Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Identification of 6,8-Ditrifluoromethyl Halogenated Phenazine

as a Potent Bacterial Biofilm-Eradicating Agent

Qiwen Gao^[a,b], Hongfen Yang^[b], Jeremy Sheiber^[c], Priscila Cristina Bartolomeu Halicki^[c], Ke Liu^[b], David Blanco^[b], Sadie Milhous^[b], Shouguang Jin^[d], Kyle H. Rohde^[c], Renee M. Fleeman^[c], Robert W. Huigens

^[a]Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States. ^[b]Department of Medicinal Chemistry, Center for Natural Products, Drug
Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States. ^[c]Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, United States. ^[d]Department of Molecular
Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States.
^[e]Department of Chemistry, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States. ^[F]Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia 30602, United States.

*Corresponding Author: Robert.Huigens@uga.edu

Table of Contents

1.) Supporting Figure 1. MIC Assay against MRSA 44.	S3
2.) Supporting Figure 2. MIC Assay against S. epidermidis 12228.	S4
3.) Supporting Figure 3. Dose-response Curves from MIC Assays against Mtb.	S5
4.) Supporting Figure 4. UV-vis Spectroscopy Results.	S 6
5.) Supporting Figure 5. LDH Release Assay Results.	S7
6.) Supporting Figure 6. Calgary Biofilm Device Assay.	S 8
7.) Supporting Figure 7. Calgary Biofilm Device Assay against <i>S. aureus</i> 138.	S9
8.) Supporting Figure 8. Calgary Biofilm Device Assay against MRSA 2.	S10
9.) Supporting Figure 9. General Workflow for Confocal Microscopy Experiments.	S11
10.) Supporting Table 1. Antibacterial Activity Profiles against MRSA Clinical Isolates.	S12
11.) Supporting Table 2. Antibacterial Activities against Gram-Negative Pathogens.	S13
12.) Synthetic Procedures and Characterization Data.	S14
13.) Compound Purity Analysis Using LC-MS.	S22
14.) Literature References.	S32
15.) NMR Spectra.	S33

1.) Supporting Figure 1. MIC Assay against MRSA 44.

MIC against MRSA 44

DMSO stock with test range: 10 mM (0.1 - 100 µM), *5 mM (0.05 - 50 µM)

MIC against MRSA 44

	MRSA 44	Replicate A	Replicate B	Replicate C	MIC	OD600
05	DMSO (OD600)	0.321	0.431	0.572		0.441
0.5	1 (HP-1)	1.56	1.56	1.56	1.56	
05	11*	0.1	0.1	0.1	0.1	
05	15*	≤ 0.05	≤ 0.05	≤ 0.05	≤ 0.05	
39	13*	≤ 0.05	≤ 0.05	≤ 0.05	≤ 0.05	
00	9*	0.39	0.39	0.39	0.39	
	10*	0.1	0.1	0.1	0.1	
	DMSO (OD600)	0.483	0.398	0.473		0.451
	1 (HP-1)	1.56	1.56	1.56	1.56	
:	12*	≤ 0.05	≤ 0.05	≤ 0.05	≤ 0.05	
,	14*	≤ 0.05	≤ 0.05	≤ 0.05	≤ 0.05	

OD₆₀₀ values for DMSO controls were calculated by averaging turbidity readings from microtiter wells and subtracting blank microtiter well readings. MIC values were determined as the lowest concentration required to demonstrate \geq 90% growth inhibition compared to the DMSO control (for each MIC assay).

.

MIC against S. epidermidis 12228

	12	11	10	9	8	7	6	5	4	3	2	1		S. epi 12228	MIC
600	0.593	0.617	0.689	0.664	0.65	0.612	0.733	0.654	0.685	0.555	0.621	0.048	Α	DMSO	OD600: 0.595
600	0.2	0.232	0.292	0.211	0.089	0.09	0.091	0.096	0.104	0.124	0.146	0.056	в	1 (HP-1)	1.56
600	0.125	0.094	0.094	0.093	0.089	0.09	0.088	0.093	0.099	0.107	0.123	0.05	С	12*	0.1
600	0.092	0.093	0.096	0.1	0.104	0.109	0.117	0.118	0.127	0.15	0.186	0.08	D	10	≤ 0.1
600	0.129	0.13	0.129	0.128	0.129	0.127	0.124	0.123	0.127	0.138	0.158	0.077	Е	13	≤ 0.1
600	0.138	0.255	0.133	0.134	0.134	0.135	0.14	0.144	0.152	0.171	0.23	0.1	F	17	≤ 0.1
600	0.611	0.649	0.708	0.726	0.14	0.139	0.138	0.137	0.139	0.136	0.135	0.098	G	Vancomycin	1.56

DMSO stock with test range: 10 mM (0.1 - 100 $\mu M),$ *5 mM (0.05 - 50 $\mu M)$

.....

S. epi 12228	Replicate A	Replicate B	Replicate C	MIC	OD600
DMSO (OD600)	0.591	0.595	0.494		0.560
1 (HP-1)	0.78	1.56	0.78	1.17	
12*	0.1	0.1	0.1	0.1	
10	≤ 0.1	≤ 0.1	<mark>≤</mark> 0.1	≤ 0.1	
13	≤ 0.1	≤ 0.1	<mark>≤ 0.1</mark>	≤ 0.1	
17	≤ 0.1	≤ 0.1	<mark>≤ 0.1</mark>	≤ 0.1	
Vancomvcin	1.56	1.56	1.56	1.56	

 OD_{600} values for DMSO controls were calculated by averaging turbidity readings from microtiter wells and subtracting blank microtiter well readings. MIC values were determined as the lowest concentration required to demonstrate \ge 90% growth inhibition compared to the DMSO control (for each MIC assay).

4.) Supporting Figure 4. UV-vis Spectroscopy Results.

5.) Supporting Figure 5. LDH Release Assay Results.

Halogenated Phenazine cytotoxicity results (Triton-X = 100% cell death; Medium Only: 0% cell death).

6.) Supporting Figure 6. Calgary Biofilm Device Assay.

