1 . .

Supporting Information

Bromide-promoted cascade annulation of isocyanobiaryls with aldehydes through photoredox catalysis

Mengran Gan, Xiaoting Wu, Xiaochen Ji* and Huawen Huang*

1. General information	S1
2. Procedures for the preparation of 2-isocyanobiaryls	S2
3. General procedure for the synthesis of 3a	S5
4. Optimization of the reaction conditions	S6
5. Mechanistic Investigations	S9
5.1 Radical trapping experiments	S9
5.2 Stern–Volmer Quenching	S10
5.3 Switched light on/off experiment	S12
5.4 Deuteration experiment	S13
6. Late-stage modification of product 3a	S14
7. Characterization data of products	S17
8. Reference	
9. NMR Spectra	

1. General information

Reactions via general procedure were carried out under argon atmosphere unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh) or preparative thin layer chromatography was performed using silica gel (GF254). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument using CDCl₃ as solvent. Chemical shift values are reported in δ (ppm) relative to CDCl₃ (¹H NMR, δ = 7.26; ¹³C NMR, δ = 77.00), respectively. In order to indicate the signal multiplicity, the following abbreviations were used: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet) as well as combinations of them. High-resolution mass spectra (ESI) were obtained with the Thermo Scientific LTQ Orbitrap XL mass spectrometer. Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected. A commercially available blue LED (35W, HIPAR30) was purchased from Shenzhen Jing Feng Times Lighting Technology Co., Ltd as the light source. All irradiation reactions were carried out in a borosilicate glass vessel. The distance from the light source to the irradiation vessel is around 4-5 cm. Unless otherwise noted, all photocatalysts and other reagents were obtained from commercial suppliers and used without further purification.

2. Procedures for the preparation of 2-isocyanobiaryls

2-Bromoarylamine (10.0 mmol), aryl boronic acid (12.0 mmol), K₂CO₃ (6.2 g, 45.0 mmol) and Pd(PPh₃)₂Cl₂ (140.4 mg, 0.2 mmol) were added to a mixture of EtOH (20 mL) and water (20 mL) at room temperature. The mixture was heated to reflux for 12 h under Ar. After cooled to room temperature, the mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography on silica gel using petroleum ether/ethyl acetate as eluent to afford 2-aryl aniline.

Then, acetic formic anhydride (18.0 mmol), which was newly prepared from the reaction of acetic anhydride (1.7 mL, 18.0 mmol) with formic acid (0.8 mL, 20.0 mmol) at 55 °C for 2 h, was added dropwise to a mixture of 2-aryl aniline (3.0 mmol) in 6.0 mL THF at 0 °C. After the addition was completed, the mixture was warmed to room temperature and stirred for 4 h. Then, the reaction was quenched with saturated NaHCO₃ and extracted with EtOAc. The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo to give the corresponding formamides.

These formamides were used for the subsequent dehydration reaction without further purification. POCl₃ (0.8 mL, 9.0 mmol) was added via syringe pump to a mixture of Et₃N (3.8 mL, 27.0 mmol) and formamides (3.0 mmol) in THF (6 mL) at 0 °C within 2 hours. After the addition was completed, the resulting mixture was stirred at 0 °C for another 2 hours. Then, the mixture was

quenched with sat. NaHCO₃ and extracted with CH_2Cl_2 . The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by chromatography on silica gel using petroleum ether/ethyl acetate as eluent to afford 2-isocyanobiaryls.

Substrates (1a-1c, 1e, 1g-1h, 1k, 1t)¹, $1d^2$, (1f, 1i-1j, 1n-1o)³, (1l, 1r)⁴, (1m, 1q)⁵, 1p⁶, and 1u⁷ are known compounds, Substrate 1s is a new compound, and the characterization data and NMR spectra are provided.

4,5-difluoro-2-isocyano-1,1'-biphenyl (1s): According to the procedure, **1s** was purified by flash column chromatography on silica gel using petroleum ether and ethyl acetate (10:1) as an eluent and obtained in 75% yield (1.6 g). Yellow solid. mp: 88 – 92 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.43 (m, 5H), 7.35 (dd, *J* = 9.6, 7.3 Hz, 1H), 7.26 (dd, *J* = 10.4, 8.2 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.0, 150.6 (dd, *J* = 255.5, 12.5 Hz), 159.1(dd, *J* = 253.5, 13.9 Hz), 136.5 (dd, *J* = 6.4, 4.2 Hz), 135.2, 129.0, 128.9, 120.3 (m), 119.2 (d, *J* = 18.9 Hz), 117.2 (d, *J* = 20.6 Hz); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -132.69 (d, *J* = 21.9 Hz), -135.84 (d, *J* = 21.8 Hz). HRMS (ESI) m/z calcd for C₁₃H₈NF₂ (M+H)⁺ 216.0619, found 216.0621.

