosyl-4-hydroxy-1-azaspiro[4.5]decane-2-carboxylate (10).¹H NMR (400 MHz, CDCl₃): δ 7.78 (d,** *J* **= 8 Hz, 2H), 7.26 (d,** *J* **= 8 Hz, 2H), 4.49 (dd,** *J* **= 4, 12 Hz, 1H); 4.30 (d,** *J* **= 4 Hz, 1H), 4.11-3.96 (2H, m), 2.53-2.44 (m, 1H), 2.41 (s, 3H), 2.34-2.26 (m, 1H), 2.22-2.14 (m, 1H), 2.11-2.06 (m, 1H), 1.89 (d,** *J* **= 16 Hz, 1H), 1.73-1.62 (m, 3H), 1.47-1.25 (m, 4H), 1.22 (t,** *J* **= 8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.5, 143.4, 138.7, 129.3, 127.9, 76.0, 74.2, 62.2, 60.1, 35.0, 34.5, 31.7, 25.0, 24.8, 24.4, 21.5, 13.9; IR (neat): 3445 (br), 2935 (w), 2866 (w), 1721 (s), 1598 (w), 1449 (w), 1379 (w), 1329 (w), 1265 (m), 1208 (w), 1155 (s), 1113 (w), 1093 (w) 1065 (w), 1002 (w), 950 (w), 094 (w), 816 (w), 732 (s), 702 (w), 670 (w), 642 (w) cm⁻¹; HRMS: calcd for C₁₉H₂₈NO₅S: 382.1688, found: 382.1690 (M+H); (2***R***,4***R***)-enantiomer: [α]_D -0.22° (***c* **= 1.31, CHCl₃).**

(2*R*,4*R*)-*N*-tosyl-4-hydroxy-5,5-diethylproline ethyl ester (11). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8 Hz, 2H), 7.27 (d, *J* = 8 Hz, 2H), 4.43 (dd, *J* = 2, 8 Hz, 1H); 4.08-3.92 (2H, m), 3.83 (d, *J* = 12 Hz, 1H), 2.61-2.43 (m, 1H), 2.41 (s, 3H), 2.33-2.24 (m, 1H), 2.06-1.99 (m, 1H), 1.96-1.83 (m, 3H), 1.22 (t, *J* = 8 Hz, 3H), 1.07 (t, *J* = 8 Hz, 3H), 0.86 (t, *J* = 8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 175.4, 143.4, 138.1, 129.3, 127.9, 79.3, 77.7, 62.1, 60.9, 36.4, 30.0, 29.3, 21.5, 13.8, 10.5, 9.9; IR (neat): 3463 (br), 2975 (w), 1720 (s), 1598 (w), 1495 (w), 1446 (w), 1378 (w), 1331 (w), 1304 (w), 1266 (w), 1210 (w), 1154 (s), 1092 (m), 1052 (w), 1021 (w), 1004 (w), 925 (w), 816 (w), 733 (s), 703 (w), 668 (m), 599 (w), 580 (m), 546 (m) cm⁻¹; HRMS: calcd for C₁₈H₂₈NO₅S: 370.1688, found: 370.1687 (M+H); (2*R*,4*R*)-enantiomer: $[\alpha]_D$ -0.12° (*c* = 1.99, CHCl₃).

(2*R***,4***R***)-***N***-tosyl-4-hydroxy-5,5-dimethylproline methyl ester (12). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d,** *J* **= 8 Hz, 2H), 7.28 (d,** *, J* **= 8 Hz, 2H), 4.49 (d,** *, J* **= 8 Hz, 1H), 3.76-3.72 (m, 1H), 3.66 (s, 3H), 3.58 (d,** *J* **= 12 Hz, 1H), 2.57-2.50 (m, 1H), 2.42 (s, 3H), 1.89 (d,** *J* **= 16 Hz, 1H), 1.51 (s, 3H), 1.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): \delta 175.7, 143.7, 138.2, 129.5, 128.1, 80.6, 71.0, 60.1, 53.1, 34.9, 26.4, 23.1, 21.6; IR (neat): 3527 (br), 2993 (w), 2950 (w), 2928 (w), 1766 (s), 1727 (w), 1596 (m), 1497 (w), 1439 (m), 1410 (w), 1387 (w), 1369 (w), 1327 (s), 1308 (w), 1289 (w), 1265 (w), 1246 (w), 1197 (m), 1135 (s), 1095 (m), 1073 (m), 1043 (w), 1025 (w), 1012 (w), 985 (w), 942 (w), 902 (m), 865 (w), 820 (s), 806 (w), 735 (w), 718 (m), 672 (m), 654 (m), 636 (w) cm⁻¹; HRMS: calcd for C₁₅H₂₂NO₅S: 328.1219, found: 328.1216 (M+H); (2***R***,4***R***)-enantiomer: [\alpha]_D +0.20° (***c* **= 0.99, CHCl₃).**

