Supplementary Information (SI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Foldameric Receptors with Domain-Swapping Cavities Capable of Selectively Binding and Transporting Monosaccharides

Geunmoo Song , Seungwon Lee and Kyu-Sung Jeong*

*Department of Chemistry, Yonsei University, Seoul 03722, Korea

Fax: +82-2-364-7050

Tel: +82-2123-2643

E-mail: ksjeong@yonsei.ac.kr

Contents

- 1. Syntheses and characterisation of new compounds
- 2. ¹H NMR studies
 - 2.1 ¹H NMR spectra of receptors 1 and 2 in the presence of various guests
 - 2.2 ¹H NMR spectra of 1, $(1-MM)_2 \supset (\text{me-}\beta\text{-}D\text{-}gal\cdot 2H_2O)_2$, and $(1-MP)_2 \supset (\text{me-}\beta\text{-}D\text{-}glc)_2$
 - 2.3 ¹H NMR spectra of **2**, and $(2-MP)_2 \supset (me-\beta-D-glc)_2$
 - 2.4 ¹H NMR spectra in the U-tube transport experiments
- 3. CD studies
- 4. Binding studies
 - 4.1 ¹H NMR titrations
 - 4.2 Isothermal titration calorimetry (ITC) experiments
- 5. Mass spectra
- 6. ¹H, ¹³C NMR spectra of new compounds
- 7. References

General method: All chemicals were purchased from commercial suppliers and used without further purification unless otherwise specified. Dichloromethane (CH₂Cl₂) were purified by drying over calcium hydride (CaH₂), followed by distillation. Ethyl acetate (EtOAc) and acetone were distilled. Thin layer chromatography (TLC) was performed on Merck (silica gel 60, F-254, 0.25 mm). Silica gel 60 (230-400 mesh, Merck) was used for column chromatography. Melting points were determined with a Barnstead Electrothermal (IA9100) apparatus. NMR spectra were measured by using Bruker DRX 400, Avance II instruments. Abbreviations used when describing NMR spectra are as follows: s, singlet; d, doublet; dd, doublet of doublet; t, triplet; m, multiplet. Coupling constants (J) are given in Hz. Chemical shifts are reported using residual protonated solvent peaks (for ¹H NMR spectra, DMSO-d₆ 2.50 ppm; Acetone- d_6 2.05 ppm; CD₂Cl₂ 5.32 ppm; CDCl₃ 7.32 ppm and for ¹³C NMR spectra, DMSO-d₆ 39.5 ppm; Acetone-d₆ 29.8 ppm; CD₂Cl₂ 53.8 ppm CDCl₃ 77.2 ppm). NMR data processing was achieved with Topspin 4.1.1 software. ESI-HRMS spectrometric measurements were obtained from the National Instrument Center for Environmental Mangement at Seoul National University. MALDI-TOF-HRMS spectra were recorded on a Bruker Autoflex Max MALDI-TOF/TOF MS (Bruker Daltonics, Bremen, Germany). Energy-minimized structures were obtained using MacroModel 9.1 program with MMFFs force field in CHCl₃ phase.

1. Syntheses and characterisation of new compounds

5: A Schlenk flask containing 4^{S1} (220 mg, 1.14 mmol), CuI (6.5 mg, 0.034 mmol) and Pd(PPh₃)₂Cl₂ (24 mg, 0.034 mmol) was evacuated under vacuum and back-filled with nitrogen. Anhydrous, degassed tetrahydrofuran (THF) (4.0mL), triethylamine (Et₃N) (0.6 mL), and (triisopropylsilyl)acetylene (0.5 mL, 2.28 mmol) were sequentially added and the solution was stirred at 55 °C for 3.5 h. The reaction mixture was cooled to room temperature, filtered through

Celite with CH₂Cl₂ and concentrated. The residue was dissolved in CH₂Cl₂, washed with brine, and dried over anhydrous Na₂SO₄. The residue was concentrated and purified by flash column chromatography (silica gel, hexanes:CH₂Cl₂:ethyl acetate (EtOAc)= 1:1:0.2 (v/v/v)) to give compound **5** (200 mg, 52 %) as a grey solid; mp > 160 °C (dec); ¹H NMR (400 MHz, Acetone*d*₆, 25 °C, ppm) δ 10.18 (d, *J* = 0.9 Hz, 1H), 8.68 (dd, *J* = 8.3 Hz, 0.9 Hz, 1H), 8.58 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 8.3 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 1.23–1.08 (m, 21H); ¹³C NMR (100 MHz, Acetone*d*₆, 25 °C, ppm) δ 194.1, 156.5, 156.4, 148.2, 140.2, 139.0, 128.1, 125.6, 118.9, 107.2, 94.9, 18.9, 11.9; ESI-HRMS, m/z calcd for C₂₀H₂₆N₂OSi [M+H]⁺ 339.1887 found 339.1890