Assay workflow to determine MBC and MBEC values of test compounds using the Calgary Biofilm Device.

7.) Supporting Figure 7. Calgary Biofilm Device Assay against S. aureus 138.

Calgary Biofilm Device (CBD) Assay against S. aureus 138 (Media: TSBG)

			,Br	N H Br Br 12				F	F_3CS N Br Br				$F_{3}C \xrightarrow{N} H \\ F_{3}C \xrightarrow{N} $			
	1 (HI MBEC: 2	Ρ-1) 200 μΜ			ΠΖ MBEC: 25 μΜ				13 MBEC: 18.8 μΜ					1 MBEC:	5 1.17 μ	м
600 600 600 600 600 600	12 0.872 0.846 0.904 0.856 0.886	11 0.869 0.873 0.881 0.919 0.791 0.925	10 0.839 0.794 0.919 0.847 0.435 0.174	9 0.805 0.797 0.818 0.841 0.167 0.175	8 0.861 0.799 1.061 0.853 0.166 0.177	7 0.85 0.782 0.791 0.918 0.165 0.178	6 0.85 0.781 0.129 0.607 0.164 0.18	5 0.776 0.848 0.127 0.155 0.161 0.182	4 5 0.849 3 0.119 7 0.129 5 0.158 1 0.163 2 0.183	3 0.794 0.121 0.128 0.159 0.164 0.183	2 0.789 0.129 0.123 0.160 0.169 0.185	1 9 0.05 9 0.083 3 0.082 5 0.12 9 0.118 5 0.147	A B C D E F	5. aureus DMSC 1 (HP-1 13 12* 15 (ancomy)	138 D C I)	MBC 0D600: 0.782 50 12.5 12.5 1.56 7.8
	600 0.9 0.925 0.174 0.175 0.177 0.178 0.182 0.183 0.183 0.185 0.147 F Vancomycin** 7.8 DMSO stock with test range: 10 mM (0.2 - 200 μM), *5 mM (0.1 - 100 μM), **100 mM (2 - 2000 μM) Planktonic Eradication (MBC) MBC (μM)															
DMS(1 (HP 13 12* 15 Vanco	0 P-1) o.**		stock w	ith test	range:	10 mM) 5 1 1 1 1 1 1 1 7 (0.2 - 2	0 2.5 2.5 .56 7.8 200 μW	S. aureus 13 DMSO 1 (HP-1) 13 12* 15 Vancomycin*	8 Repl 0 1 1 1 1 (0.1 -	icate A 782 50 2.5 2.5 .56 7.8 100 µ№	Replicate B 0.689 50 12.5 12.5 1.56 7.8 I), **100 n	Repl 0	licate C .643 50 12.5 12.5 1.56 7.8 2 - 2000	MBC 50 12.5 12.5 1.56 7.8	OD600 0.705
600 600 600 600 600 600	12 0.646 0.71 0.646 0.769 0.624 0.7	11 0.712 0.711 0.66 0.63 0.441 0.7	10 0.58 0.664 0.58 0.557 0.411 0.58	9 0.617 0.714 0.59 0.629 0.113 0.716	8 0.593 0.757 0.576 0.633 0.112 0.665	7 0.691 0.73 0.477 0.615 0.109 0.559	6 0.628 0.649 0.318 0.594 0.108 0.591	5 0.682 0.632 0.077 0.43 0.107 0.623	4 2 0.625 2 0.566 7 0.077 0.11 7 0.106 6 0.604	3 0.667 0.457 0.075 0.097 0.105 0.593	2 0.642 0.081 0.072 0.106 0.103 0.672	1 2 0.05 0.053 0.052 3 0.078 3 0.074 2 0.098	A B C D E F	S. aureus DMSO 1 (HP-1 13 12* 15 /ancomyo	138) C))	MBEC 0D600: 0.594 200 25 25 1.56 > 2000
•••••	DMSO stock with test range: 10 mM (0.2 - 200 μM), *5 mM (0.1 - 100 μM), **100 mM (2 - 2000 μM) Biofilm Eradication (MBEC)															
DMS 1 (HF 13 12* 15 Vanc	0 P-1) :0.**							200 25 25 1.56 >2000	S. aureus 13 DMSO 1 (HP-1) 13 12* 15 Vancomycin	38 Rep () *** >	licate A 0.594 200 25 25 1.56 2000	Replicate B 0.707 200 25 25 1.56 > 2000	8 Rep 0 	licate C 0.589 200 25 12.5 0.78 2000	MBEC 200 25 18.8 1.17 > 2000	C OD600 0.630

 OD_{600} values for DMSO controls were calculated by averaging turbidity readings from microtiter wells and subtracting blank microtiter well readings. MBC & MBEC values were determined as the lowest test concentration required to demonstrate \ge 90% reduction in turbidity compared to the DMSO control.

Calgary Biofilm Device (CBD) Assay against MRSA 2 (Media: TSBG)