(2*R*,4*R*)-*N*-tosyl-4-hydroxy-5,5-dimethylproline isopropyl ester (13). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 8 Hz, 2H), 7.27 (d, *J* = 8 Hz, 2H), 4.95-4.89 (m, 1H), 4.43 (d, *J* = 12 Hz, 1H), 3.75-3.72 (m, 1H), 3.71-3.65 (m, 1H), 2.56-2.49 (m, 1H), 2.41 (s, 3H), 1.86 (d, *J* = 16 Hz, 1H), 1.51 (s, 3H), 1.32 (s, 3H), 1.25 (d, *J* = 8 Hz, 3H), 1.22 (d, *, J* = 8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.9, 143.7, 138.4, 129.6, 128.1, 80.7, 71.0, 70.3, 60.5, 35.0, 26.4, 23.2, 21.7, 21.6; IR (neat): 3469 (br), 2983 (w), 2937 (w), 1719 (s), 1599 (w), 1496 (w), 1456 (w), 1375 (w), 1331 (m), 1265 (m), 1219 (m), 1175 (w), 1152 (s), 1104 (w), 1092 (m), 1073 (w), 1050 (w), 1021 (w), 1009 (w), 990 (w), 935 (w), 903 (w), 864 (w), 835 (w), 815 (w), 802 (w), 733 (s), 703 (w), 673 (m), 659 (w) cm⁻¹; HRMS: calcd for C₁₇H₂₆NO₅S: 356.1532, found: 356.1530 (M+H); (2*R*,4*R*)-enantiomer: [α]_D +0.11° (*c* = 1.24, CHCl₃).

(2*S***)-***N***-tosyl-4-oxo-homoleucine (9).¹H NMR (400 MHz, CDCl₃): δ7.74 (d,** *J* **= 8 Hz, 2H), 7.29 (d,** *J* **= 8 Hz, 2H), 5.61 (d,** *J* **= 8 Hz, 1H), 4.07-3.97 (m, 3H), 3.10 (ddd,** *J* **= 28 Hz, 18 Hz, 4 Hz, 2H), 2.57-**

2.50 (m, 1H), 2.41 (s, 3H), 1.25-1.06 (m, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 211.9, 170.4, 143.7, 137.0, 129.8, 127.4, 62.1, 51.9, 43.6, 40.8, 21.7, 18.1, 14.0; IR (neat): 3282 (m), 2973 (w), 2933 (w), 1732 (s), 1709 (m), 1598 (w), 1496 (w), 1445 (w), 1427 (w), 1383 (w), 1340 (w), 1306 (w), 1272 (w), 1225 (w), 1209 (w), 1187 (w), 1165 (w), 1122 (w), 1089 (w), 1060 (w), 1027 (w), 1004 (w), 939 (w), 818 (w), 748 (w), 706 (w), 681 (w), 661 (w) cm⁻¹; HRMS: calcd for C₁₆H₂₄NO₅S: 342.1375, found: 342.1375 (M+H); (*R*)-enantiomer: [α]_D -0.29° (*c* = 0.77, CHCl₃).