7: A round bottom flask containing **6**^{S2} (76 mg, 0.216 mmol), triphenylphosphin (141 mg, 0.54 mmol) and NaH (24 mg, 0.45 mmol) was evacuated under vacuum and back-filled with nitrogen. Anhydrous dimethylformamide (DMF) was added and the solution as stirred at 40 °C. After 30 min, **5** (146 mg, 0.43 mmol) was added and stirred for 4h. The reaction mixture was cooled to room temperature, diluted through ethyl acetate, and washed with brine. After dried over anhydrous Na₂SO₄, the residue was concentrated and purified by flash column chromatography (silica gel, hexanes:CH₂Cl₂:tetrahydrofuran (THF) = 4:4:1 (v/v/v)) to give compound **7** (80 mg, 44 %) as a yellow solid; mp > 225 °C (dec); ¹H NMR (400 MHz, Acetone-*d*₆, 25 °C, ppm) δ 8.39 (d, *J* = 8.3 Hz, 1H), 8.38 (d, *J* = 8.3 Hz, 1H), 8.12 (d, *J* = 16.1 Hz, 1H), 8.00 (s, 1H), 7.97 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.1 Hz, 1H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.67 (d, *J* = 8.1 Hz, 1H), 4.05 (s, 1H), 1.23–1.20 (m, 21H); ¹³C NMR (100 MHz, CDCl₃, 25 °C, ppm) δ 159.8, 156.1, 147.1, 144.6, 142.5, 137.1, 136.9, 136.6, 135.5, 127.3, 127.2, 125.4, 124.1, 121.9, 121.3, 120.6, 106.4, 94.7, 18.7, 11.5; ESI-HRMS, m/z calcd for Cs₅H₆2N₄Si₂ [M+H]⁺ 835.4586 found 835.4593

9: A Schlenk flask containing **7** (53 mg, 0.063 mmol), $\mathbf{8}^{S3}$ (305 mg, 0.51 mmol), CuI (1.2 mg, 0.006 mmol), and Pd(PPh₃)₂Cl₂ (4.4 mg, 0.006 mmol) was evacuated under vacuum and back-filled with nitrogen. Anhydrous, degassed dimethylformamide (DMF) (1.2 mL), triethylamine (Et₃N) (0.2 mL), and tetrabutylammonium fluoride (0.14 mL, 1.0 M solution in THF) were sequentially added, and the solution was stirred at 45 °C for 2.5 h. The mixture was cooled to room temperature, filtered through Celite with THF, and concentrated. The residue was dissolved in ethyl acetate, washed with brine, and dried over anhydrous Na₂SO₄. After concentrated, the residue was purified by flash column chromatography (silica gel, hexanes : THF : MeOH : TEA = 10:10:1:1 (v/v/v/v)) to give compound **9** (59 mg, 62 %) as a yellow

solid; mp > 240 °C (dec); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C, ppm) δ 11.49 (s, NH, 1H), 11.13 (s, NH, 1H), 8.56 (d, *J* = 8.2 Hz, 1H), 8.53 (d, *J* = 8.3 Hz, 1H), 8.40 (d, *J* = 1.4 Hz, 1H), 8.24 (s, 1H), 8.12 (d, *J* = 16.1 Hz, 1H), 8.09–7.99 (m, 6H), 7.86 (d, *J* = 8.3 Hz, 1H), 7.83 (d, *J* = 1.3 Hz, 1H), 7.82 (d, *J* = 1.3 Hz, 1H), 7.66 (d, *J* = 16.2 Hz, 1H), 4.13(s, 1H), 1.49 (s, *t*-Bu, 9H), 1.43 (s, *t*-Bu, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆, 25 °C, ppm) δ 159.5, 155.6, 146.0, 144.4, 143.9, 142.2, 141.8, 139.1, 137.8, 135.1, 130.7, 128.8, 127.8, 127.2, 126.3, 125.9, 125.5, 124.0, 123.8, 121.2, 121.1, 120.4, 118.9, 116.3, 112.7, 112.4, 103.0, 93.2, 88.1, 83.7, 76.7, 72.2, 60.2, 34.6, 34.4, 31.8, 31.7; MALDI-TOF-HRMS, m/z calcd for C₈₉H₇₂I₂N₈ [M+H]⁺ 1507.4042 found 1507.4029

1: A Schlenk flask containing **9** (80 mg, 0.053 mmol), **10**^{S4} (76 mg, 0.12 mmol), CuI (1.0 mg, 0.0053 mmol), and Pd(PPh₃)₂Cl₂ (3.7 mg, 0.0053 mmol) was evacuated under vacuum and back-filled with nitrogen. Anhydrous, degassed dimethylformamide (DMF) (1.0 mL), and triethylamine (Et₃N) (0.1 mL) were sequentially added, and the solution was stirred at 45 °C for 2.5 h. The mixture was cooled to room temperature, filtered through Celite with CH₂Cl₂, and concentrated. The residue was dissolved in ethyl acetate, washed with brine, and dried over anhydrous Na₂SO₄. After concentrated, the residue was purified by flash column chromatography (silica gel, hexanes : THF : MeOH : TEA = 10:10:1:1 (v/v/v/v)) to give compound **1** (71 mg, 52 %) as a yellow solid; mp > 275 °C (dec); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C, ppm) δ 11.63 (s, 1H), 11.45 (s, 1H), 11.38 (s, 1H), 10.74 (s, 1H), 8.57 (d, *J* = 8.4 Hz, 1H), 8.45 (s, 1H), 8.43 (s, 1H), 8.35 (d, *J* = 1.4 Hz, 1H), 8.35 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.98 (d, *J* = 8.3 Hz)