			Br	۲	N + H = Br				F_3CS N H Br Br Br 13				F	F_3C N Br CF_3 Br			
	1 (I MBEC:	HP-1) ≥ 200 μΝ	Λ		12 MBEC: 18.8 μΜ				13 MBEC: 18.8 μΜ					15 MBEC: 0.78 μΜ			
600 600 600	12 0.719 0.695 0.805	11 0.732 0.683 0.615	10 0.716 0.696 0.661	9 0.704 0.708 0.476	8 0.71 0.818 0.138	7 0.715 0.752 0.138	6 0.728 0.706 0.135	5 0.72 0.33 0.13	4 23 0.708 35 0.142 39 0.138	3 0.693 0.144 0.138	2 0.7 0.7	2 1 71 0.04 15 0.05 37 0.04	49 53 49	A B C	MRS DM3 1 (HI	A 2 SO P-1)	MBC OD600: 0.665 50 3.13
600 600 600	0.715 0.785 0.71	0.722 0.171 0.169	0.822 0.17 0.173	0.628 0.168 0.171	0.633 0.165 0.173	0.628 0.163 0.173	0.149 0.162 0.177	0.15 0.15 0.17	53 0.156 57 0.157 76 0.178	0.159 0.158 0.177	0.1 0.1 0.1	61 0.00 67 0.00 76 0.00	69 65 91	D E F	12 1 Vancom	5 nycin**	6.25 0.39 3.9
•••••	•••••	DMSO s Plan	stock w ktonic	ith test Eradi	range: cation	10 mM (MBC)	(0.2 - 20	0 μΝ	/I), *5 mM (0	.1 - 10(0 μM	l), **100 ·····	mN	Л (2 	- 2000	μM) 	
DMS	o 🧕	QÇ			QQ	QQ	МВ	ι ς (μι	M) MRSA 2	Replica	te A	Replicate	в	Repl	icate C	мво	C OD600
1 (HF 13 12*	²⁻¹⁾						0 50 0 3.1 0 6.2	13 25	DMSO (OD600) 1 (HP-1) 13 12*	0.66 25 3.13	2	0.665 50 3.13 6.25		0. 6	.622 25 .25	37.5 4.69	0.650
15 0.39 15 0.78 0.39 0.39 Vanco.** 0.000 0.000 0.39 3.9 3.9 3.9 7.8					0.39 7.8	0.59)										
		DMSO	stock v	vith tes	t range:	: 10 mM	(0.2 - 2	00 µl	M), *5 mM (0	0.1 - 10)0 µl	W), **10(0 m	M (2	2 - 200	0 µM))
	12	11	10	9	8	7	6	5	4	3	2	! 1			MRS	A 2	MBEC
600	0.694	0.56	0.63	0.637	0.679	0.669	0.659	0.62	28 0.669	0.625	0.6	43 0.04	48	Α	DMS	80	OD600: 0.597
600	0.676	0.541	0.657	0.572	0.494	0.605	0.547	0.47	75 0.427	0.376	0.0	87 0.0)5 40	B	1 (HF	P-1)	200
600	0.40	0.464	0.393	0.390	0.320	0.270	0.172	0.08	93 0.088 81 0.092	0.080	0.0	00 0.04 03 0.04	49 55	р	12	*	25
600	0.509	0.31	0.369	0.091	0.091	0.088	0.086	0.08	84 0.083	0.086	0.0	86 0.0)5	E	15	5	1.56
600	0.483	0.406	0.429	0.398	0.457	0.545	0.55	0.54	47 0.443	0.517	0.5	25 0.06	61	F	Vancom	ycin**	> 2000
•••••		DMSO s Bi	stock w ofilm E	ith test Fradica	range: ation (I	10 mM VBEC)	(0.2 - 20	0 μΝ 	/), *5 mM (0	.1 - 100	0 μM	l), **100	mN	/I (2	- 2000	μ Μ)	
DMS	0 [1	XX	XX	A.K	All			MRSA 2	Replica	te A	Replicate	в	Repl	icate C	MBE	C OD600
1 (HF	P-1) 🬔	XX				X	20	00	DMSO (OD600)	0.56	0	0.597		0.	469		0.542
12			NAV		VNG		25	;	1 (HP-1)	> 20	0	200		2	200	≥ 20	0
15						××		<u> </u>	13	12.	5	25		1	2.5	18.8	
12*		XX	XX				2	5	12*	12.	2	20 1.56		1	∠.⊃ 30	18.8	
15		XX		DOC		XOXO	1.	56	Vancomvcin**	> 200	, 00	> 2000		>	2000	> 200	0
Vano	:0.** 🎽				YAY?		1	_ ۵۵۵۸	anooniyoni	- 200		- 2000				- 200	
		DMSO	stock	with tes	t range	: 10 mM	(0.2 - 2	00 µ	M), *5 mM (0.1 - 1(00 µl	M), **10(0 m	h Μ (2	2 - 200	0 µM)

 OD_{600} values for DMSO controls were calculated by averaging turbidity readings from microtiter wells and subtracting blank microtiter well readings. MBC & MBEC values were determined as the lowest test concentration required to demonstrate \ge 90% reduction in turbidity compared to the DMSO control.

9.) Supporting Figure 9. General Workflow for Confocal Microscopy Experiments.

10.) Supporting Table 1. Antibacterial Activity Profiles against MRSA Clinical Isolates.

Summary of halogenated phenazines antibacterial activity profiles (MIC values) against multi-drug resistant *Staphylococcus aureus* clinical isolates.

Compound	MRSA 1	MRSA 2	S. aureus 129	S. aureus 138	S. aureus 147	<i>S. aureus</i> 156
1 (HP-1)	2.35 ^a	2.35ª	2.35ª	2.35ª	2.35ª	2.35 ^a
9	0.59 ^a	1.56	2.35 ^a	0.78	1.17 ^a	1.17 ^a
10	0.05 ^b	0.20	0.15 ^a	0.10	0.10	0.10
12	0.15 ^a	0.39	0.20	0.20		0.20
13	0.10	0.20	0.30 ^a	0.15ª	0.10	0.15 ^a
14	0.05 ^b	0.08ª	0.05 ^b	0.05 ^b	0.08ª	0.05 ^b
15	0.10	0.10	0.10	0.10	0.10	0.10
17	0.30 ^a	1.17 ^a	0.39	0.59 ^a	0.39	0.59 ^a
Vancomycin	0.39	0.39	0.39	0.39	0.59 ^a	0.39
Methicillin	37.5 ^a	> 100	37.5 ^a	37.5ª	6.25	25
Ciprofloxacin	0.78	> 100	> 100	> 100	1.17 ^a	0.78
Tetracycline	0.10 ^b	0.10 ^b	0.10 ^b	0.15ª	0.10 ^b	0.15 ^a
Erythromycin	100	18.8ª	> 100	> 100	37.5ª	> 100
Tobramycin	6.25	6.25	> 100	12.5	6.25	12.5

Note: All biological results are reported in micromolar (µM) concentrations and acquired from three or more independent experiments. The clinical isolates used in this panel are all resistant to methicillin. ^aMidpoint value for 2-fold range in MIC values observed. ^bLowest concentration tested.