3. General procedure for the synthesis of 3a

Standard conditions: A 10 mL reaction vessel was charged with 2-isocyano-1,1'-biphenyl (**1a**, 0.2 mmol, 35.8 mg), phenylpropyl aldehyde (**2a**, 0.4 mmol, 53.1 μ L), NH₄Br (0.06 mmol, 5.9 mg), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (0.002 mmol, 2.3 mg), H₂O (0.2 mmol, 3.6 μ L), and DCM (3.0 mL). The atmosphere was exchanged by applying vacuum and backfilling with Ar (this process was conducted for three times). The resulting mixture was stirred at 35 °C for 24 hours under irradiation with a 35 W blue LED. The reaction was monitored by TLC. The crude reaction mixture was quenched with saturated sodium carbonate and extracted with ethyl acetate (3×10 mL). The extracts were combined, dried over sodium sulfate, filtered and the volatiles were removed under reduced pressure. Preparative thin layer chromatography was performed using silica gel (GF254) to give product **3a**.

Gram-scale experiment: A 250 mL reaction vessel was charged with 2-isocyano-1,1'-biphenyl (**1a**, 6.0 mmol, 1075 mg), phenylpropyl aldehyde (**2a**, 12.0 mmol, 1.6 mL), NH₄Br (1.8 mmol, 177 mg), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (0.06 mmol, 69 mg), H₂O (6.0 mmol, 108 µL), and DCM (60 mL). The atmosphere was exchanged by applying vacuum and backfilling with Ar (this process was conducted for three times). The resulting mixture was stirred at 35 °C for 24 hours under irradiation

with two 35 W blue LEDs. The crude reaction mixture was quenched with saturated sodium carbonate and extracted with acetate (3×20 mL). The extracts were combined, dried over sodium sulfate, filtered and the volatiles were removed under reduced pressure. The reaction yields were quantified by separation, and column chromatography was performed using silica gel (200-300 mesh) to give product **3a**, 1.03 g, 55% yield.

 \sim

34

4. Optimization of the reaction conditions

Table 1. The effect of additive on this reaction

2

+ Ph NC 1a	CHO CHO H ₂ O (1.0 equiv) H ₂ O (1.0 equiv) DCM (3.0 mL) 2a 24h, Ar, 35 W blue LED	Ph OH 3a
Entry	Additive	Yield of 3a (%)
1	NaBr	44
2	NH ₄ Br	53
3	LiCl	7
4	LiBr	48
5	KI	trace
6	NiCl	trace
7	NaI	nd
8	KBr	45
9 b	NH ₄ Br	58
10 ^b	TBABr	44
11 °	TBABr	50

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), [Ir]PF₆ (1 mol %), additive (0.5 equiv), H₂O (1 equiv), DCM (3 mL), Ar, 35 W blue LED, 35 °C, 24 h. ^b Isolated yield. ^b Additive (0.3 equiv). ^c In the absence of H₂O. **Table 2.** The effect of photocatalyst on this reaction

Rose Bengal

3	$[Ru(bpy)_3](PF_6)_2$	trace
4	9-Fluorenone	19
5	Eosin B	trace
6	Ir(ppy) ₃	trace
7	Ir[dF(Me)ppy] ₂ (dtbbpy)PF ₆	14
8	Ir[dF(CF3)ppy]2(dtbbpy)PF6	57
9	Eosin Y	trace

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), PC (1 mol %), NH₄Br (0.3 equiv), H₂O (1 equiv), DCM (3 mL), Ar, 35 W blue LED, 35 °C, 24 h. ^{*b*} Isolated yield.

+ Ph NC 1a	CHO CHO H ₂ O (1.0 equiv) H ₂ O (1.0 equiv) Solvent (3.0 mL) 2a 24h, Ar, 35 W blue LED	OH 3a
Entry	Solvent	Yield of 3a (%) ^b
1	DCM	58
2	MeCN	trace
3	PhCl	53
4	EA	50
5	Acetone	25
6	DCE	50
7	THF	16
8	toluene	20

^a Reaction conditions: 1a (0.2 mmol), 2a (0.4 mmol), [Ir]PF ₆ (1 mol %), NH ₄ Br (0.3 equiv), H ₂ O (1 equiv), solver
(3 mL), Ar, 35 W blue LED, 35 °C, 24 h. ^b Isolated yield.