Hz, 1H), 7.94 (d, J = 1.5 Hz, 1H), 7.82 (s, 1H), 7.80 (d, J = 7.5 Hz, 1H), 7.79 (d, J = 8.3 Hz, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.68 (d, J = 16.1 Hz, 1H), 7.66 (d, J = 1.4 Hz, 1H), 7.63 (s, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.43 (d, J = 1.6 Hz, 1H), 7.31 (d, J = 8.3 Hz, 1H), 7.21 (d, J = 16.2 Hz, 1H), 5.18 (s, OH), 3.70 (s, 1H), 1.75–1.62 (m, 4H), 1.50 (s, 18H, *t*-Bu), 1.44 (s, 9H, *t*-Bu), 1.38 (s, 9H, *t*-Bu), 0.98 (t, J = 7.3 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆, 25 °C, ppm) δ 158.9, 155.3, 155.2, 146.7, 145.7, 143.9, 142.2, 142.1, 141.8, 141.7, 141.5, 138.0, 137.9, 137.8, 137.1, 134.7, 127.1, 126.3, 126.0, 125.9, 125.9, 125.8, 125.7, 124.2, 124.1, 123.7, 121.2, 120.8, 120.7, 120.6, 120.4,, 119.1, 118.8, 116.7, 112.5, 112.3, 112.1, 105.0, 103.2, 102.9, 97.5, 93.2, 93.1, 92.9, 89.4, 89.0, 87.9, 79.7, 70.9, 34.5, 34.4, 34.3, 33.8, 31.7, 31.6, 29.0, 20.7, 8.7; ESI-HRMS, m/z calcd for C₁₇₉H₁₅₄N₁₆O₂ [M+2H]²⁺ 1280.6293 found 1280.6277

12: A Schlenk flask containing 10 (300 mg, 0.46 mmol), 11^{S5} (380 mg, 0.46 mmol), CuI (4.4 mg, 0.023 mmol), and Pd(PPh₃)₂Cl₂ (16 mg, 0.023 mmol) was evacuated under vacuum and back-filled with nitrogen. Anhydrous, degassed dimethylformamide (DMF) (3.0 mL), and triethylamine (Et₃N) (0.26 mL) were sequentially added, and the solution was stirred at 45 °C for 3 h. The mixture was cooled to room temperature, filtered through Celite with CH₂Cl₂, and concentrated. The residue was dissolved in ethyl acetate, washed with brine, and dried over anhydrous Na₂SO₄. After concentrated, the residue was dissolved in THF (6 mL) and added dropwise TBAF (0.6 mL, 1.0 M solution in THF). After 30 min stirring in room temperature,

the residue was concentrated and purified by flash column chromatography (silica gel, CH₂Cl₂ : MeOH = 50:1 (v/v)) to give compound **12** (450 mg, 81 %) as a yellow solid; mp > 214 °C (dec); ¹H NMR (400 MHz, DMSO-*d*₆, 25 °C, ppm) δ 11.56 (s, 1H), 11.53 (s, 1H), 11.46 (s, 1H), 10.88 (s, 1H), 8.70 (d, *J* = 8.4 Hz, 1H), 8.69 (d, *J* = 8.3 Hz, 1H), 8.44 (s, 1H), 8.43 (s, , 2H), 8.39 (d, *J* = 8.4 Hz, 1H), 8.24 (s, 1H), 8.18 (d, *J* = 8.2 Hz, 1H), 8.15 (d, *J* = 8.1 Hz, 1H), 8.13 (d, *J* = 8.0 Hz, 1H), 8.12 (s, 2H), 8.08 (d, *J* = 8.2 Hz, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 8.00 (d, *J* = 8.3 Hz, 1H), 7.83 (s, 1H), 7.81 (s, 2H), 7.47 (d, *J* = 8.1 Hz, 1H), 7.45 (d, *J* = 1.4 Hz, 1H), 5.26 (s, 1H), 4.58 (s, 1H), 1.77–1.67 (m, 4H), 1.50 (s, 9H, *t*-Bu), 1.48 (s, 18H, *t*-Bu), 1.42 (s, 9H, *t*-Bu), 1.01 (t, *J* = 7.5 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆, 25 °C, ppm) δ 155.4, 154.9, 146.8, 146.7, 146.6, 145.7, 142.2, 142.1, 141.8, 138.2, 138.0, 137.9, 137.9, 137.8, 137.2, 126.4, 126.2, 126.1, 126.0, 125.9, 125.7, 125.3, 124.2, 124.1, 123.7, 121.5, 121.4, 120.8, 120.7, 120.5, 119.0, 119.0, 116.8, 112.5, 112.4, 112.2, 105.0, 102.9, 102.8, 97.6, 93.0, 93.0, 92.8, 89.3, 89.1, 88.8, 83.0, 82.6, 79.6, 70.9, 37.6, 34.6, 34.4, 33.8, 31.7, 17.8, 12.0, 8.7; ESI-HRMS, m/z calcd for C₈₃H₇₂N₈O [M+H]⁺ 1197.5902 found 1197.5916