11.) Supporting Table 2. Antibacterial Activities against Gram-Negative Pathogens.

Compound	<i>A. baumannii</i> 19606	A. baumannii 17978	A. baumannii 1794	PA01	<i>E. coli</i> UAEC-1
1 (HP-1)	37.5 ^a	> 100	> 100	> 100	> 100
15	12.5	75 ^a	75 ^a	≥ 100	> 100
Colistin	0.39	0.78	2.35 ^a		
Nitroxoline	1.56	9.38ª	9.38ª	> 100	12.5

Summary of antibacterial activities for select HPs against Gram-negative pathogens (MIC values reported).

Note: MIC values are reported in micromolar (µM) concentrations and were acquired from three or more independent experiments. ^aMidpoint value for a 2-fold range observed from independent MIC experiments.

12.) Synthetic Procedures and Characterization Data.

Procedure (Step 1). A solution of 4-fluoroaniline (260 μ L, 2.75 mmol) dissolved in 1 mL tetrahydrofuran was added dropwise to a stirring solution of potassium *tert*-butoxide (721 mg, 7.50 mmol) in tetrahydrofuran (12 mL) at -78 °C. Next, a solution of 3-nitroanisole (383 mg, 2.50 mmol) dissolved in 2 mL tetrahydrofuran was added to the reaction mixture which was then stirred at -78 °C until starting material was consumed (monitored by TLC). Upon completion, the reaction contents were transferred to a separatory funnel containing brine and the crude product was extracted with ethyl acetate (3 x 30 mL). The resulting organic layer was then dried with sodium sulfate, filtered, and concentrated *in vacuo* resulting in nitroso intermediate **20** (red solid) which was taken to the next step without purification. Note: Nitroso compound **20** was isolated and fully characterized below; however, other nitroso intermediates synthesized during these studies were advanced to the next step directly due to general stability concerns.

Procedure (Step 2). Nitroso **20** was dissolved in *N*,*N*-dimethylformamide (10 mL) before *N*,*O*-bis(trimethylsilyl)acetamide (2 mL, 8.1 mmol) was added to the mixture and the reaction was allowed to stir at 40 °C for 19 hours. Upon completion of the reaction, the contents were transferred to a separated funnel containing brine (50 mL) and the crude product was extracted with ethyl acetate (3 x 30 mL). The organic layer was then washed with water (3 x 50 mL), dried over sodium sulfate, filtered, and concentrated *in vacuo*. The resulting material was purified via column chromatography using 5:1 to 3:1 hexanes:ethyl acetate to afford 183 mg of **21** (32% yield) as a yellow solid. Note: This procedure was derived from published protocols and used throughout this study.¹⁻³

20

¹**H NMR (600 MHz, CDCl₃):** δ 10.16 (br. s, 1H), 7.41 (d, *J* = 8.3 Hz, 1H), 7.04 - 7.00 (m, 3H), 6.98 - 6.90 (m, 3H), 3.71 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 159.7 (d, J = 242.9 Hz), 159.4, 151.2, 138.0 (d, J = 2.8 Hz), 130.4, 123.6 (d, J = 8.2 Hz), 118.9, 118.0, 117.9, 115.2 (d, J = 22.8 Hz), 56.3.

HRMS (ESI): calc. for C₁₃H₁₂FN₂O₂ [M+H]⁺: 247.0877, found: 247.0866.

MP: 113 - 115 °C.

Yield: 32%; 183 mg of 21 was isolated as a yellow solid.

¹**H NMR (600 MHz, CDCI₃):** δ 8.28 (dd, J = 9.5, 5.9 Hz, 1H), 7.71 - 7.61 (m, 3H), 7.53 (ddd, J = 9.6, 7.9, 2.8 Hz, 1H), 6.93 (dd, J = 7.1, 1.2 Hz, 1H), 4.07 (s, 3H).

¹³**C NMR (151 MHz, CDCI₃):** δ 163.3 (d, J = 255.7 Hz), 155.2, 144.4, 144.0 (d, J = 13.8 Hz), 139.6, 136.3 (d, J = 2.6 Hz), 132.6 (d, J = 10.4 Hz), 131.2, 122.1 (d, J = 28.2 Hz), 121.1, 111.4 (d, J = 21.1 Hz), 106.4 (d, J = 0.9 Hz), 56.5.

HRMS (ESI): calc. for C₁₃H₁₀FN₂O [M+H]⁺: 229.0772, found: 229.0767.

MP: 164 - 166 °C.

OMe Yield: 34%; 249 mg of 22; yellow solid.

22 ¹³C NMR (101 MHz, CDCl₃): δ 155.2, 144.5, 143.7, 140.8, 136.9, 134.0, 131.5, 131.4, 131.4, 125.4, 121.5, 106.9, 56.6.

HRMS (ESI): calc. for C₁₃H₁₀BrN₂O [M+H]⁺: 288.9971, found: 288.9965.

MP: 183 - 185 °C.

Yield: 45%; 1.05 g of 23; yellow solid.

¹H NMR (600 MHz, CDCI₃): δ 8.68 (d, J = 1.8 Hz, 1H), 8.08 (d, J = 9.1 Hz, 1H), 8.02 (dd, J = 9.1, 1.8 Hz, 1H), 7.79 (dd, J = 8.9, 1.2 Hz, 1H), 7.76 (dd, J = 8.9, 7.3 Hz, 1H), 7.08 (dd, J = 7.3, 1.2 Hz, 1H), 4.17 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 155.3, 144.4, 144.1, 141.3, 139.1, 138.6, 137.2, 131.5, 131.4, 121.7, 107.1, 97.9, 56.8.

HRMS (ESI): calc. for C₁₃H₁₀IN₂O [M+H]⁺: 336.9832, found: 336.9821.

MP: 193 - 195 °C.

