Supporting Information

Photo-induced radical cyclization reaction of isocyanides with α carbonyl bromides to access 11-alkyl-substituted 1,4dibenzodiazepines

Ao-Yun Li, Rong Xie, Quan Zhou, Peng-Fei Huang* and Yu Liu*

Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.

Email: pengfeihuang@whu.edu.cn and lyxtmj 613@163.com

List of Contents

1. General Information	S2
2. Experiment Section	
2.1 General Procedure for the Synthesis of Substrates	S2
2.2 Typical Experimental Procedure	
2.3 Additional Experimental Details	S3
2.4 The Light On/Off Experiments	
2.5 Stern-Volmer Quenching Experiments	
2.6 Quantum Yield Determination	
2.7 Control Experiments	
3. Reference	S17
4. Spectra	

1. General Information

Unless otherwise stated, all commercial reagents were used as received. Aniline (Adamas-beta, 99%), 1-fluoro-2-nitrobenzene (Leyan, 99%), triethylamine (Aladdin, 99%), acetonitrile (Aladdin, 99%), formic acid (Aladdin, 99%) and phosphorus oxychloride (Adamas-beta, 99%) were used without further treatment. All reagents and solvents were commercially available and used without any further purification unless specified. Flash column chromatography was performed using silica gel (0.25mm, 300-400 mesh). Analytical thin-layer chromatography was performed using glass plates precoated with 0.25mm 300-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). All reactions were carried out with magnetic stirring and in dried glassware. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker DRX-400 spectrometer operating at 400 MHz, 282 MHz, and 100 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants are quoted in Hz. The solvent peak was used as a reference value, for ¹H NMR: TMS = 0.00 ppm, for 13 C NMR: CDCl₃ = 77.00 ppm. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, dd = doubletof doublet, t = triplet, td = triplet of doublet, q = quartet, m = multiplet, and br = broad. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2. Experiment Section

2.1 General Procedure for the Synthesis of Substrates 1

2-Isocyano-*N*-methyl-*N*-phenylaniline $\mathbf{1}^{[1-2]}$ was synthesized according to the known methods.

2.2 Typical Experimental Procedure

To a schlenk tube were added 2-isocyano-*N*-methyl-*N*-phenylaniline **1a** (0.2 mmol, 41.6 mg), *tert*-butyl 2-bromo-2-methylpropanoate **2a** (2.0 equiv, 0.4 mmol, 88.8 mg), Cs₂CO₃ (2.0 equiv, 0.4 mmol, 130 mg), *fac*-Ir(ppy)₃ (1 mol%,0.6 mg), MeCN (2 mL). Then the tube was stirred at 80 °C in an argon atmosphere for the indicated time until complete consumption of the starting material as monitored by TLC analysis. The residue was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 90 : 1) to afford the desired products **3aa**.

2.3 Additional Experimental Details

The light source bought from YICAI (https://item.taobao.com/item.htm?_u=u 10503hgcbe1&id=597700668537&spm=a1z09.2.0.0.1f8a2e8dVdegb2&skuId=48123 51826113), 5 W blue LED light bulb (E27). The wavelength was about 400-500 nm and the wavelength of peak intensity was about 415.0 nm. The pictures of the visible-light source (**Figure S1**) was shown as follow:

Figure S1. The light source and photographs of the experimental setup.

2.4 The Light On/Off Experiments

The above-depicted reaction was performed according to the general protocol established. The reaction was irradiated with 5 W blue LEDs for 6 hours and then stirred

in the dark for 6 hours. This procedure was repeated for 42 hours, and the yield of the product was determined by ¹H NMR with dibromomethane as an internal standard at each point the light was turned off or on. The results are shown in the graph above. This result shows that constant light irradiation is needed to progress the reaction.

Figure S2 The light on/off Experiments

2.5 Stern-Volmer Quenching Experiments

Formulation solution:

2-isocyano-*N*-methyl-*N*-phenylaniline **1a** (8.2 mg) was dissolved in MeCN in a 4 mL volumetric flask to set the concentration to be 0.01 M. *tert*-butyl 2-bromo-2-methylpropanoate **2a** (8.8 mg) was dissolved in MeCN in a 4mL volumetric flask to set the concentration to be 0.01 M.

Additional experimental details:

The samples were prepared by the copper-based photocatalyst *fac*-Ir(ppy)₃ (5×10⁻⁴ M) with different amounts of quencher **1a** in MeCN in a light path quartz fluorescence cuvette. The concentration of quencher **1a** is 0.01 M in MeCN. For each **S3** quenching experiment, 3 μ L of quencher solution was separately titrated to the copper based photocatalyst *fac*-Ir(ppy)₃ (3.0 mL).