(25,4*R*)-*N*-tosyl-2-amino-5-hydroxy-5-methyl-4-hexanolide (8). ¹H NMR (400 MHz, CDCl₃): δ 7.17 (d, , *J* = 8 Hz, 2H), 7.34 (d, , *J* = 8 Hz, 2H), 4.98 (d, *J* = 4 Hz, 1H), 4.32 (dd, *J* = 2, 8 Hz, 1H), 4.16 (td, *J* = 2, 8 Hz, 1H), 2.83-2.77 (m, 1H), 2.44 (s, 3H), 2.38-2.30 (m, 1H), 1.31 (s, 3H), 1.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 174.8, 144.4, 135.8, 130.1, 127.5, 127.4, 84.5, 72.1, 51.7, 31.5, 26.7, 25.9, 21.7; IR (neat): 3523 (br), 3241 (m), 2965 (w), 2920 (w), 1753 (s), 1599 (w), 1458 (w), 1371 (w) 1351 (w), 1327 (m), 1307 (w), 1260 (w), 1213 (w), 1184 (w), 1150 (m), 1124 (m), 1092 (w), 1057 (w), 1022 (w), 1006 (w), 985 (w), 954 (w), 909 (w), 864 (w), 846 (w), 821 (w), 803 (w), 780 (w), 740 (w), 698 (w), 664 (w), 617 (w), 562 (w), 541 (w), 433 (w), 426 (w), 419 (w) cm⁻¹; HRMS: calcd for C₁₄H₂₀NO₅S: 314.062, found: 314.1059 (M+H); (2*R*,4*S*)-enantiomer: [α]_D +0.09° (*c* = 0.46, CHCl₃).

V. ¹H and ¹³C NMR data

(±)-*N*-tosyl-5,5-dimethylallylglycine ethyl ester (6).

(2R)-N-tosyl-2-amino-4-cyclohexylidenebutanoic acid ethyl ester (6b).

(2R)-N-tosyl-2-amino-4-cyclohexylidenebutanoic acid ethyl ester (6c).

(2*R*)-*N*-tosyl-5,5-dimethylallylglycine methyl ester (**6d**).

(2*R*)-*N*-tosyl-5,5-dimethylallylglycine isopropyl ester (6e).

(±)-*N*-tosyl-4,5-epoxyhomoleucine ethyl ester (7). (49:51 *cis:trans*)

HPLC DATA: Reflect C-Cellulose B column, 98:2 hexanes:ethanol, 230 nm, 0.25 mL/min

(±)-*N*-tosyl-4,5-epoxyhomoleucine ethyl ester (7). (48:52 *cis:trans*) by HPLC:

Peak (min)	retention time	integration
(2S,4R)- <i>trans</i> epoxide	15.681	19374.5
(2R,4S)- <i>trans</i> epoxide	16.496	21910.9
(2R,4R)- <i>cis</i> epoxide	18.849	19374.5
(2S,4S)-cis epoxide	20.106	22307.8

(2*R*,4*R*)-*N*-tosyl-4,5-epoxyhomoleucine ethyl ester (*cis-7*). (91:9 *cis:trans*) by HPLC:

Peak (min)	retention time	integration
(2S,4R)- <i>cis</i> epoxide	15.501	1397.31
(2S,4S)- <i>cis</i> epoxide	18.372	14050.9

(2R,4S)-N-tosyl-4,5-epoxyhomoleucine ethyl ester (trans-7). (15:85 cis:trans) by HPLC:

<u>Peak (min)</u>	retention time	integration
(2S,4R)- <i>trans</i> epoxide	16.612	24825.7
(2S,4S)-cis epoxide	19.558	4248.51

(2R,4R)-N-tosyl-4,5-epoxyhomoleucine ethyl ester (cis-7). (89:11 cis:trans)

(2S,4R)-N-tosyl-4,5-epoxyhomoleucine ethyl ester (trans-7). (15:85 cis:trans)

(2*R*,4*R*)-*N*-tosyl-2-amino-4,5-epoxy-4-cyclohexylidenebutanoic acid ethyl ester (*cis*-7b). (91:9 *cis*:*trans*)

(2R,4R)-N-tosyl-2-amino-4,5-epoxy-5-ethylheptanoic acid ethyl ester (cis-7c). (88:12 cis:trans)

(2R,4R)-N-tosyl-4,5-epoxyhomoleucine methyl ester (cis-7d). (89:11 cis:trans)

(2R,4R)-N-tosyl-4,5-epoxyhomoleucine isopropyl ester (cis-7e). (89:11 cis:trans)

(2R,4R)-N-tosyl-4-hydroxy-5,5-dimethylproline methyl ester (12).

(2R,4R)-N-tosyl-4-hydroxy-5,5-dimethylproline isopropyl ester (13).

(2S)-N-tosyl-4-oxo-homoleucine (9).