24

F₃CS

¹H NMR (600 MHz, CDCl₃): δ 8.57 (d, J = 1.5 Hz, 1H), 8.41 (d, J = 9.1 Hz, 1H), 7.93 (dd, J = 9.1, 1.4 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.78 (dd, J = 8.7, 7.3 Hz, 1H), 7.09 (d, J = 7.3 Hz, 1H), 4.17 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 155.3, 144.8, 142.8, 142.1, 137.8, 137.5, 134.8, 131.7, 131.5, 129.5 (q, *J* = 309.2 Hz), 128.1 (q, *J* = 1.9 Hz), 121.7, 107.6, 56.8.

HRMS (ESI): calc. for C₁₄H₁₀F₃N₂OS [M+H]⁺: 311.0460, found: 311.0473.

MP: 176 - 178 °C.

Yield: 29%; 219 mg of 25; yellow solid.

¹H NMR (600 MHz, CDCl₃): δ 8.14 (d, *J* = 9.0 Hz, 1H), 7.81 (s, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.55 - 7.44 (m, 2H), 7.22 - 7.02 (m, 5H), 6.80 (d, *J* = 7.5 Hz, 1H), 4.05 (s, 2H), 3.95 (s, 3H). Note: TMS was used as a reference (0.00 ppm) in this experiment due to the CHCl₃ signal being buried by compound **25** protons (concentrated sample).

¹³C NMR (151 MHz, CDCl₃): δ 155.0, 144.5, 144.1, 143.5, 141.2, 139.2, 136.4, 132.3, 130.3, 130.0, 129.2, 128.7, 127.4, 126.6, 121.1, 106.1, 56.3, 42.2.

HRMS (ESI): calc. for $C_{20}H_{17}N_2O$ [M+H]⁺: 301.1335, found: 301.1346.

MP: 148 - 150 °C.

Procedure (Step 1). 2,5-Bis(trifluoromethyl)aniline (338 μ L, 2.18 mmol) was added to a stirring solution of potassium *tert*-butoxide (668 mg, 5.95 mmol) in 3 mL tetrahydrofuran at -60 °C. Then, a solution of 5-Chloro-2nitroanisole (372 mg, 1.98 mmol) in 1.8 mL tetrahydrofuran was added to the reaction mixture at -60 °C and allowed to react at this temperature until complete (by TLC analysis). After the reaction was finished, the reaction contents were transferred to a separatory funnel containing brine and the crude product was extracted with ethyl acetate (3 x 30 mL). The resulting organic layer was collected and dried with sodium sulfate, filtered, and concentrated *in vacuo* resulting in crude nitroso **28**, which was taken directly to the next step (this intermediate was purified at a later stage in the project for characterization purposes; full data set below).

Procedure (Step 2). Nitroso **28** was dissolved in *N*,*N*-dimethylformamide (4.8 mL) before *N*,*O*-bis(trimethylsilyl)acetamide (2.4 mL, 9.9 mmol) was added, and the resulting mixture was allowed to stir at 100 °C for two hours. Upon completion, the reaction contents were transferred to a separated funnel containing brine (50 mL) and the crude product was extracted with ethyl acetate (3 x 30 mL). The organic layer was then washed with water (3 x 50 mL), dried over sodium sulfate, filtered, and concentrated *in vacuo*. The resulting solid was purified via column chromatography using 10:1 hexanes:ethyl acetate to afford 145 mg of **29** (29% yield) as a yellow solid.

Yield: 51%; 406 mg of 28 was isolated as a dark brown solid.

¹H NMR (600 MHz, CDCl₃): δ 12.72 (s, 1H), 7.90 (d, *J* = 8.2 Hz, 1H), 7.76 (s, 1H), 7.66 (d, *J* = 8.2 Hz, 1H), 6.52 (d, *J* = 1.8 Hz, 1H), 6.38 (d, *J* = 1.8 Hz, 1H), 4.19 (s, 3H).

²⁸ ¹³C NMR (151 MHz, CDCl₃): δ 164.7, 148.7, 147.8, 136.5 (q, J = 1.4 Hz), 135.5 (q, J = 33.6 Hz), 132.6, 129.2 (q, J = 30.9 Hz), 128.6 (q, J = 5.0 Hz), 125.3 (q, J = 3.7 Hz), 123.7 (q, J = 3.7 Hz), 122.9 (q, J = 273.3), 122.7 (q, J = 273.9), 105.4, 102.4, 57.3.

HRMS (ESI): calc. for C₁₅H₁₀ClF₆N₂O₂ [M+H]⁺: 399.0330, found: 399.0322.

MP: 117 - 119 °C.

Yield: 29%; 145 mg of 29; yellow solid.

¹H NMR (600 MHz, CDCl₃): δ 8.26 (d, *J* = 7.4 Hz, 1H), 8.22 (d, *J* = 7.4 Hz, 1H), 7.94 (d, *J* = 1.2 Hz, 1H), 7.09 (d, *J* = 1.2 Hz, 1H), 4.18 (s, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 156.2, 143.8, 140.2, 139.7, 138.2, 135.8, 132.8 (q, J = 30.8 Hz), 132.2 (q, J = 30.8 Hz), 128.3 (q, J = 5.6 Hz), 127.2 (q, J = 5.6 Hz), 123.0

(q, *J* = 274.6 Hz), 122.9 (q, *J* = 274.4 Hz), 120.5, 110.8, 57.4.

HRMS (DART): calc. for C₁₅H₈ClF₆N₂O [M+H]⁺: 381.0224, found: 381.0215.

MP: 227 - 229 °C.

Procedure with BBr₃: A solution of **29** (138 mg, 0.362 mmol) dissolved in anhydrous dichloromethane (3.6 mL) was added to a round bottom flask and cooled to -78 °C before a 1M solution of boron tribromide in dichloromethane (2.17 mL, 2.17 mmol) was added dropwise to the solution. The resulting reaction mixture was then allowed to stir at -78 °C for one hour being warmed to room temperature for 20 hours. After that time, the reaction was further heated to reflux for an additional four hours until complete (as monitored by TLC). Following this, brine (50 mL) was added to the mixture to quench the reaction, and the contents of the resulting biphasic mixture were transferred to a separated funnel and extracted with dichloromethane (3 x 30 mL). The resulting organic layers were then combined, dried with sodium sulfate, filtered, and concentrated *in vacuo*. The resulting solid was purified via column chromatography using 4:1 hexane:dichloromethane to afford 122 mg of **31** (92% yield) as a yellow solid.