Figure S3 Stern-Volmer Quenching Experiments: (a) *fac*-Ir(ppy)₃ quenched by 1a in MeCN; (b) *fac*-Ir(ppy)₃ quenched by 2a in MeCN; (c) Stern-Volmer plot of photocatalyst at different concentration.

The resulting mixture was sparged with nitrogen for 3 minutes and then irradiated at 450 nm. Fluorescence emission spectra were recorded (3 trials per sample). Into this solution, 3.0 μ L of a 2-isocyano-*N*-methyl-*N*-phenylaniline **1a** solution was successively added and uniformly stirred, and the resulting mixture was bubbled with nitrogen for 3 minutes and irradiated at 450 nm. Fluorescence emission spectra of 0 μ L, 3.0 μ L, 6.0 μ L, 9.0 μ L, 12.0 μ L, 15.0 μ L fluorescence intensity. Follow this method and make changes to the amount to obtain the Stern-Volmer relationship in turn.

Compared the figure S3 (a) of Stern-Volmer quenching experiments results, the emission intensity of the copperbased photocatalyst *fac*-Ir(ppy)₃ solution was strongly affected by the gradual increase of the amount of 2a, and the influence is not observed to 1a. These indicated that the single electron transfer (SET) process occurred in photocatalyst and sulfonium salt.

2.7 Quantum Yield Determination

Determination of the light intensity at 415 nm:

According to the procedure of Yoon² the photon flux of the blue LED ($\lambda_{max} = 415$ nm) was determined by standard ferrioxalate actinometry. A 0.15 M solution of ferrioxalate was prepared by dissolving 2.21 g of potassium ferrioxalate hydrate in 30 mL of 0.05 M H₂SO₄. A buffered solution of phenanthroline was prepared by dissolving 50 mg of phenanthroline and 11.25 g of sodium acetate in 50 mL of 0.5 M H₂SO₄. Both solutions were stored in the dark. To determine the photon flux of the spectrophotometer, 3.0 mL of the ferrioxalate solution was placed in a cuvette and irradiated for 90.0 seconds at $\lambda = 415$ nm with an emission slit width at 10.0 nm. After irradiation, 0.53 mL of the phenanthroline solution was added to the cuvette. The solution was then allowed to rest for 1 h to allow the ferrous ions to completely coordinate to the phenanthroline. The absorbance of the solution was measured at 510 nm. A nonirradiated sample was also prepared and the absorbance at 510 nm measured. Conversion was calculated using eq. 1.

$$mol \text{ of } Fe^{2+} = \frac{V \cdot \Delta A_{510nm}}{l \cdot \varepsilon}$$
(1)
$$mol \text{ of } Fe^{2+} = \frac{(0.00353L) \cdot (3.162 - 0.399)}{(1.00cm) \cdot (11100 \frac{L}{mol} cm^{-1})} = 8.80 \times 10^{-7}$$

Where V is the total volume (0.00353 L) of the solution after addition of phenanthroline, ΔA is the difference in absorbance at 510 nm between the irradiated and non-irradiated solutions, 1 is the path length (1.00 cm), and ε is the molar absorptivity of the ferrioxalate actinometer at 510 nm (11,100 L mol⁻¹ cm⁻¹).³ The photon flux can be calculated using eq. 2.

$$Photo \text{ flux} = \frac{\text{mol of Fe}^{2+}}{\phi \cdot t \cdot f} \quad (2)$$

$$Photo \text{ flux} = \frac{8.80 \times 10^{-7}}{(1.12) \cdot (90s) \cdot (0.994)} = 8.8 \times 10^{-9} \text{einstein/s}$$

Where Φ is the quantum yield for the ferrioxalate actinometer (1.12 at λ = 415 nm), t is the time (90.0 s), and f is the fraction of light absorbed at 415 nm by the ferrioxalate

actinometer. This value is calculated using eq 3 where $A_{415 nm}$ is the absorbance of the ferrioxalate solution at 415 nm. An absorption spectrum gave an $A_{415 nm}$ value of > 3, indicating that the fraction of absorbed light (f) is > 0.999.

$$f = 1 - 10^{-A_{415nm}} \quad (3)$$

The photon flux was thus calculated to be $8.8\times 10^{\text{-9}}$ einsteins $s^{\text{-1}}$

Figure S6 Absorbance of the sulfuric acid solution. Determination of the reaction quantum yield:

A cuvette was charged with 2-isocyano-*N*-methyl-*N*-phenylaniline **1a** (0.2 mmol, 441.6mg), *tert*-butyl 2-bromo-2-methylpropanoate **2a** (2 equiv., 0.4 mmol, 88.8 mg), Cs₂CO₃ (2 equiv., 0.4 mmol, 130 mg), *fac*-Ir(ppy)₃ (1 mol%, 0.6 mg), MeCN (2 mL). The reaction mixture was stirred at room temperature for 2 h (7200 s) under blue LED irradiation ($\lambda = 415$ nm). The solvent was removed in vacuo and the yield of formed product was determined by ¹H NMR based on dibromomethane as internal standard. The quantum yield was determined using eq. 4.