VI. X-ray crystallographic data

Crystallographic information for (2*R*)-*N*-tosyl-4-hydroxy-5,5-dimethylproline (5).

$C_{16}H_{23}NO_5S$
341.41
100.15
monoclinic
P2 ₁ /c
7.4892(3)
12.0747(5)
18.9252(10)
90
98.818(5)
90
1691.17(13)
4
1.341
0.216
728.0
0.595 × 0.128 × 0.055
ΜοΚα (λ = 0.71073)
4.356 to 49.992
-8 ≤ h ≤ 8, -14 ≤ k ≤ 14, -22 ≤ l ≤ 22
9970
2963 [R _{int} = 0.0559, R _{sigma} = 0.0635]
2963/0/213
1.102
R ₁ = 0.0597, wR ₂ = 0.1715
$R_1 = 0.0779$, $wR_2 = 0.1807$
1.43/-0.39
2385171

Crystallographic information for (2R,4S)-*N*-tosyl2-amino-5-hydroxy-5-methyl-4-hexanolide (P2₁/c polymorph, **8a**).

Empirical formula	C ₁₄ H ₁₉ NO ₅ S
Formula weight	313.36
Temperature/K	99.97(17)
Crystal system	monoclinic
Space group	P21/c
a/Å	11.5944(8)
b/Å	11.4209(7)
c/Å	11.4442(6)
α/°	90
β/°	102.045(5)
γ/°	90
Volume/Å ³	1482.06(16)
Z	4
$\rho_{calc}g/cm^3$	1.404
µ/mm ⁻¹	0.239
F(000)	664.0
Crystal size/mm ³	$0.28 \times 0.14 \times 0.07$
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.062 to 50
Index ranges	-13 ≤ h ≤ 13, -12 ≤ k ≤ 13, -13 ≤ l ≤ 13
Reflections collected	12516
Independent reflections	2607 [R _{int} = 0.0786, R _{sigma} = 0.0819]
Data/restraints/parameters	2607/0/194
Goodness-of-fit on F ²	0.985
Final R indexes [I>=2σ (I)]	$R_1 = 0.0481$, $wR_2 = 0.1018$
Final R indexes [all data]	R ₁ = 0.0919, wR ₂ = 0.1114
Largest diff. peak/hole / e Å ⁻³	0.22/-0.40
CCDC number	2385172

(2*R*,4*S*)-*N*-tosyl2-amino-5-hydroxy-5-methyl-4-hexanolide (*Pna*2₁polymorph, **8b**).

Empirical formula	$C_{14}H_{19}NO_5S$
Formula weight	313.36
Temperature/K	99.97(16)
Crystal system	orthorhombic
Space group	Pna21
a/Å	11.4970(17)
b/Å	20.881(3)
c/Å	6.4271(12)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1543.0(4)
Z	4
$\rho_{calc}g/cm^3$	1.349
µ/mm⁻¹	0.230
F(000)	664.0
Crystal size/mm ³	0.988 × 0.053 × 0.033
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.27 to 49.98
Index ranges	-13 ≤ h ≤ 13, -24 ≤ k ≤ 24, -7 ≤ l ≤ 7
Reflections collected	10443
Independent reflections	2707 [R _{int} = 0.0928, R _{sigma} = 0.1095]
Data/restraints/parameters	2707/1/194
Goodness-of-fit on F ²	0.983
Final R indexes [I>=2σ (I)]	R ₁ = 0.0577, wR ₂ = 0.1030
Final R indexes [all data]	R ₁ = 0.1056, wR ₂ = 0.1127
Largest diff. peak/hole / e Å ⁻³	0.25/-0.32
Flack parameter	0.06(13)
CCDC number	2385173

Crystallographic information for (2*R*)-*N*-tosyl-4-oxo-homoleucine (9).