Procedure with AICI₃: Compound **23** (976 mg, 2.91 mmol) was dissolved in benzene (10 mL) in a round bottom flask before aluminum(III) chloride (2.14 g, 17.4 mmol) was added to the solution. The resulting mixture stirred at room temperature for seven hours until complete (as monitored by TLC). Following this time, the mixture was cooled to 0 °C and cold water (5 mL) was slowly added to quench the reaction. The contents of the resultant biphasic mixture were transferred to a separatory funnel with cold water (50 mL) and extracted using dichloromethane (3 x 30 mL). The organic layers were then combined, dried with sodium sulfate, filtered, and concentrated *in vacuo*. The crude mixture was purified via column chromatography using 9:1 hexane:ethyl acetate to afford 850 mg of **34** as a yellow solid (91% yield).

Yield: 92%, 122 mg of **31** using BBr₃; yellow solid.

¹**H NMR (600 MHz, CDCI₃):** δ 8.28 (d, *J* = 7.5 Hz, 1H), 8.25 (d, *J* = 7.5 Hz, 1H), 8.05 (s, 1H), 7.88 (d, *J* = 1.9 Hz, 1H), 7.30 (d, *J* = 1.9 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 152.2, 143.5, 141.0 (2), 136.9, 133.0, 132.5 (q, *J* = 31.1 Hz), 131.9 (q, *J* = 31.1 Hz), 128.4 (q, *J* = 5.5 Hz), 127.7 (q, *J* = 5.5 Hz), 122.9

(q, J = 274.4 Hz), 122.8 (q, J = 274.4 Hz), 119.5, 113.1. Note: HMBC was used to characterize two carbon signals overlapping at 141.0 ppm (see spectra).

HRMS (ESI): calc. for C₁₄H₄CIF₆N₂O [M-H]⁻: 364.9922, found: 364.9918.

MP: 154 - 156 °C.

OH

Yield: 53%; 78 mg of **32** using BBr₃; yellow solid.

 $\begin{array}{c} & \mbox{1} \mbox{H} \mbox{N} \mbox{M} \mbox{M} \mbox{H} \mbox{L}, \mbox{CDCI}_3\mbox{):} \delta 8.22 (dd, J = 9.4, 5.9 Hz, 1H), 8.13 (s, 1H), 7.84 (dd, J = 9.4, 2.6 Hz, 1H), 7.78 (dd, J = 8.7, 7.3 Hz, 1H), 7.74 (d, J = 8.7 Hz, 1H), 7.64 (ddd, J = 9.8, 7.8, 2.6 Hz, 1H), 7.23 (d, J = 7.3 Hz, 1H). \end{array}$

¹³**C NMR (151 MHz, CDCl₃):** δ 163.4 (d, J = 256.3 Hz), 152.0 (d, J = 1.1 Hz), 144.8 (d, J = 13.6 Hz), 144.2, 138.8, 134.3 (d, J = 2.7 Hz), 132.8 (d, J = 0.6 Hz), 131.7 (d, J = 10.3 Hz), 122.7 (d, J = 28.5 Hz), 119.8, 112.0 (d, J = 21.3 Hz), 109.1 (d, J = 1.4 Hz).

HRMS (ESI): calc. for C₁₂H₈FN₂O [M+H]⁺: 215.0615, found: 215.0610.

MP: 187 - 189 °C.

Yield: 100%, 102 mg of **33** using BBr₃; yellow solid.

¹H NMR (400 MHz, CDCl₃): δ 8.45 (s, 1H), 8.12 (s, 1H), 8.07 (d, *J* = 8.5 Hz, 1H), 7.87 (d, *J* = 8.9 Hz, 1H), 7.83 - 7.71 (m, 2H), 7.25 (d, *J* = 8.5 Hz, 1H). Note: TMS was used as a reference (0.00 ppm) due to the CHCl₃ signal being buried in a concentrated NMR sample.

¹³C NMR (101 MHz, CDCl₃): δ 151.9, 144.5, 144.3, 139.9, 134.8, 134.4, 132.8, 131.9, 130.5, 125.5, 120.2, 109.6. HRMS (ESI): calc. for C₁₂H₈BrN₂O [M+H]⁺: 276.9795, found: 276.9792.

MP: 198 - 200 °C.

Yield: 91%, 230 mg of **34** using BBr_3 (91%, 853 mg using AlCl₃); yellow solid.

¹**H NMR (600 MHz, CDCI₃):** δ 8.73 (d, *J* = 1.8 Hz, 1H), 8.10 (s, 1H), 8.04 (dd, *J* = 9.1, 1.8 Hz, 1H), 7.93 (d, *J* = 9.1 Hz, 1H), 7.79 (dd, *J* = 8.9, 7.1 Hz, 1H), 7.76 (dd, *J* = 8.9, 1.4 Hz,

1H), 7.25 (m, 1H, partially buried).

¹³C NMR (151 MHz, CDCl₃): δ 151.9, 144.8, 144.1, 140.2, 139.3, 139.0, 135.0, 132.8, 130.3, 120.3, 109.6, 97.7. HRMS (ESI): calc. for C₁₂H₈IN₂O [M+H]⁺: 322.9676, found: 322.9672.

MP: 196 - 198 °C.

Yield: 100%, 54 mg of **35** using BBr₃; yellow solid.

¹H NMR (600 MHz, CDCl₃): δ 8.63 (d, J = 2.0 Hz, 1H), 8.26 (dd, J = 9.0, 0.4 Hz, 1H), 8.14 (br. s, 1H), 7.96 (dd, J = 9.0, 1.9 Hz, 1H), 7.83 (dd, J = 8.9, 7.0 Hz, 1H), 7.80 (dd, J = 8.9, 1.6 Hz, 1H), 7.29 (dd, J = 7.0, 1.6 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 151.9, 144.5, 143.5, 141.1, 137.9, 135.6, 135.2, 133.1, 130.5, 129.5 (q, J = 309.0 Hz), 128.2 (q, J = 2.1 Hz), 120.3, 110.3.