$$\phi = \frac{\text{mol of product}}{f \ln x \cdot t \cdot f} \quad (4)$$

$$\phi = \frac{5.4 \times 10^{-5}}{(8.8 \times 10^{-9} \text{einstein/s}) \cdot (3600s) \cdot (0.994)} = 0.17 < 1$$

The photon flux is 8.8×10^{-9} einsteins s⁻¹, t is the reaction time (7200 s). *f* is the fraction of incident light absorbed by the catalyst, determined using eq 3. An absorption spectrum of the catalyst (0.001 M) gave an absorbance value of 0.658 at 415 nm (figure **S7**), indicating that the fraction of light absorbed by the photocatalyst (*f*) is 0.994. **Absorbance of catalyst:**

Figure S7 Absorption spectrum of *fac*-Ir(ppy)₃ [0.001 M] in MeCN

2.8 Control Experiments

GC-MS Analysis of Raw Reaction Mixture by Using BHT as Radical Inhibitor (1, 2)

MS spectra of the peak at 11.701 min

[MS Spectrum	ן]					
# of Peaks	546					
Raw Spectrun	n 11.705 (scan	: 1542)				
Background	No Background S	pectrum				
Base Peak	m/z 219.15 (Inten	: 7,995,683)				
Event# 1						
m/z Absolute	e Intensity Rela	ative Intensity				
50.007617	0.10	72.0523450	0.29	94.1088	543 1.11	L
51.0517812	0.22	73.0542395	0.53	95.10500	0.63	3
52.056513	0.08	74.053961	0.05	96.10670	0.08	3
53.0550049	0.63	75.054757	0.06	97.10126	660 0.16	6
54.1512429	0.16	76.055669	0.07	98.15302	14 0.04	1
55.05322728	4.04	77.0575317	0.94	99.15249	94 0.03	3
56.15124943	1.56	78.1021148	0.26	100.15	4088	0.05
57.103082112	L 38.55	79.0581221	1.02	101.15	37089	0.46
58.10144641	1.81	80.1075382	0.94	102.10	28558	0.36
59.0599751	1.25	81.0543511	0.54	103.10	31902	0.40
60.056699	0.08	82.156120	0.08	104.15	14577	0.18
61.001636	0.02	83.1038550	0.48	105.10	171983	2.15
62.101420	0.02	84.054912	0.06	106.15	23701	0.30
63.057159	0.09	85.107892	0.10	107.10	151548	1.90
64.0512450	0.16	86.159858	0.12	108.15	16573	0.21
65.0540356	0.50	87.1537228	0.47	109.15	65453	0.82
66.1010089	0.13	88.10188561	2.36	110.05	5786	0.07
67.0560305	0.75	89.0515122	0.19	111.10	4564	0.06
68.157268	0.09	90.158117	0.10	112.15	1856	0.02
69.05128531	1.61	91.10206697	2.59	113.15	2018	0.03
70.0536585	0.46	92.1024401	0.31	114.15	4815	0.06
71.0538354	0.48	93.1064649	0.81	115.10	115442	1.44