2: A Schlenk flask containing 12 (292 mg, 0.244 mmol), 2,7-diiodo-9H-fluorene (49 mg, 0.116 mmol), CuI (2.2 mg, 0.0116 mmol), and Pd(PPh₃)₂Cl₂ (8.1 mg, 0.0116 mmol) was evacuated under vacuum and back-filled with nitrogen. Anhydrous, degassed dimethylformamide (DMF) (1.5 mL), and triethylamine (Et₃N) (0.2 mL) were sequentially added, and the solution was stirred at 45 °C for 3.5 h. The mixture was cooled to room temperature, filtered through Celite with CH₂Cl₂, and concentrated. The residue was dissolved in ethyl acetate, washed with brine, and dried over anhydrous Na₂SO₄. After concentrated, the residue was purified by flash column chromatography (silica gel, hexanes : CH_2Cl_2 : THF = 4:4:1 (v/v/v)) to give compound 2 (160) mg, 54 %) as a yellow solid; mp > 265 °C (dec); ¹H NMR (400 MHz, DMSO- d_6 , 25 °C, ppm) δ 11.56 (s, 1H), 11.44 (s, 2H), 10.78 (s, 1H), 8.61 (d, J = 8.4 Hz, 1H), 8.47 (d, J = 8.4 Hz, 1H), 8.43 (s, 1H), 8.42 (s, 1H), 8.38 (d, J = 1.5 Hz, 1H), 8.21 (d, J = 8.4 Hz, 1H), 8.18 (d, J = 1.6 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 8.47 (s, 2H), 8.04 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.86 (d, J = 8.3 Hz, 1H), 7.83 (d, J = 1.07.5 Hz, 1H), 7.83 (d, J = 1.5 Hz, 1H), 7.81 (d, J = 1.6 Hz, 1H), 7.72 (d, J = 1.6 Hz, 1H), 7.66 (s, 1H), 7.44 (d, J = 1.6 Hz, 1H), 7.42 (d, J = 7.5 Hz, 1H), 7.29 (d, J = 8.3 Hz, 1H), 5.21 (s, OH), 3.78 (s, 1H), 1.76–1.64 (m, 4H), 1.49 (s, 18H, t-Bu), 1.43 (s, 9H, t-Bu), 1.37 (s, 9H, t-Bu), 1.00 (t, J = 7.3 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6 , 25 °C, ppm) δ 155.8, 155.5, 147.3, 147.2, 146.9, 146.7, 144.2, 142.7, 142.6, 142.4, 142.2, 142.0, 138.6, 138.4, 138.4, 138.3, 138.2, 137.9, 137.6, 131.4, 129.0, 126.9, 126.5, 126.4, 126.4, 126.2, 125.5, 124.7, 124.6, 124.6, 124.2, 121.8, 121.4, 121.3, 121.2, 121.1, 120.9, 120.0, 119.5, 119.4, 117.2, 113.1, 112.8, 112.6, 105.4, 103.4, 103.4, 103.3, 98.0, 93.6, 93.4, 92.1, 90.1, 90.0, 89.5, 89.3, 80.1, 71.4, 35.0, 34.9, 34.8, 34.3, 33.7, 32.2, 32.1, 23.1, 15.2, 9.2; ESI-HRMS, m/z calcd for $C_{179}H_{150}N_{16}O_2 [M+2H]^{2+}$ 1278.6137 found 1278.6130

2.¹H NMR studies

2.1 ¹H NMR spectra of receptors 1 and 2 in the presence of various guests

me-α-D-glc			*** *****		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					~~~	-			
me-β-D-glc	M	۸							M	Muh	Mh	m	_r.	lı
me-α-D-gal		an and the second s		ang sha star of an all a Tage 1660	a de la carte de que an a que a q		*****		m	~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
me-β-D-gal				M	Λ	*****		_UM	MM	hilder	Mm	w.Mu	Mult	
me-α-D-man									~~~~	~~~~~				l
12.5 ig. S1 Partia quiv of each	12.0 al ¹ H I guest	11.5 NMR s t) in 59	11.0 spectra 6 (v/v)	10.5 (400 M DMS(10.0 /IHz, 2 D-d ₆ /C	9.5 25 ℃) 2D2Cl2	9.0 of reco (conta	8.5 eptor 1 ining c	8.0 in the a. 0.0:	7.5 e preser 5 % wa	7.0 nce of ter).	6.5 various	6.0 5 guest	opm ts (2.0
me-α-D-glc				للاسترسيانك معرما والم		~~~~			ممىلىپ مىر	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
me-β-D-glc	M			L	rl_			M		nn	M	Mul	_www	lu
me-α-D-gal		and and a start of the start of		****		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Minun	um	m	~~~~		
me-β-D-gal			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			*******		فيستقدمهم والمراجع	مسم	\sim	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
me-α-D-man	المودانية ويراجع والم	ىرىنى بىرىنى بىرىنى بىرىنى دىرىنى بىرىنى	247-1 ²⁻¹⁶ 19-19-16-12-16-12	**************************************	********	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~		مسلمسالهم	~~~~^^	ingenerality and the second	ىلىرىكى ئەرىلىكى ئەرىكى ئەرىكى ئەرىلىكى ئەرىكى ئ	the second second second	
12.5	12.0	11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0) 7.5	7.0) 6.5	5 6.	0 pp

Fig. S2 Partial ¹H NMR spectra (400 MHz, 25 °C) of receptor **2** in the presence of various guests (2.0 equiv of each guest) in 5% (v/v) DMSO- d_6 /CD₂Cl₂ (containing ca. 0.05 % water).

2.2 ¹H NMR spectra of 1, $(1-MM)_2 \supset (\text{me}-\beta-\text{D}-\text{gal}\cdot2\text{H}_2\text{O})_2$, and $(1-MP)_2 \supset (\text{me}-\beta-\text{D}-\text{glc})_2$

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 ppm Fig. S3 Partial ¹H NMR spectrum (400 MHz, 25 °C) of 1 (2 mM) in 5% (v/v) DMSO- d_6 /CD₂Cl₂.

Fig. S4 Partial ¹H NMR spectrum (400 MHz, 25 °C) of $(1-MM)_2 \supset (\text{me-}\beta\text{-}D\text{-}gal\cdot2\text{H}_2\text{O})_2$ (2 mM) in 5% (v/v) DMSO- $d_6/\text{CD}_2\text{Cl}_2$. Me- β -D-gal signals are depicted in blue.