HRMS (ESI): calc. C₁₃H₈F₃N₂OS for [M+H]⁺: 297.0304, found: 297.0307.

MP: 181 - 183 °C.

Yield: 78%, 71 mg of **36** using BBr₃; yellow solid.

¹H NMR (600 MHz, CDCI₃): δ 8.20 (br. s, 1H), 7.90 (d, *J* = 8.9 Hz, 1H), 7.87 (s, 1H), 7.64 - 7.55 (m, 2H), 7.49 (dd, *J* = 8.9, 1.7 Hz, 1H), 7.24 - 7.18 (m, 2H), 7.17 - 7.11 (m, 3H), 7.07 (dd, *J* = 6.8, 1.5 Hz, 1H), 4.10 (s, 2H). Note: TMS was used as a reference (0.00 ppm) in this experiment due to the CHCI₃ signal being buried by compound **36** protons

(concentrated sample).

¹³C NMR (151 MHz, CDCl₃): δ 151.9, 144.7, 144.3, 143.9, 140.4, 139.4, 134.4, 132.8, 131.9, 129.4, 129.1, 128.9, 128.0, 126.8, 119.9, 108.9, 42.5.

HRMS (ESI): calc. C₁₉H₁₅N₂O for [M+H]⁺: 287.1179, found: 287.1189.

MP: 138 - 140 °C.

Procedure. Compound **31** (86.0 mg, 0.24 mmol) was dissolved in anhydrous dichloromethane (4 mL) in an oven-dried round bottom flask. *N*-bromosuccinimide (85.6 mg, 0.48 mmol) was then added to the solution and the resulting reaction mixture was stirred at room temperature for two hours. Upon completion (monitored by TLC), the reaction mixture was transferred to a separatory funnel containing 10% sodium thiosulfate (15 mL) and the crude product was extracted with dichloromethane (3 x 20 mL). The combined organic layers were dried over sodium sulfate and concentrated *in vacuo*. The resulting crude material was purified via column chromatography with 4:1 hexanes:dichloromethane to afford 113 mg of **16** (92% yield) as a red solid. Note: This bromination procedure was used for the synthesis of other halogenated phenazines used in this study.

¹H NMR (600 MHz, CDCl₃): δ 8.52 (br. s, 1H), 8.36 (d, *J* = 7.5 Hz, 1H), 8.33 (d, *J* = 7.5 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 149.8, 141.5, 140.8, 140.1, 137.3, 132.9 (q, J = 31.7 Hz), 132.2, 131.6 (q, J = 31.5 Hz), 129.1 (q, J = 5.4 Hz), 129.0 (q, J = 5.4 Hz), 122.7 (q, J = 274.4 Hz), 122.6 (q, J = 274.5 Hz), 114.9, 108.6.

HRMS (ESI): calc. for C₁₄H₂Br₂ClF₆N₂O [M-H]⁻: 522.8111, found: 522.8103. **MP:** 171 - 173 °C.

Yield: 39%, 41 mg of 9 was isolated as a yellow solid.

¹H NMR (600 MHz, CDCI₃): δ 8.42 (s, 1H), 8.29 (dd, J = 9.5, 5.8 Hz, 1H), 8.26 (s, 1H), 8.00 (dd, J = 9.2, 2.7 Hz, 1H), 7.74 (ddd, J = 9.5, 7.8, 2.7 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 164.0 (d, J = 258.4 Hz), 149.3 (d, J = 0.9 Hz), 144.9 (d, J = 14.0 Hz), 140.4, 139.1, 138.1, 133.9 (d, J = 2.7 Hz), 131.3 (d, J = 10.4 Hz), 124.4 (d, J = 28.6 Hz), 112.8 (d, J = 4.3 Hz), 112.6, 103.3 (d, J = 1.4 Hz).

HRMS (ESI): calc. C₁₂H₄Br₂FN₂O for [M-H]⁻: 370.8660, found: 370.8644.

MP: 183 - 185 °C.

¹**H NMR (500 MHz, CDCI₃):** δ 8.64 (d, J = 2.1 Hz, 1H), 8.42 (s, 1H), 8.28 (s, 1H), 8.15 (d, *J* = 9.2 Hz, 1H), 7.98 (dd, *J* = 9.2, 2.1 Hz, 1H).

¹³C NMR (101 MHz, CDCI₃): δ 149.3, 144.3, 140.4, 140.3, 138.1, 136.1, 134.4, 132.4, 11 130.1, 126.7, 113.2, 103.8.

HRMS (ESI): calc. C₁₂H₄Br₃N₂O for [M-H]⁻: 430.7843, found: 430.7840.

MP: 234 - 236 °C.

Yield: 62%, 74 mg of 12 was isolated as a yellow solid.

¹H NMR (600 MHz, DMSO-*d*₆): δ 11.61 (s, 1H), 8.77 (d, *J* = 1.8 Hz, 1H), 8.45 (s, 1H), 8.25 (dd, J = 9.1, 1.8 Hz, 1H), 8.09 (d, J = 9.1 Hz, 1H).

¹³C NMR (151 MHz, DMSO-*d*₆): δ 151.0, 143.2, 140.3, 140.3, 139.6, 137.8, 137.5, 12 135.6, 130.2, 111.4, 104.9, 100.4.

HRMS (ESI): calc. C₁₂H₄Br₂IN₂O for [M-H]⁻: 478.7721, found: 478.7740.

MP: 236 - 238 °C.

Yield: 93%, 270 mg of 13 was isolated as a yellow solid.

¹H NMR (600 MHz, CDCl₃): δ 8.76 (d, J = 1.8 Hz, 1H), 8.43 (s, 1H), 8.30 (d, J = 9.1 Hz, 1H), 8.29 (s, 1H), 8.05 (dd, J = 9.1, 1.8 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 149.2, 143.4, 141.4, 140.6, 138.3, 138.1, 136.6, 13 135.1, 130.1, 129.4 (q, *J* = 2.2 Hz), 129.4 (q, *J* = 309.3 Hz), 113.4, 104.7.