116.10	42196	0.53	160.15	37058	0.46	204.10	151316	1.89
117.10	91676	1.15	161.10	292265	3.66	205.10	69452	0.87
118.15	18513	0.23	162.10	49836	0.62	206.10	13452	0.17
119.10	185663	2.32	163.10	114874	1.44	207.05	39105	0.49
120.15	30587	0.38	164.15	17636	0.22	208.05	15450	0.19
121.10	164722	2.06	165.10	202775	2.54	209.05	5590	0.07
122.15	19349	0.24	166.05	28876	0.36	210.05	1498	0.02
123.15	101284	1.27	167.10	14650	0.18	211.00	1727	0.02
124.05	8974	0.11	168.10	8719	0.11	212.15	1112	0.01
125.15	1859	0.02	169.10	22860	0.29	213.10	3378	0.04
126.15	2672	0.03	170.10	29550	0.37	214.15	1423	0.02
127.15	37841	0.47	171.10	41334	0.52	215.10	11446	0.14
128.10	140361	1.76	172.10	15137	0.19	216.15	3535	0.04
129.10	169294	2.12	173.10	52534	0.66	217.10	147063	1.84
130.15	56428	0.71	174.10	19767	0.25	218.25	184810	2.31
131.15	130950	1.64	175.10	104455	1.31	219.15	7995683	100.00
132.15	29918	0.37	176.10	18263	0.23	220.15	2066319	25.84
133.15	182858	2.29	177.10	15911	0.20	221.10	221756	2.77
134.15	35968	0.45	178.15	5229	0.07	222.10	18423	0.23
135.15	64977	0.81	179.10	71545	0.89	223.10	2447	0.03
136.15	8864	0.11	180.05	11086	0.14	224.05	858 0.01	
137.10	29574	0.37	181.05	6429	0.08	225.05	1013	0.01
138.15	3547	0.04	182.10	5007	0.06	226.15	1248	0.02
139.10	5551	0.07	183.10	10970	0.14	227.10	3078	0.04
140.15	3589	0.04	184.15	6720	0.08	228.25	1016	0.01
141.10	77513	0.97	185.10	36486	0.46	229.15	14139	0.18
142.10	66934	0.84	186.15	10234	0.13	230.20	4497	0.06
143.10	120922	1.51	187.10	70980	0.89	231.15	57810	0.72
144.15	45644	0.57	188.10	39818	0.50	232.10	11047	0.14
145.10	152068	1.90	189.10	223390	2.79	233.15	27422	0.34
146.15	38774	0.48	190.10	35497	0.44	234.25	11663	0.15
147.10	234772	2.94	191.10	24495	0.31	235.15	337732	4.22
148.10	34481	0.43	192.15	7657	0.10	236.10	55956	0.70
149.10	66847	0.84	193.05	139097	1.74	237.10	6166	0.08
150.10	9074	0.11	194.10	26116	0.33	238.15	686 0.01	
151.10	6343	0.08	195.05	6901	0.09	239.05	913 0.01	
152.05	11515	0.14	196.10	1879	0.02	240.10	3158	0.04
153.10	25454	0.32	197.10	6482	0.08	241.05	1301	0.02
154.10	17841	0.22	198.10	3868	0.05	242.05	476 0.01	
155.10	44519	0.56	199.10	7734	0.10	243.15	3197	0.04
156.10	40398	0.51	200.15	3420	0.04	244.25	3779	0.05
157.10	58356	0.73	201.10	28761	0.36	245.15	156466	1.96
158.10	22446	0.28	202.15	17182	0.21	246.15	30659	0.38
159.10	70662	0.88	203.10	907796	11.35	247.15	9479	0.12

248.15	2508	0.03	289.20	19556	0.24	330.00	167 0.00	
249.10	102081	1.28	290.25	6051	0.08	331.00	182 0.00	
250.10	19110	0.24	291.20	143193	1.79	332.00	62 0.00	
251.10	5425	0.07	292.15	29289	0.37	333.00	74 0.00	
252.05	1025	0.01	293.15	3871	0.05	334.10	145 0.00	
252.95	1721	0.02	294.15	653 0.01		335.05	653 0.01	
254.15	942 0.01		295.15	743 0.01		336.10	129 0.00)
255.10	1071	0.01	296.00	142 0.00		337.10	190 0.00	
255.90	254 0.00		297.00	1172	0.01	338.10	119 0.00	
256.90	414 0.01		298.00	215 0.00		339.10	172 0.00	
258.25	884 0.01		299.00	394 0.00		340.00	385 0.00	
259.20	11455	0.14	300.00	121 0.00		341.05	5595	0.07
260.25	99241	1.24	301.00	151 0.00		342.05	2148	0.03
261.20	1011318	12.65	302.00	74 0.00		343.05	2356	0.03
262.20	203470	2.54	303.05	402 0.01		343.90	660 0.01	
263.15	33651	0.42	304.25	3560	0.04	345.10	935 0.01	
264.10	4510	0.06	305.20	293572	3.67	346.25	873 0.01	
265.05	1827	0.02	306.20	166860	2.09	347.25	88104	1.10
266.05	632 0.01		307.20	31138	0.39	348.20	20510	0.26
267.00	4140	0.05	308.20	4695	0.06	349.20	3463	0.04
268.05	1089	0.01	309.15	706 0.01		350.20	375 0.00	
269.10	1428	0.02	310.20	154 0.00		351.20	42 0.00	
270.05	506 0.01		311.20	334 0.00		352.20	62 0.00	
271.00	1066	0.01	312.00	154 0.00		353.20	135 0.00	
272.10	300 0.00		313.00	1055	0.01	354.10	76 0.00	
273.15	2222	0.03	314.10	399 0.00				
274.25	588 0.01		315.10	281 0.00		355.05	5282	0.07
275.15	6343	0.08	316.10	300 0.00		356.00	1679	0.02
276.20	1570	0.02	317.10	44 0.00		357.05	1206	0.02
277.20	3130	0.04	318.10	50 0.00		358.05	690 0.01	
278.15	614 0.01		319.10	87 0.00		359.05	1002	0.01
279.10	425 0.01		320.10	82 0.00		360.05	326 0.00	
280.05	301 0.00		321.10	90 0.00		361.35	11494	0.14
281.05	9258	0.12	322.10	76 0.00		362.25	858878	10.74
282.05	2848	0.04	323.10	249 0.00		363.25	221507	2.77
283.05	3392	0.04	324.10	217 0.00		364.25	33198	0.42
284.05	1010	0.01	325.05	980 0.01		365.25	3985	0.05
285.05	911 0.01		326.00	2215	0.03	366.15	388 0.00	
286.00	284 0.00		327.00	3666	0.05	367.20	201 0.00)
287.15	1007	0.01	327.95	1088	0.01	368.10	134 0.00	
288.25	779 0.01		329.00	959 0.01				