$(1-MM)_2 \supset (\text{me-}\beta\text{-}\text{D-}\text{gal}\cdot 2\text{H}_2\text{O})_2$			(1 - <i>M</i>)	$I_{2} \supset (\text{me-}\beta\text{-}\text{D-}\text{gal}\cdot2\text{H}_{2}\text{O})_{2}$	
atom	δ (ppm)	δ (free) – δ	atom	δ (ppm)	δ (free) – δ
utom	o (ppm)	(complex)	utom	o (ppm)	(complex)
1	7.24 (d, <i>J</i> = 1.4 Hz)	0.18	1*	6.43 (d, <i>J</i> = 1.5 Hz)	0.99
2	7.76 (d, J = 1.5 Hz)	0.16	2*	7.51 (d, $J = 1.5$ Hz)	0.41
3	7.55 (d, J = 8.1 Hz)	0.32	3*	7.66 (d, $J = 8.0$ Hz)	0.21
4	7.73 (d, <i>J</i> = 7.9 Hz)	0.14	4*	8.00 (d, J = 8.0 Hz)	-0.13
5	8.19 (d, J = 1.4 Hz)	0.06	5*	8.31 (d, <i>J</i> = 1.6 Hz)	-0.06
6	6.56 (d, J = 1.4 Hz)	1.05	6*	7.10 (s)	0.51
7	7.54 (d, J = 8.2 Hz)	-0.24	7*	7.61 (d, <i>J</i> = 7.9 Hz)	-0.31
8	8.29 (d, J = 8.1 Hz)	-0.53	8*	7.68 (d, <i>J</i> = 7.9 Hz)	0.08
9	7.96 (d, J = 8.1 Hz)	-0.11	9*	6.67 (d, J = 8.0 Hz)	1.18
10	7.15 (d, <i>J</i> = 7.9 Hz)	0.70	10*	7.14 (d, $J = 8.2$ Hz)	0.71
11	7.31 (s)	0.71	11*	7.60 (s)	0.42
12	7.89 (d, J = 1.4 Hz)	0.43	12*	7.77 (d, <i>J</i> = 1.6 Hz)	0.55
13	7.36 (d, J = 8.1 Hz)	0.66	13*	7.11 (d, $J = 8.0$ Hz)	0.91
14	7.62 (d, $J = 8.1$ Hz)	0.40	14*	6.37 (d, J = 8.0 Hz)	1.65
15	8.26 (d, J = 1.5 Hz)	0.03	15*	7.18 (d, $J = 1.4$ Hz)	1.11
16	7.97 (d, <i>J</i> = 1.5 Hz)	-0.23	16*	7.68 (d, $J = 1.7$ Hz)	0.06
17	6.31 (d, <i>J</i> = 7.9 Hz)	0.75	17*	7.11 (d, <i>J</i> = 7.8 Hz)	-0.05
18	7.25 (d, <i>J</i> = 7.9 Hz)	-0.03	18*	6.09 (d, J = 8.0 Hz)	1.13
19	7.23 (d, $J = 8.2$ Hz)	-0.17	19*	6.19 (d, J = 8.0 Hz)	0.87
20	6.76 (d, J = 8.6 Hz)	-0.14	20*	7.11 (d, $J = 8.2$ Hz)	-0.49
21	6.86 (d, J = 7.8 Hz)	0.70	21*	6.21 (d, <i>J</i> = 7.4 Hz)	1.35
22	7.78 (d, <i>J</i> = 8.0 Hz)	-0.56	22*	6.89 (d, <i>J</i> = 7.9 Hz)	0.33
23	6.91 (s)	0.39	23*	8.25 (s)	-0.95
24	3.84 (s)	-0.36	24*	4.63 (s)	-1.15
25	6.42 (d, <i>J</i> = 16.5 Hz)	0.44	26	6.13 (d, <i>J</i> = 16.5 Hz)	1.40
OMe	2.41 (s)		На	2.93 (d, <i>J</i> = 8.0 Hz)	
OHb	6.08 (d, J = 5.6 Hz)		Hb	5.08	
OHc	4.85		Hc	4.88	
OHd	10.48 (d, <i>J</i> = 6.2 Hz)		Hd	5.27	
OHf	9.83 (d, <i>J</i> = 5. Hz)		He	4.85	
Hf	4.84		Hf	4.68	

Table S1 ¹H NMR chemical shifts (400 MHz, 25 °C) of $(1-MM)_2 \supset (\text{me-}\beta\text{-}\text{D-}\text{gal}\cdot2\text{H}_2\text{O})_2$ in 5% (v/v) DMSO- $d_6/\text{CD}_2\text{Cl}_2$ and their differences between free 1.

Fig. S5 (a) Tube and (b) space-filling representations of energy-minimized structure of $(1-MM)_2 \supset (\text{me-}\beta-\text{D-gal}\cdot2\text{H}_2\text{O})_2$ (MacroModel 9.1, MMFFs force field, CHCl₃ phase).

Fig. S6 Partial ¹H-¹H ROESY spectrum (400 MHz, 25 °C, mixing time: 400 ms) of $(1-MM)_2 \supset (\text{me-}\beta-\text{D-}\text{gal}\cdot2\text{H}_2\text{O})_2$ (4.0 mM) in 2% (v/v) DMSO- $d_6/\text{CD}_2\text{Cl}_2$.

Fig. S7 Partial ¹H NMR spectrum (400 MHz, 25 °C) of $(1-MP)_2 \supset (\text{me}-\beta-\text{D-glc})_2$ (2 mM) in 5% (v/v) DMSO- d_6 /CD₂Cl₂. Me- β -D-glc signals are depicted in blue G.

Table S2 ¹H NMR chemical shifts (400 MHz, 25 °C) of $(1-MP)_2 \supset (\text{me}-\beta-\text{D-glc})_2$ in 5% (v/v) DMSO $d_6/\text{CD}_2\text{Cl}_2$ and their differences between free 1.