Empirical formula	$C_{16}H_{23}NO_5S$
Formula weight	341.41
Temperature/K	100.15
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	20.066(2)
b/Å	5.1482(5)
c/Å	18.0857(18)
α/°	90
β/°	110.174(12)
γ/°	90
Volume/Å ³	1753.7(3)
Z	4
$\rho_{calc}g/cm^3$	1.293
µ/mm⁻¹	0.208
F(000)	728.0
Crystal size/mm ³	0.614 × 0.05 × 0.033
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.532 to 49.99
Index ranges	$-21 \le h \le 23, -6 \le k \le 6, -21 \le l \le 21$
Reflections collected	11944
Independent reflections	3064 [R _{int} = 0.1116, R _{sigma} = 0.1082]
Data/restraints/parameters	3064/0/212
Goodness-of-fit on F ²	0.965
Final R indexes [I>=2σ (I)]	$R_1 = 0.0654$, $wR_2 = 0.1521$
Final R indexes [all data]	$R_1 = 0.1125, wR_2 = 0.1691$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.54
CCDC number	2386128

VII. Computational data

All Density Functional Theory (DFT) calculations were performed at B3LYP/6-311+g(d,p) using Grimme's D3 dispersion correction with Becke-Johnson damping (DFT-D3(BJ)) employing an implicit solvation model (iefpcm) for benzene using the Gaussian 16 suite of quantum chemistry program. Quantum Theory of Atoms in Molecules (QTAIM) analyses to get an insight about the intramolecular H-bonding interactions were performed using Multiwfn3.7 programs.^{4,5}

	Free Energy (in Hartrees)		
intermediate	cis	trans	
protonated proline 12	-1453.056482	-1453.046334	
proline 5	-1452.673372	-1452.67546	

cis-18

Atom	x	У	Z
S1	-0.43260800	-0.43348000	1.64813500
02	3.26747100	-1.10260300	-1.17180600
03	0.41624800	-1.60922100	1.68504500
04	-0.73091800	0.37288600	2.81135800
05	3.24974200	0.05273000	0.77445300
C6	-1.86088800	-0.72830600	0.66613000

⁴ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;. Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision C.01, Gaussian, Inc., Wallingford CT, 2016.

⁵ (a) Lu, T.; Chen, F.; *J. Comput. Chem.* **2012**, *33*, 580-592, DOI: 10.1002/jcc.22885; (b) Emamian, S.; Lu, T.; Kruse, H.; Emamian, H. *J. Comput. Chem.* **2019**, *40*, 2868-2881, DOI: 10.1002/jcc.26068

Atom	x	У	Z
C7	2.72283400	-0.35561300	-0.23685400
C8	-0.01286100	1.86701400	-1.35887000
Н9	-0.98281100	1.35874400	-1.43526500
C10	1.10466100	0.91514300	-1.79937700
H11	2.01155700	1.48461500	-2.00363800
H12	0.85171000	0.34328800	-2.69038300
C13	1.28006000	-0.01190800	-0.58697500
H14	0.73364800	-0.93986100	-0.72729700
C15	0.27266800	2.13977400	0.13413600
C16	-1.80827600	-1.70613000	-0.33218900
H17	-0.91489700	-2.29519500	-0.48834500
C18	-4.13702700	-1.23949100	-0.84372000
C19	-2.94765400	-1.94127700	-1.08648800
H20	-2.92189900	-2.69667800	-1.86230600
C21	-3.03578000	-0.02805300	0.95208200
H22	-3.06820400	0.68339200	1.76541700
C23	-0.92850900	2.71200900	0.86728000
H24	-1.09489800	3.71237900	0.46586700
H25	-0.75342000	2.79376300	1.93869900
H26	-1.83277800	2.13620900	0.68937900
C27	4.66609400	-1.52524900	-0.98079800
H28	5.21334600	-0.68522200	-0.55550400
H29	5.01078000	-1.71479900	-1.99481400
C30	-5.37538600	-1.53255700	-1.64045500
H31	-5.13146300	-1.93682200	-2.62348800
H32	-5.98737400	-0.63813400	-1.76708500
H33	-5.98613200	-2.27629700	-1.11812600
H34	-4.16306800	-0.29268000	0.19099900
H35	-5.08251800	0.23689700	0.40928500
C36	4.73404100	-2.75976100	-0.10757100
H37	5.77412100	-3.08655100	-0.03487900
H38	4.14984400	-3.57493800	-0.53870900
H39	4.37211700	-2.55108200	0.90004900
C40	1.49265200	3.04380200	0.34189700
H41	2.40144300	2.64592600	-0.10834800
H42	1.66995300	3.18801500	1.40966000
H43	1.28796600	4.01278200	-0.11078900
044	-0.04167200	3.09901200	-2.04136800
H45	-0.47579300	2.98965200	-2.89364300
H46	1.48774900	0.82318700	1.26442800
N47	0.69733600	0.72566800	0.60040800