[MS Spectrum] # of Peaks 537 Raw Spectrum 11.750 (scan : 1551) Background No Background Spectrum Base Peak m/z 105.05 (Inten : 5,971,653) Event# 1 m/z Absolute Intensity Relative Intensity 50.0577445 1.30 59.051562 0.03 68.056108 0.10 51.00393292 6.59 60.053540.01 69.0535882 0.60 52.0550576 0.85 61.052491 0.04 70.0041250 0.69 53.0034466 0.58 62.0522705 0.38 70.953780 0.06 54.1510354 0.17 63.05105790 1.77 72.057980.01 55.1585048 1.42 64.0530253 0.51 73.056600 0.11 56.05757084 12.68 65.05100354 1.68 74.0036238 0.61 57.0537101 0.62 66.058535 0.14 75.0568312 1.14 58.052121 0.04 67.0511591 0.19 76.05270163 4.52

77.05210)4186	6	35.24	121.10	1118	0.02	165.05	576880	9.66
78.05186	6486	3.12		122.05	1644	0.03	166.05	108960	1.82
79.05560	067	0.94		123.00	1250	0.02	167.05	55891	0.94
80.55359	98	0.06		124.05	1339	0.02	168.10	8321	0.14
81.55280)44	0.47		125.10	6210	0.10	169.05	992 0.02	
82.50683	313	1.14		126.10	46540	0.78	170.00	193 0.00	
83.45167	796	0.28		127.10	152484	2.55	171.00	273 0.00	
84.45217	76	0.04		128.10	395974	6.63	172.05	400 0.01	
85.05186	69	0.03		129.10	1495985	25.05	173.05	29741	0.50
86.05118	384	0.20		130.10	188775	3.16	174.00	6865	0.11
87.05259	985	0.44		131.10	56953	0.95	175.05	6453	0.11
88.10552	270	0.93		132.10	6769	0.11	176.05	61939	1.04
89.05198	3213	3.32		133.10	4318	0.07	177.15	48611	0.81
90.15475	538	0.80		134.15	736 0.01		178.05	384464	6.44
91.05976	6490	16.3	5	135.05	1679	0.03	179.05	318420	5.33
92.05673	315	1.13		136.15	522 0.01		180.05	141423	2.37
93.15586	69	0.10		137.05	7824	0.13	181.05	415439	6.96
94.15315	561	0.53		138.15	9559	0.16	182.05	866211	14.51
95.05489	912	0.82		139.10	86817	1.45	183.05	2032609	34.04
96.05720)27	1.21		140.10	12686	0.21	184.05	285618	4.78
97.05742	20	0.12		141.10	30970	0.52	185.00	21593	0.36
98.10857	75	0.14		142.15	10469	0.18	186.00	1478	0.02
99.05834	15	0.14		143.10	103559	1.73	187.05	4270	0.07
100.15	1551	11	0.26	144.10	57927	0.97	188.15	40923	0.69
101.10	6585	54	1.10	145.10	85289	1.43	189.05	754157	12.63
102.10	1122	268	1.88	146.10	10190	0.17	190.05	129386	2.17
103.10	1473	340	2.47	147.05	2037	0.03	191.05	122400	2.05
104.15	1528	304	2.56	148.15	439 0.01		192.05	100879	1.69
105.05	5971	1653	100.00	149.10	3185	0.05	193.05	78990	1.32
106.05	4638	327	7.77	150.10	27090	0.45	194.05	15646	0.26
107.10	3002	28	0.50	151.10	80762	1.35	195.05	30921	0.52
108.05	4104	1	0.07	152.05	261494	4.38	196.05	9379	0.16
109.15	2577	7	0.04	153.10	131265	2.20	197.00	1266	0.02
110.10	5863	3	0.10	154.10	311713	5.22	198.05	499 0.01	
111.05	5012	2	0.08	155.10	40558	0.68	199.05	664 0.01	
112.15	2333	3	0.04	156.05	2911	0.05	200.00	5927	0.10
113.05	2665	51	0.45	157.10	724 0.01		201.00	7041	0.12
114.15	1595	55	0.27	158.15	487 0.01		202.05	39705	0.66
115.10	2557	750	4.28	159.05	6036	0.10	203.05	33960	0.57
116.10	4811	13	0.81	160.10	2554	0.04	204.00	18479	0.31
117.10	7611	18	1.27	161.10	13071	0.22	205.05	24522	0.41
118.10	1190)3	0.20	162.15	8020	0.13	206.15	39956	0.67
119.10	2069	94	0.35	163.05	69195	1.16	207.10	1849436	30.97
120.05	2699	9	0.05	164.10	102956	1.72	208.05	328826	5.51