$(1-MP)_2 \supset (\text{me-}\beta-\text{D-}glc)_2$			(1-/	MP) ₂ ⊃(me-β-D-glc) ₂	
atom	δ (ppm)	δ (free) – δ (complex)	atom	δ (ppm)	δ (free) – δ (complex)
1	7.65 (s)	-0.23	1*	7.05 (s)	0.37
2	7.00 (s)	0.92	2*	8.05 (s)	-0.13
3	7.60	0.27	3*	7.82 (d, J = 8.1 Hz)	0.05
4	7.60	0.27	4*	8.03	-0.16
5	7.10 (s)	1.15	5*	7.40 (s)	0.85
6	7.70 (s)	-0.09	6*	7.95 (s)	-0.34
7	7.95	-0.65	7*	6.35 (d, J = 8.2 Hz)	0.95
8	7.05 (d, J = 8.1 Hz)	0.71	8*	7.38 (d, J = 8.0 Hz)	0.38
9	7.33 (d, $J = 8.0$ Hz)	0.52	9*	7.55 (d, $J = 8.1$ Hz)	0.3
10	6.95 (d, J = 8.1 Hz)	0.9	10*	6.45	1.4
11	7.70	0.32	11*	7.70	0.32
12	8.25 (s)	0.07	12*	8.25 (s)	0.07
13	8.15	-0.13	13*	7.75	0.27
14	7.75	0.27	14*	7.55 (d, $J = 8.1$ Hz)	0.47
15	8.05 (s)	0.24	15*	7.95 (s)	0.34
16	7.80 (s)	-0.06	16*	7.70 (s)	0.04
17	4.55 (d, J = 8.0 Hz)	2.51	17*	7.43	-0.37
18	5.50 (d, J = 8.1 Hz)	1.72	18*	7.10	0.12
19	5.38 (d, J = 8.1 Hz)	1.68	19*	7.10 (d, $J = 8.2$ Hz)	-0.04
20	4.28 (d, J = 8.0 Hz)	2.34	20*	5.90 (d, J = 8.1 Hz)	0.72
21	6.30 (d, <i>J</i> = 7.9 Hz)	1.26	21*	7.05	0.51
22	6.87 (d, <i>J</i> = 7.9 Hz)	0.35	22*	7.15	0.07
24	3.09 (s)	0.39	24*	3.07 (s)	0.41
25*	6.65 (d, <i>J</i> = 16.0 Hz)	0.21	26*	5.35	2.18

Fig. S8 (a) Tube and (b) space-filling representations of energy-minimized structure of $(1-MP)_2 \supset (\text{me-}\beta-\text{D-glc})_2$ (MacroModel 9.1, MMFFs force field, CHCl₃ phase).

Fig. S9 Partial ¹H-¹H ROESY spectrum (400 MHz, 25 °C, mixing time: 400 ms) of $(1-MP)_2 \supset (\text{me-}\beta-\text{D-}glc)_2$ (4.0 mM) in 3% (v/v) DMSO- $d_6/\text{CD}_2\text{Cl}_2$.

Fig. S10 Partial DOSY spectra of 1 in the absence and presence of me- β -D-glc (2 mM) in 2% (v/v) DMSO- d_6 /CD₂Cl₂.

2.3 ¹H NMR spectra of **2**, and $(2-MP)_2 \supset (me-\beta-D-glc)_2$

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 ppm Fig. S11 Partial ¹H NMR spectrum (400 MHz, 25 °C) of 2 (2 mM) in 5 % (v/v) DMSO- d_6 /CD₂Cl₂.

Fig. S12 Partial ¹H NMR spectrum (400 MHz, 25 °C) of $(2-MP)_2 \supset (\text{me-}\beta-\text{D-}\text{glc})_2$ (2 mM) in 5% (v/v) DMSO- $d_6/\text{CD}_2\text{Cl}_2$. Me- β -D-glc signals are depicted in blue.