Atom	X	У	Z	
S1	-0.40134600	-1.92783300	-0.90789800	
02	0.82217300	2.14700800	-1.11835600	
03	-1.01503200	-2.99488200	-0.14698800	
04	-0.41192800	-1.87723600	-2.35863900	
05	0.28673000	1.27504300	0.89465000	
C6	1.15838600	-1.46247300	-0.27254200	
C7	0.07567500	1.43723200	-0.28260100	
C8	-2.81071400	1.21990800	0.73564800	
Н9	-2.19711400	1.65160200	1.52791900	
C10	-2.37996300	1.77982600	-0.62227100	
H11	-2.15049900	2.84388000	-0.58397800	
H12	-3.18394200	1.63321500	-1.34738600	
C13	-1.16432800	0.93307800	-1.01734400	
H14	-0.97450800	0.91029800	-2.08713500	
C15	-2.51801600	-0.33000300	0.69299100	
C16	1.47287000	-1.76298000	1.05443200	
H17	0.76405600	-2.27431700	1.68939500	
C18	3.64842500	-0.74242600	0.70453100	
C19	2.71978300	-1.39490300	1.52967600	
H20	2.98113800	-1.61771500	2.55685600	
C21	2.05931000	-0.82491300	-1.13053800	
H22	1.79668200	-0.62377500	-2.16014900	
C23	-3.76360900	-1.16552800	0.41827800	
H24	-4.43360900	-1.10425500	1.27472100	
Н25	-3.48624300	-2.21126400	0.27590500	
Н26	-4.31852300	-0.80747500	-0.45198400	
C27	1.96938700	2.86346900	-0.55079300	
H28	2.65578900	2.95191600	-1.39058300	
H29	2.40989200	2.23453700	0.22097100	
C30	5.00544500	-0.37121100	1.22813500	
H31	4.98094300	-0.18893700	2.30326500	
Н32	5.39741400	0.51494200	0.72657500	
Н33	5.71070000	-1.18938400	1.04796800	
C34	3.30039800	-0.47124700	-0.62643900	
Н35	4.01294100	0.02169900	-1.27647500	
C36	1.54264700	4.21368100	-0.01376700	
Н37	2.42248100	4.74724500	0.35377500	

Н38	0.84357300	4.10298600	0.81713100
Atom	x	У	Z
Н39	1.07981700	4.81799000	-0.79608400
C40	-1.81103200	-0.80132200	1.95704000
H41	-0.86067200	-0.29287500	2.09868000
H42	-1.67309800	-1.88145100	1.96085400
H43	-2.45943300	-0.55177400	2.80040700
044	-4.17231500	1.52642900	0.93889900
H45	-4.35199600	1.61273600	1.88068500
Н46	-2.28088000	-0.71066700	-1.32347200
N47	-1.62405300	-0.43940600	-0.58494700

cis-5

Atom	х	У	Z	
S1	-0.22567900	-0.25517900	1.25805700	
02	2.55045200	-1.90243900	-1.09341400	
03	0.46780600	-1.54513900	1.22453300	
04	-0.42510700	0.47122600	2.51031700	
05	3.33419900	-0.40850600	0.41075000	
NG	0.61364900	0.72509500	0.22438200	
C7	-1.83983400	-0.53023000	0.52811800	
C8	2.52186900	-0.74861100	-0.41302500	
C9	0.90733300	2.45731000	-1.29200400	
H10	-0.02003800	2.32003100	-1.86197300	
C11	1.89807800	1.35271500	-1.65299000	
H12	2.88716300	1.62639100	-1.28334600	
H13	1.96074400	1.16307300	-2.72474400	
C14	1.36413600	0.12670800	-0.89078300	
H15	0.70807100	-0.47247900	-1.52550000	
C16	0.57543500	2.22095200	0.20097700	
C17	-1.95878900	-1.43731200	-0.52430300	
H18	-1.09947700	-2.00790600	-0.85163600	
C19	-4.32883400	-0.92167700	-0.67670000	
C20	-3.20000200	-1.62006300	-1.12262700	
H21	-3.29622800	-2.32474500	-1.94128700	
C22	-2.94618300	0.16976000	0.99808600	