209.05	29460	0.49	232.05	762 0.01		254.00	63 0.00)
210.05	2561	0.04	233.05	2691	0.05	255.00	97 0.00)
211.10	358 0.01		234.05	1577	0.03	256.00	137 0.00)
212.00	185 0.00)	235.10	1430	0.02	257.00	36 0.00)
213.00	962 0.02)	236.05	1557	0.03	258.00	47 0.00)
214.05	384 0.01		237.15	4990	0.08	259.00	31 0.00)
215.05	2818	0.05	238.10	39902	0.67	260.00	18 0.00)
216.10	924 0.02)	239.05	7268	0.12	261.00	42 0.00)
217.05	801 0.01		240.05	1511	0.03	262.10	126 0.00)
218.05	1636	0.03	241.10	122 0.00)	263.10	5124	0.09
219.05	3241	0.05	242.10	108 0.00)	264.15	4914	0.08
220.15	4129	0.07	243.10	16 0.00)	265.15	27727	0.46
				~ ~ ~ ~				
221.15	72453	1.21	244.10	31 0.00		266.10	1657436	<u>527.76</u>
221.15 222.10	72453 863134	1.21 14.45	244.10 245.10	31 0.0042 0.00)	<u>266.10</u> 267.10	<u>1657436</u> 335959	5.63
221.15 222.10 223.10	72453 863134 168956	1.21 14.45 2.83	244.10 245.10 246.10	31 0.0042 0.0074 0.00))	266.10 267.10 268.05	1657436 335959 38532	527.76 5.63 0.65
221.15 222.10 223.10 224.05	72453 863134 168956 16098	1.21 14.45 2.83 0.27	244.10 245.10 246.10 247.10	 31 0.00 42 0.00 74 0.00 266 0.00)))	266.10 267.10 268.05 269.05	1657436 335959 38532 3582	527.76 5.63 0.65 0.06
221.15 222.10 223.10 224.05 225.05	72453 863134 168956 16098 1186	1.21 14.45 2.83 0.27 0.02	244.10 245.10 246.10 247.10 248.10	 31 0.00 42 0.00 74 0.00 266 0.00 1023 	0.02	266.10 267.10 268.05 269.05 270.10	1657436 335959 38532 3582 305 0.01	527.76 5.63 0.65 0.06
221.15 222.10 223.10 224.05 225.05 226.10	72453 863134 168956 16098 1186 84 0.00	1.21 14.45 2.83 0.27 0.02	244.10 245.10 246.10 247.10 248.10 249.10	 31 0.00 42 0.00 74 0.00 266 0.00 1023 6319 	0.02 0.11	266.10 267.10 268.05 269.05 270.10 271.10	1657436 335959 38532 3582 305 0.01 105 0.00	5.63 0.65 0.06
221.15 222.10 223.10 224.05 225.05 226.10 228.10	72453 863134 168956 16098 1186 84 0.00 47 0.00	1.21 14.45 2.83 0.27 0.02	244.10 245.10 246.10 247.10 248.10 249.10 250.10	 31 0.00 42 0.00 74 0.00 266 0.00 1023 6319 2498 	0.02 0.11 0.04	266.10 267.10 268.05 269.05 270.10 271.10 272.10	1657436 335959 38532 3582 305 0.01 105 0.00 46 0.00	527.76 5.63 0.65 0.06
221.15 222.10 223.10 224.05 225.05 226.10 228.10 229.10	72453 863134 168956 16098 1186 84 0.00 47 0.00 238 0.00	1.21 14.45 2.83 0.27 0.02	244.10 245.10 246.10 247.10 248.10 249.10 250.10 251.05	 31 0.00 42 0.00 74 0.00 266 0.00 1023 6319 2498 1165 	0.02 0.11 0.04 0.02	266.10 267.10 268.05 269.05 270.10 271.10 272.10 273.10	1657436 335959 38532 3582 305 0.01 105 0.00 46 0.00 19	5.63 0.65 0.06
221.15 222.10 223.10 224.05 225.05 226.10 228.10 229.10 230.10	72453 863134 168956 16098 1186 84 0.00 47 0.00 238 0.00 46 0.00	1.21 14.45 2.83 0.27 0.02	244.10 245.10 246.10 247.10 248.10 249.10 250.10 251.05 252.00	 31 0.00 42 0.00 74 0.00 266 0.00 1023 6319 2498 1165 268 0.00 	0.02 0.11 0.04 0.02	266.10 267.10 268.05 269.05 270.10 271.10 272.10 273.10	1657436 335959 38532 3582 305 0.01 105 0.00 46 0.00 19 0.00	5.63 0.65 0.06
221.15 222.10 223.10 224.05 225.05 226.10 228.10 229.10 230.10 231.10	72453 863134 168956 16098 1186 84 0.00 47 0.00 238 0.00 46 0.00 487 0.01	1.21 14.45 2.83 0.27 0.02	244.10 245.10 246.10 247.10 248.10 249.10 250.10 251.05 252.00 253.00	 31 0.00 42 0.00 74 0.00 266 0.00 1023 6319 2498 1165 268 0.00 318 0.01 	0.02 0.11 0.04 0.02	266.10 267.10 268.05 269.05 270.10 271.10 272.10 273.10	1657436 335959 38532 3582 305 0.01 105 0.00 46 0.00 19 0.00	5.63 0.65 0.06