$(2-MP)_2 \supset (\text{me-}\beta-\text{D-glc})_2$			(2-1	$MP)_2 \supset (\text{me-}\beta\text{-}\text{D-}\text{glc})_2$	
atom §(nnm)		δ (free) – δ	-4	S ()	δ (free) – δ
atom	o (ppm)	(complex)	atom	o (ppm)	(complex)
1	6.88 (s)	0.54	1*	6.75 (s)	0.67
2	7.32 (s)	0.74	2*	7.00 (s)	1.06
3	7.25 (d, <i>J</i> = 8.2 Hz)	0.62	3*	7.84 (d, $J = 8.2$ Hz)	0.03
4	7.62 (d, J = 8.1 Hz)	0.29	4*	8.15 (s)	-0.24
5	7.93 (s)	0.33	5*	8.48 (s)	-0.22
6	6.51 (s)	1.15	6*	8.05 (s)	-0.39
7	7.45 (d, $J = 8.1$ Hz)	0.03	7*	6.11 (d, J = 8.0 Hz)	1.37
8	8.10 (d, J = 8.1 Hz)	-0.12	8*	6.81 (d, J = 8.1 Hz)	1.17
9	7.92 (d, <i>J</i> = 8.2 Hz)	0.28	9*	6.88 (d, J = 8.0 Hz)	1.32
10	7.53 (d, J = 8.1 Hz)	0.47	10*	6.25 (d, J = 8.1 Hz)	1.75
11	8.39 (s)	-0.53	11*	7.88 (d, J = 1.5 Hz)	-0.02
12	8.54 (s)	-0.24	12*	8.21 (s)	0.09
13	8.15 (s)	-0.15	13*	7.78 (d, <i>J</i> = 8.2 Hz)	0.22
14	8.15 (s)	-0.15	14*	7.82 (d, $J = 8.1$ Hz)	0.18
15	8.44 (s)	-0.15	15*	8.13 (s)	0.16
16	7.98 (s)	-0.21	16*	7.68 (s)	0.09
17	5.75 (d, <i>J</i> = 8.0 Hz)	1.56	17*	7.05 (d, $J = 8.0$ Hz)	0.26
18	6.32 (d, J = 8.0 Hz)	1.14	18*	6.20 (d, J = 8.1 Hz)	1.26
19	6.13 (d, <i>J</i> = 8.1 Hz)	1.17	19*	7.30 (d, J = 8.0 Hz)	0.00
20	4.98 (d, J = 8.0 Hz)	1.84	20*	6.70 (d, J = 8.0 Hz)	0.12
21	6.57 (d, J = 7.4 Hz)	1.06	21*	7.68 (br)	-0.05
22	7.25 (d, <i>J</i> = 7.4 Hz)	0.00	22*	7.68 (br)	-0.43
23	6.92 (s)	0.50	23*	7.06 (s)	0.36
24	3.12 (s)	0.53	24*	3.07 (s)	0.56
OMe	0.95 (s)		На	4.63 (d, J = 8.0 Hz)	
OHb	7.53 (d, J = 6.0 Hz)		Hb	4.34	
OHc	10.29 (d, J = 6.2 Hz)		Hc	5.13	
OHd	10.87 (d, $J = 5.8$ Hz)		Hd	4.96	
OHf	8.51 (s)		He	5.07	
Hf	5.67		Hf	5.09	

Table S3 ¹H NMR chemical shifts (400 MHz, 25 °C) of $(2-MP)_2 \supset (\text{me-}\beta-\text{D-glc})_2$ (2 mM) in 5% (v/v) DMSO- d_6 /CD₂Cl₂ and their differences between free **2**.

Fig. S13 (a) Tube and (b) space-filling representations of energy-minimized structure of $(2-MP)_2 \supset (\text{me-}\beta-\text{D-glc})_2$ (MacroModel 9.1, MMFFs force field, CHCl₃ phase).

Fig. S14 Partial ¹H-¹H ROESY spectrum (400 MHz, 25 °C, mixing time: 400 ms) of $(2-MP)_2 \supset (\text{me-}\beta-\text{D-}glc)_2$ (4.0 mM) in CD₂Cl₂.

2.4 ¹H NMR spectra in the U-tube transport experiments (a) (b)

Fig. S15 Time-dependent ¹H NMR spectra (400 MHz, D₂O, 25 °C) of the receiving phase in U-tube transport experiments: (a) in the presence or receptor **2** (3 mM) or (b) in its absence.

3. CD studies

Fig. S16 CD spectra of (a) **1** and (b) **2** $(2.00 \times 10^{-5} \text{ M})$ in the absence and presence of guests (200 equiv) in 5% (v/v) DMSO/CH₂Cl₂ at 25 °C.

4. Binding studies

4.1 ¹H NMR titrations

12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 ppm Fig. S17 Partial ¹H NMR spectral changes of 1 (1.50 mM, 25 ± 1 °C) with increasing the amount of me-β-D-gal in 5% (v/v) DMSO-*d*₆/CD₂Cl₂ (containing ca. 0.05 % water). The NH signals of free 1 and its 2:2 complex are marked with red circles and black squares, respectively.

Fig. S18 Partial ¹H NMR spectral changes of **1** (1.50 mM, 25 ± 1 °C) with increasing the amount of me- β -D-glc in 5% (v/v) DMSO- d_6 /CD₂Cl₂ (containing ca. 0.05 % water). The NH signals of free **1** and its 2:2 complex are marked with red circles and black squares, respectively.

Fig. S19 Partial ¹H NMR spectral changes of **2** (1.50 mM, 25 ± 1 °C) with increasing the amount of me- β -D-glc in 5% (v/v) DMSO- d_6 /CD₂Cl₂ (containing ca. 0.05 % water). The NH signals of free **2** and its 2:2 complex are marked with red circles and black squares, respectively.

4.2 Isothermal titration calorimetry (ITC) experiments

The Hypcal software program analyzed the ITC experimental data using a 2:2 binding model, yielding values for Δ H and *K*. The Gibbs free energy change (Δ G) was subsequently derived from *K*, allowing for the calculation of the entropy change (Δ S) based on the relationship between Δ H and Δ G (common thermodynamic equation).

Fig. S20 (a,b) Experimental ITC measurements and binding isotherms of 1 (1.50×10^{-4} M) with me- β -D-glc (4.00×10^{-3} M) in 5 % (v/v) DMSO/CH₂Cl₂ (containing ca. 0.05 % water) at 22 ± 1 °C. (c) Relative distributions of unbound 1 and its complex, along with experimental and theoretical cumulative heat profiles. In (c), the top represents (a), and the bottom (b).

Table S4 Thermodynamic parameters between 1 and me-β-D-glc in 5 % (v/v) DMSO/CH₂Cl₂ at 22 °C.

Fig. S21 (a,b) Experimental ITC measurements and binding isotherms of 1 (9.00×10^{-5} M) with me- β -D-gal (4.00×10^{-3} M) in 5 % (v/v) DMSO/CH₂Cl₂ (containing ca. 0.05 % water) at 22 ± 1 °C. (c) Relative distributions of unbound 1 and its complex, along with experimental and theoretical cumulative heat profiles. In (c), the top represents (a), and the bottom (b).

