Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2024

Electronic Supporting Information

Origins in the substituent effects in the aldol condensation of axially chiral thiohydantoins: a computational study

Nazli Goksel Carpa,[‡] Zekihan Ozerdem,[‡] Ilknur Dogan, Zeynep Pinar Haslak^{*} and Viktorya Aviyente^{*}

Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey

[‡]These authors contributed equally.

Benchmark Study on the Choice of Methodology:

For the benchmarking study of the DFT method, we have modeled the rate determining step (TS2), the second step in which benzaldehyde adds to the enolate, by using M06-2X/6-311+G(d,p), B3LYP/6-311+G(d,p) and B3LYP-D3/6-311+G(d,p) // B3LYP/6-311+G(d,p) level of theories in conjunction with CPCM implicit solvation method. We have calculated the isomeric proportions (%) of synthesized aldol adducts by both considering the activation free energies (ΔG^{\neq}) and the relative stabilities of the hydrolized products (ΔG_{rxn}) using the Boltzmann distribution function. According to the results presented in **Table S1**, none of the methodologies can provide the experimental distribution when the calculations were performed with ΔG^{\neq} since the latter are quite low and do not control the stereochemistry of the reaction while all the methodologies satisfied the general tendency of stereoselectivity when the calculations were performed with ΔG_{rxn} . The most accurate results were obtained when M06-2X/6-311+G(d,p) level of theory was used for modeling the aldol addition reaction. Thus, the results presented in this study are reported based on the M06-2X calculations.

Table S1. Comparison of experimentally determined and calculated isomeric proportions (%) of synthesized aldol adducts. The calculated values are based on relative hydrolyzed product Gibbs free energies (ΔG_{rxn}), whereas the calculated values in parentheses are based on activation free energies (ΔG^{\neq}).

Compound	Isomer	ee %ª (Experimental)	ee % (M06-2X)	ee % (B3LYP)	ee % (B3LYP-D3// B3LYP)
I	RMS*+RMR*	s 80	100 (36)	76 (26)	99 (21)
	SMS*+SMR*	20	0 (64)	24 (74)	1 (79)
II	RPS*+RPR*	23	12 (19)	34 (61)	2 (69)
	SPS*+SPR*	77	88 (81)	66 (39)	98 (31)
III	RMS*+RMR*	• 47	49 (93)	24 (19)	40 (52)
	SMS*+SMR*	53	51 (7)	76 (81)	60 (48)
IV	RMS*+RMR*	s 100	100 (95)	88 (92)	100 (98)
	SMS*+SMR*	0	0 (5)	12 (8)	0 (2)

^{*a*} without any purification.

ee: enantiomeric excess

Table S2. Calculated thermodynamic parameters (*kcal/mol*) and kinetics ($M^{-1}s^{-1}$) for the enolization reactions of **SM** and **RM** isomers of 4 thiohydantoin derivatives as precursor of aldol adducts (M06-2X/6-311+G(d,p) / CPCM(THF), 195 K).

reactant	product	ΔG _{rxn}	$\Delta \mathbf{G}_{f}^{\neq}$	\mathbf{k}_{f}	$\Delta \mathbf{G}_r^{\neq}$	k _r
SM-pre-I	M-I-Li-enolate	-27.3	2.0	2.5x10 ¹⁰	29.2	6.6x10 ⁻²¹
RM-pre-I		-27.6	2.9	2.2×10^9	30.5	2.6x10 ⁻²²
SM-pre-II	M-II-Li-enolate	-27.2	2.6	4.7×10^{9}	29.8	1.5x10 ⁻²¹
RM-pre-II		-26.1	4.4	5.1x10 ⁷	30.5	2.4x10 ⁻²²
SM-pre-III	M-III-Li-enolate	-27.8	3.4	$7.8 x 10^{10}$	29.3	9.4x10 ⁻²¹
RM-pre-III		-25.6	1.5	5.5x10 ⁸	29.1	5.0x10 ⁻²¹
SM-pre-IV	M-IV-Li-enolate	-29.0	-1.8	4.5×10^{14}	27.2	1.3x10 ⁻¹⁸
RM-pre-IV		-28.3	-1.0	6.0×10^{13}	27.3	1.0×10^{-18}

 ΔG_{rxn} : Reaction Gibbs free energies (kcal/mol)

 ΔG_f^{\neq} : Gibbs free energy of activation of the forward reaction (*kcal/mol*)

 \mathbf{k}_{f} : calculated rate constant of the forward reaction $(M^{-1}s^{-1})$

 ΔG_r^{\neq} : Gibbs free energy of activation of the reverse reaction (*kcal/mol*)

 \mathbf{k}_r : calculated rate constant of the reverse reaction ($^{l}s^{-l}$)

Reaction Coordinate

Figure S1. Free energy profile for the enolization of **SM**-*pre*-**I** and **RM**-*pre*-**I** (R=CH₃ and X=CF₃) in the presence of LDA, with respect to the most stable geometries of the isolated reactants.

Figure S2. Plots of

- (a) interaction energy (ΔE_{int}) vs forming bond distances between C5 of Li-enolate and C(=O) of benzaldehyde (^dC_{enol}-C_{benz}),
- (b) distortion energy of benzaldehyde (ΔE_{dist}^{benz}) vs $d_{C_{enol}-C_{benz}}$ for compounds RMS*-I, II, III, RMR*-I, II, III, IV and SMS*-I, II, III, IV,
- (c) distortion energy of Li-enolate (ΔE_{dist}^{enol}) vs $d_{C_{enol}-C_{benz}}$ for compounds RMS*-I, II, III, RMR*-I, II, III, IV and SMS*-I, II, III, IV,
- (d) distortion energy of Li-enolate (ΔE_{dist}^{enol}) vs $d_{C_{enol}-C_{benz}}$ for compounds SMR*-I, II, III, IV and RMS*-IV in TS2.

Figure S3. The activation energy (ΔE_{act}), the total distortion energy (ΔE_{dist}) and the interaction energy (ΔE_{int}) between benzaldehyde and Li-enolate of **RMS*-I** and **RMR*-I** (a), **RMS*-I** and **RMS*-IV** (b) as a function of forming C_{enol}-C_{benz} bond length along the aldol addition reaction. The location of the TS is represented by stars.