3.Reference

[1] W. Hu, F. Teng, H. Hu, S. Luo and Q. Zhu, J. Org. Chem., 2019, 84, 6524-6535.

[2] S. Yuan, X. Ye, J. Cai, Z. Song, Y. Tan, Y. Peng and Q. Ding, *J. Org. Chem.*,
2022, 87, 1485-1492.

tert-Butyl 2-(2,5-dimethyl-5*H*-dibenzo[*b,e*][1,4]diazepin-11-yl)-2methylpropanoate(3ba)

tert-Butyl 2-(2-(tert-butoxy)-5-methyl-5*H*-dibenzo[*b*,*e*][1,4]diazepin-11-yl)-2methylpropanoate(3ca)

tert-Butyl 2-(2-fluoro-5-methyl-5*H*-dibenzo[*b,e*][1,4]diazepin-11-yl)-2methylpropanoate(3ea)

tert-Butyl 2-(2-chloro-5-methyl-5*H*-dibenzo[*b*,*e*][1,4]diazepin-11-yl)-2methylpropanoate(3fa)

tert-Butyl 2-(2-bromo-5-methyl-5*H*-dibenzo[*b,e*][1,4]diazepin-11-yl)-2methylpropanoate(3ga)

tert-Butyl 2-(3-bromo-5-methyl-5*H*-dibenzo[*b*,*e*][1,4]diazepin-11-yl)-2methylpropanoate(3ia)

tert-Butyl 2-(1-bromo-5-methyl-5*H*-dibenzo[*b*,*e*][1,4]diazepin-11-yl)-2methylpropanoate(3ia')

tert-Butyl 2-(4,5-dimethyl-5H-dibenzo[b,e][1,4]diazepin-11-yl)-2-

tert-Butyl 2-(5,7-dimethyl-5H-dibenzo/b,e][1,4]diazepin-11-yl)-2-

-3.182~1.672 ~1.510 ~1.229 ~0.072 $\begin{array}{c} 7.330\\ 7.231\\ 7.231\\ 7.228\\ 7.228\\ 7.228\\ 7.228\\ 7.224\\ 7.224\\ 7.224\\ 7.016\\ 7.224\\ 7.001\\ 7.001\\ 6.6973\\ 6.6972\\ 6.6972\\ 6.6972\\ 6.6972\\ 6.6972\\ 6.6972\\ 6.697$ ¹H NMR : 400 MHz Solvent : CDCl₃ Å 3.03 Å 3.00 ₹ 9.02 ¥ 00.00 -00 5.0 4.5 fl (ppm) 3.5 2.0 -0.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 4.0 3.0 2.5 1.5 1.0 0.5 0.0 ~175.034 ~173.745 -147.028-140.915 -140.915 131.410 130.635 129.5865 127.252 127.252 127.252 127.256 123.873 117.561 117.561 117.761-156.716-53.166 80.424 77.318 77.000 76.683 $\frac{-36.629}{26.470}$ ¹³C {¹H} NMR : 100 MHz Solvent : CDCl₃ С 110 100 fl (ppm) 0 200 90 80 60 40 20 10 190 170 160 150 140 130 120 70 50 30 180

tert-Butyl 2-(7-chloro-5-methyl-5*H*-dibenzo[*b,e*][1,4]diazepin-11-yl)-2methylpropanoate(3la)

tert-Butyl 2-(5,8-dimethyl-5H-dibenzo[b,e][1,4]diazepin-11-yl)-2-

tert-Butyl 2-(8-methoxy-5-methyl-5*H*-dibenzo[*b,e*/[1,4]diazepin-11-yl)-2methylpropanoate(3na)

tert-Butyl 2-(8-chloro-5-methyl-5*H*-dibenzo/*b*,*e*][1,4]diazepin-11-yl)-2methylpropanoate(30a)