Н23	-2.83819800	0.85264800	1.82966800	
C24	-0.79213300	2.81914800	0.52508400	
Atom	x	У	Z	
Н25	-0.74859300	3.88917200	0.31165600	
H26	-1.04778400	2.68750100	1.57521600	
H27	-1.57612000	2.37732200	-0.09246200	
C28	3.58547500	-2.85623100	-0.72450400	
Н29	4.50885300	-2.30908100	-0.53340900	
Н30	3.70597900	-3.47390800	-1.61385200	
C31	-5.67661800	-1.15734000	-1.30653900	
Н32	-5.58493800	-1.36879000	-2.37391000	
Н33	-6.33104600	-0.29299300	-1.18029900	
Н34	-6.17168800	-2.01705800	-0.84307700	
C35	-4.18240000	-0.03173600	0.39260800	
Н36	-5.04744900	0.50905600	0.76007800	
C37	3.15819400	-3.67381700	0.48000500	
Н38	3.93143500	-4.41204100	0.71006200	
Н39	2.22356200	-4.20088900	0.27854900	
H40	3.01434500	-3.03484400	1.35147900	
C41	1.64776400	2.77658200	1.14214000	
H42	2.62674000	2.35277700	0.91751900	
Н43	1.39047400	2.50519700	2.16687700	
H44	1.70166900	3.86288400	1.05852900	
045	1.40073900	3.77472200	-1.47694200	
H46	1.39218900	3.98000000	-2.41692400	

trans-5

Atom	x	У	Z	
S1	-0.52095200	0.22867600	1.51188000	
02	2.28758300	-2.22384100	-0.23667500	
03	0.09392500	-0.96918900	2.08777400	
04	-0.89588800	1.36866500	2.34590300	
05	3.20253300	-0.34307300	0.61867900	
N6	0.53913400	0.77710400	0.36105600	
C7	-1.98813500	-0.33183000	0.64465500	
C8	2.31341600	-0.91084600	0.03203800	

С9	1.77996100	1.99091300	-1.19018500
H10	2.75352000	1.96175600	-0.69507800
C11	1.47607700	0.62113200	-1.79376200
Atom	x	У	Z
H12	2.31858700	0.20016400	-2.34379700
H13	0.62406900	0.70039400	-2.47143600
C14	1.09040900	-0.21908500	-0.56658200
H15	0.35406000	-0.97898300	-0.82724800
C16	0.70096700	2.19551600	-0.09021100
C17	-2.04030000	-1.64031300	0.16771300
H18	-1.22960100	-2.32570800	0.37670900
C19	-4.23119400	-1.19063800	-0.78271700
C20	-3.15848800	-2.05671700	-0.54841500
H21	-3.20068800	-3.07390900	-0.92163500
C22	-3.04812500	0.54735600	0.43655100
H23	-3.00760400	1.54968200	0.83995900
C24	-0.59271700	2.77448600	-0.66884900
H25	-0.38786600	3.74415700	-1.12240100
H26	-1.32223100	2.91436700	0.12861100
H27	-1.02563000	2.12171300	-1.42903400
C28	3.41530700	-3.01717600	0.22740400
H29	3.00713500	-4.02193200	0.32761600
H30	3.71433600	-2.64774300	1.20794600
C31	-5.45444100	-1.65879600	-1.52632200
H32	-5.89335700	-0.85165900	-2.11647300
Н33	-6.22018300	-2.00604100	-0.82486900
Н34	-5.21966700	-2.48840000	-2.19555800
C35	-4.15988400	0.11224100	-0.27405400
Н36	-4.98859000	0.79357600	-0.43200500
C37	4.56196700	-2.97258600	-0.76520700
Н38	5.36685200	-3.62825900	-0.42239900
Н39	4.96188200	-1.96122500	-0.85419700
H40	4.23707100	-3.31637700	-1.74998900
C41	1.25212400	3.08707600	1.02166800
H42	2.12127400	2.61673500	1.48489900
H43	0.50289100	3.26821300	1.79015700
H44	1.55355600	4.04433600	0.58780600
045	1.73860300	3.05544400	-2.13125200
H46	2.62577700	3.19814100	-2.47282400