Table S5 Thermodynamic parameters between 1 and me-β-D-gal in 5 % DMSO/CH₂Cl₂ at 22 °C.

	L	$\Delta G^{\circ} (\text{kJ-mol}^{-1})$	ΔH° (kJ·mol ⁻¹)	$T\Delta S^{\circ} (kJ \cdot mol^{-1})$
(a)	12.7	-71.5	-118.0	-46.5
(b)	12.8	-71.7	-115.9	-44.2

Fig. S22 (a,b) Experimental ITC measurements and binding isotherms of $1 (3.00 \times 10^{-4} \text{ M})$ with me- α -D-glc (7.00 $\times 10^{-3}$ M) in 5 % (v/v) DMSO/CH₂Cl₂ (containing ca. 0.05 % water) at 22 ± 1 °C. (c) Relative distributions of unbound 1 and its complex, along with experimental and theoretical cumulative heat profiles. In (c), the top represents (a), and the bottom (b).

Table S6 Thermodynamic parameters between 1 and me-α-D-glc in 5 % (v/v) DMSO/CH₂Cl₂ at 22 °C.

Fig. S23 (a,b) Experimental ITC measurements and binding isotherms of 2 (1.50×10^{-4} M) with me- β -D-glc (4.00×10^{-3} M) in 5 % (v/v) DMSO/CH₂Cl₂ (containing ca. 0.05 % water) at 22 ± 1 °C. (c) Relative distribution of unbound 2 and its complex, along with experimental and theoretical cumulative heat profiles. In (c), the top represents (a), and the bottom (b).

Table S7 Thermodynamic parameters between 2 and me-β-D-glc in 5 % DMSO/CH₂Cl₂ at 22 °C.

	L	$\Delta G^{\circ} (\text{kJ-mol}^{-1})$	ΔH° (kJ·mol ⁻¹)	$T\Delta S^{\circ} (kJ \cdot mol^{-1})$
(a)	13.9	-78.3	-51.1	+27.2
(b)	13.9	-78.3	-51.0	+27.3

Fig. S24 (a,b) Experimental ITC measurements and binding isotherms of **2** $(2.50 \times 10^{-4} \text{ M})$ with me- β -D-gal $(6.00 \times 10^{-3} \text{ M})$ in 5 % (v/v) DMSO/CH₂Cl₂ (containing ca. 0.05 % water) at 22 ± 1 °C. (c) Relative distribution of unbound **2** and its complex, along with experimental and theoretical cumulative heat profiles. In (c), the top represents (a), and the bottom (b).

Table S8 Thermodynamic parameters between 2 and me- β -D-gal in 5 % DMSO/CH₂Cl₂ at 22 ± 1 °C.

Fig. S25 (a,b) Experimental ITC measurements and binding isotherms of **2** $(3.00 \times 10^{-4} \text{ M})$ with me- α -D-glc $(7.00 \times 10^{-3} \text{ M})$ in 5 % (v/v) DMSO/CH₂Cl₂ (containing ca. 0.05 % water) at 22 ± 1 °C. (c) Relative distribution of unbound **2** and its complex, along with experimental and theoretical cumulative heat profiles. In (c), the top represents (a), and the bottom (b).

Table S9. Thermodynamic parameters between 2 and me- α -D-glc in 5 % DMSO/CH₂Cl₂ at 22 ± 1 °C.

	L	ΔG° (kJ·mol ⁻¹)	ΔH° (kJ·mol ⁻¹)	$T\Delta S^{\circ} (kJ \cdot mol^{-1})$
(a)	10.7	-60.6	-50.2	+10.4
(b)	10.5	-59.6	-47.0	+12.6

5. Mass spectra

Fig. S26 ESI-MS isotopic distribution of (a) $[1+2H]^{2+}$, (b) $[(1-MM)_2 \supset (me-\beta-D-gal\cdot 2H_2O)_2+2H+Na]^{3+}$ and $[(1-MM)_2 \supset (me-\beta-D-gal\cdot 2H_2O)_2+H+2Na-H_2O]^{3+}$, (c) $[(1-MP)_2 \supset (me-\beta-D-glc)_2+3H]^{3+}$, and (d) $[(1-MP)_2 \supset (me-\beta-D-glc)_2+2H]^{2+}$.

Fig. S27 ESI-MS isotopic distribution of (a) $[2+2H]^{2+}$, (b) $[(2-MP)_2 \supset (me-\beta-D-glc)_2+3H]^{3+}$, and (c) $[(2-MP)_2 \supset (me-\beta-D-glc)_2+2H]^{2+}$.

Fig. S29 ¹H (Acetone- d_6) and ¹³C (CDCl₃) spectra of compound 7 (25 °C).

7. References

- S1. R. Rosin, W. Seichter, A. Schwarzer and M. Mazik, Eur. J. Org. Chem. 2017, 6038-6051.
- S2. D. Wang, M. V. Ivanov, D. Kokkin, J. Loman, J.-Z. Cai, S. A. Reid and R. Rathore, *Angew. Chem. Int. Ed.*, 2018, **57**, 8189–8193.
- S3. K.-J. Chang, D. Moon, M. S. Lah and K.-S. Jeong, *Angew. Chem. Int. Ed.* 2005, **44**, 7926–7929.
- S4. K. M. Kim, G. Song, S. Lee, H.-G. Jeon, W. Chae and K.-S. Jeong, *Angew. Chem. Int. Ed.* 2020, **59**, 22475–22479.
- S5. G. Song and K.-S. Jeong, ChemPlusChem 2020, 85, 2475–2481.