-3.171~1.670 ~1.502 ~1.234 ~0.073 ¹H NMR : 400 MHz Solvent : CDCl₃ Br hur 2.01 1.05 1.01 2.02 2.02 7 1.04 7 3.00 Å .02₄ 4.5 4.0 fl (ppm) 3.5 3.0 2.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 2.5 1.5 1.0 0.5 0.0 -0.5 <174.916 <174.653 -157.048130.698 (129.536 128.933 (128.933 (128.933 (128.644 (128.644 (128.644 (118.367 (118.367 (116.955 (116.955 ~145.506 ~143.651 80.481 77.318 77.000 76.683 -53.221 -36.605 $\int_{26.224}^{27.504}$ ¹³C {¹H} NMR : 100 MHz Solvent : CDCl₃ Br 100 90 fl (ppm) 120 110 80 70 50 10 0 200 190 180 170 160 150 140 130 60 40 30 20

tert-Butyl 2-(8-bromo-5-methyl-5*H*-dibenzo[*b,e*][1,4]diazepin-11-yl)-2methylpropanoate(3pa)

Methyl 11-(1-(*t*ert-butoxy)-2-methyl-1-oxopropan-2-yl)-5-methyl-5*H*dibenzo[*b*,*e*][1,4]diazepine-8-carboxylate(3qa)

---62.110

tert-Butyl 2-(5-ethyl-5H-dibenzo[b,e][1,4]diazepin-11-yl)-2methylpropanoate(3sa)

tert-Butyl 2-(5-allyl-5H-dibenzo[b,e][1,4]diazepin-11-yl)-2-methylpropanoate(3ta)

tert-butyl 2-(5-benzyl-5*H*-dibenzo[*b,e*][1,4]diazepin-11-yl)-2methylpropanoate(3ua)

Ethyl 2-methyl-2-(5-methyl-5*H*-dibenzo/*b,e*][1,4]diazepin-11-yl)propanoate (3ab)

Ethyl 2,2-difluoro-2-(5-methyl-5*H*-dibenzo[*b*,*e*][1,4]diazepin-11-yl)acetate(3ac)

~0.072 -8.203 ~1.731 ¹H NMR : 400 MHz Solvent : CDCl₃ 3.00 ¥ 100 2.02 3.04 1.02 2.04 2.01 2.01 F-90 4.5 4.0 fl (ppm) 9.5 3.5 2.0 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.0 2.5 1.5 1.0 0.5 0.0 -0.5 -174.934-146.423-142.224132.081132.081132.081132.081132.081122.036122.754122.754122.756112.756112.756112.7576112.756112.756112.756112.756112.756112.756112.756112.756112.756112.756112.756112.756112.756112.756112.756122.7561-201.753-157.351-77.318 -77.000 \76.683 -57.908-36.368 $<^{27.817}$ $<^{27.788}$ ¹³C {¹H} NMR : 100 MHz Solvent : CDCl₃ 110 100 fl (ppm) 200 140 90 70 60 50 30 20 10 0 190 180 170 160 150 130 120 80 40

2-*m*ethyl-2-(5-methyl-5*H*-dibenzo[*b,e*][1,4]diazepin-11-yl)-1-phenylpropan-1-one (3ae)

Methyl 1-(5-methyl-5*H*-dibenzo[*b*,*e*][1,4]diazepin-11-yl)cyclopropane-1carboxylate(3af)

Ethyl 1-(5-methyl-5*H*-dibenzo[*b,e*][1,4]diazepin-11-yl)cyclobutane-1carboxylate(3ag)

(E)-3-(5-methyl-5,10-dihydro-11H-dibenzo[b,e][1,4]diazepin-11-

(*E*)-1-(5-methyl-5,10-dihydro-11*H*-dibenzo[*b,e*][1,4]diazepin-11-ylidene)propan-2-one(4aj)

(E)-1-(5-methyl-5,10-dihydro-11H-dibenzo/b,e][1,4]diazepin-11-ylidene)butan-2one(4ak)

(*E*)-1-(5-methyl-5,10-dihydro-11*H*-dibenzo[*b,e*][1,4]diazepin-11-ylidene)-3-phenylpropan-2-one(4al)

(*E*)-2-(5-methyl-5,10-dihydro-11*H*-dibenzo[*b,e*][1,4]diazepin-11-ylidene)-1-phenylethan-1-one(4am)

(Z)-2-(5-methyl-5,10-dihydro-11*H*-dibenzo/b,e][1,4]diazepin-11-ylidene)-1-(p-tolyl)ethan-1-one(4an)

tert-Butyl 2-(3,5-di-tert-butyl-1-methyl-4-oxo-115,415-phenyl)-2-

methylpropanoate (5)

3,3-Dimethyl-5,5-diphenyldihydrofuran-2(3*H*)-one (6)