HRMS (ESI): calc. C₁₃H₄Br₂F₃N₂OS for [M-H]⁻: 452.8348, found: 452.8362.

MP: 181 - 183 °C.

Yield: 70%, 76 mg of 17 was isolated as a yellow solid.

¹H NMR (600 MHz, CDCl₃): δ 8.49 (br. s, 1H), 8.22 (s, 1H), 8.18 (d, J = 0.8 Hz, 1H), 8.14 (d, J = 8.9 Hz, 1H), 7.75 (dd, J = 8.9, 1.8 Hz, 1H), 7.36 - 7.32 (m, 2H), 7.30 - 7.24 (m, 3H, partially buried), 4.27 (s, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 149.3, 145.9, 144.4, 140.7, 140.1, 139.2, 137.2, 134.6, 134.0, 129.4, 129.1, 128.8, 128.6, 127.0, 113.0, 102.9, 42.6.

HRMS (ESI): calc. C₁₉H₁₃Br₂N₂O for [M+H]⁺: 444.9370, found: 444.9377.

MP: 189 - 191 °C.

13.) Compound Purity Analysis Using LC-MS.

Select compounds evaluated in biological assays were determined to be \geq 95% pure via LC-MS using a Shimadzu Prominence HPLC system, AB Sciex 3200 QTRAP spectrometer and a Kinetex C18 column (50 mm x 2.1 mm x 2.6 µm) with acetonitrile (B) and water (A) in 0.1% formic acid at a flow rate of 0.25 mL/minutes. Each LC-MS experiment was carried out with corresponding LC method. A blank methanol run was used to remove background noise from the purity assessment for each compound. The purity range for these test compounds was determined to be 94.9 - 99.9% pure, based on LC-MS results.

LC method **A**: Ramp up from 10% to 60% of B over 14 minutes, staying at 60% B for 5 minutes, ramp down to 10% of B over 1 minute.

LC method **B**: Ramp up from 10% to 50% of B over 15 minutes, staying at 50% B for 6 minutes, ramp down to 10% of B over 2 minutes.

LC method **C**: Ramp up from 10% to 55% of B over 14 minutes, staying at 55% B for 5 minutes, ramp down to 10% of B over 1 minute.

LC Method B; MS (ESI): found for C₁₂H₄Br₂FN₂O for [M-H]⁻: 370.8

Retention Time (Min)	Peak Area				
15.6	143230				
16.59 (9)	9399000				
19.16	2333				
20.91	16040				
Sum of Area	9560603				
% Purity	98.3%				

LC Method A; MS (ESI): found for C₁₂H₄Br₂CIN₂O for [M-H]⁻: 386.9

Retention Time (Min)	Peak Area				
10.36	109305				
14.40 (10)	12475000				
19.40	18233				
Sum of Area	12602538				
% Purity	99.0%				

LC Method **B**; **MS (ESI):** found for $C_{12}H_4Br_3N_2O$ for [M-H]⁻: 432.6

Retention Time (Min)	Peak Area				
17.57	21441				
18.68	202240				
20.06 (11)	4160100				
Sum of Area	4383781				
% Purity	94.9%				

LC Method C; MS (ESI): found for C₁₂H₄Br₂IN₂O for [M-H]: 480.3

Retention Time (Min)	Peak Area				
16.41	33052				
17.41 (12)	1102800				
Sum of Area	1135852				
% Purity	97.1%				

LC Method **A**; **MS (ESI):** found for C₁₃H₄Br₂F₃N₂OS [M-H]⁻: 452.8

Retention Time (Min)	Peak Area
12.87	90860
15.87	5594
16.67 (13)	22171000
Sum of Area	22267454
% Purity	99.6%

LC Method **B**; **MS (ESI):** found for $C_{13}H_4Br_2F_3N_2O$ [M-H]⁻: 420.7

Retention Time (Min)	Peak Area
15.81	20849
18.93	468290
20.33 (14)	14337000
Sum of Area	14826139
% Purity	96.7%

LC Method **A**; **MS (ESI):** found for C₁₄H₃Br₂F₆N₂O [M-H]⁻: 488.8

Retention Time (Min)	Peak Area
7.34	7552
16.05 (15)	9358000
19.12	4299
Sum of Area	9369851
% Purity	99.9%

LC Method **A**; **MS (ESI):** found for C₁₉H₁₃Br₂N₂O [M-H]⁻: 442.7

Retention Time (Min)	Peak Area
7.35	2816
16.52	48675
17.38 (17)	8835600
Sum of Area	8887091
% Purity	99.4%

14.) Literature References.

- 1) Kwast, A.; Stachowska, K.; Trawczyński, A.; Wróbel, Z. *N*-Aryl-2-Nitrosoanilines as Intermediates in the Synthesis of Substituted Phenazines from Nitroarenes. *Tetrahedron Lett.* **2011**, *52*, 6484-6488.
- 2) Wróbel, Z.; Plichta, K.; Kwast, A. Reactivity and Substituent Effects in the Cyclization of *N*-Aryl-2-Nitrosoanilines to Phenazines. *Tetrahedron* **2017**, *73*, 3147-3152.
- 3) Liu, K.; Xiao, T.; Yang, H.; Chen, M.; Gao, Q.; Brummel, B. R.; Ding, Y.; Huigens III, R. W. Design, Synthesis and Evaluation of Halogenated Phenazine Antibacterial Prodrugs Targeting Nitroreductase Enzymes for Activation. *RSC Med. Chem.* **2023**, *14*, 1472-1481.

15.) NMR Spectra.

NMR spectra for all new compounds synthesized during these studies are presented on the following pages, including ¹H NMR, ¹³C NMR, and 2-D NMRs (HSQC & HMBC for **31**).

to differentiate signals at positions 8 & 10, and positions 13 &14)

and 13 & 14)