PhBr

EtOH

DMF

Et₂O

DMSO

Cyclohexane

CHCl₃

39

18

trace

22

trace

19

21

Table 4.	The	effect	of H ₂ O	on	this	reaction
----------	-----	--------	---------------------	----	------	----------

9

10

11

12

13

14 15

Entry	H ₂ O	Yield of 3a (%) ^b
1	0	50
2	0.5	51
3	1	58
4	2	53
5	10	42

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), [Ir]PF₆ (1 mol %), NH₄Br (0.3 equiv), H₂O (x equiv), DCM (3 mL), Ar, 35 W blue LED, 35 °C, 24 h. ^b Isolated yield.

Table 5. The effect of NH₄Br on this reaction

+ Ph NC 1a	[Ir]PF ₆ (1.0 mol%) CHO NH₄Br (x equiv) H₂O (1.0 equiv) DCM (3.0 mL) 2a 24h, Ar, 35 W blue LED	OH 3a
Entry	NH ₄ Br	Yield of 3a (%) ^b
1	0	32
2	0.1	50
3	0.3	58
4	0.5	55
5	0.7	55
6	1	50

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), [Ir]PF₆ (1 mol %), NH₄Br (x equiv), H₂O (1 equiv), DCM (3 mL), Ar, 35 W blue LED, 35 °C, 24 h. ^b Isolated yield.

Table 6. The effect of feed ratio on this reaction

Entry	1a:2a	Yield of 3a (%) ^b
1	1:3	50
2	1:2	58
3	1:1	38
4	2:1	30

^a Reaction conditions: [Ir]PF₆ (1 mol %), NH₄Br (0.3 equiv), H₂O (1 equiv), solvent (3 mL), Ar, 35 W blue LED, 35 $^{\circ}$ C, 24 h. ^b Isolated yield.

Table 7. Control experiments

Entry	variation of standard condition	Yield of 3a (%) ^b
1	none	58
2	without Ir[dF(CF3)ppy]2(dtbbpy)PF6	0
3	without NH ₄ Br	trace
4	In dark	trace

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), [Ir]PF₆ (1 mol %), NH₄Br (0.3 equiv), H₂O (1 equiv), DCM (3 mL), Ar, 35 W blue LED, 35 °C, 24 h. ^b Isolated yield.

5. Mechanistic Investigations

5.1. Radical trapping experiments

The following reaction was carried out under standard condition: A 10 mL reaction vessel was charged with 2-isocyano-1,1'-biphenyl (**1a**, 0.2 mmol, 35.8 mg), phenylpropyl aldehyde (**2a**, 0.4 mmol, 53.1 μ L), NH₄Br (0.06 mmol, 5.9 mg), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (0.002 mmol, 2.3 mg), H₂O (0.2 mmol, 3.6 μ L), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (0.4 mmol, 2.0 equiv, 62.8 mg) and DCM (3.0 mL). The atmosphere was exchanged by applying vacuum and backfilling with Ar (this process was conducted for three times). The resulting mixture was stirred at 35 °C for 24 hours under irradiation with a 35 W blue LED. The formation of **3a** was suppressed. Meanwhile, the TEMPO-trapped product (**4**) was detected by HR-MS.

HRMS (ESI): m/z calcd for $C_{18}H_{27}NNaO_2$ (M+Na)⁺ 312.1934, found 312.1965.

2-isocyano-1,1'-biphenyl (**1a**, 0.2 mmol, 35.8 mg), phenylpropyl aldehyde (**2a**, 0.4 mmol, 53.1 μ L), NH₄Br (0.06 mmol, 5.9 mg), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (0.002 mmol, 2.3 mg), H₂O (0.2 mmol, 3.6 μ L), butylated hydroxytoluene (BHT) (0.4 mmol, 2.0 equiv, 88.2 mg) or 1,1-Diphenylethylene (DPE) (0.4 mmol, 2.0 equiv, 72 μ L), and DCM (3.0 mL) were placed in a 10 mL reaction tube. The reaction mixture was stirred under air using a 35 W blue LED for 24 h. The formation of **3a** was suppressed.

5.2. Stern–Volmer Quenching

Formulation solution: 2-isocyano-1,1'-biphenyl (2.5 mmol, 447.5 mg) was dissolved in DCM in a 25 mL volumetric flask to set the concentration to be 0.1 M. Phenylpropyl aldehyde (2.5 mmol, 332 μ L) was dissolved in DCM in a 25 mL volumetric flask to set the concentration to be 0.1 M. NH₄Br (1.25 mmol, 122.9 mg) was dissolved in acetone in a 25 mL volumetric flask to set the concentration

to be 0.05 M (acetone was used as solvent for NH_4Br due to its' poor solubility in DCM). TBABr (1.25 mmol, 80.6 mg) was dissolved in DCM in a 25 mL volumetric flask to set the concentration to be 0.01 M. $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (0.0025 mol, 2.8 mg) was dissolved in DCM (25.0 mL) to set the concentration to be 0.1 mM.

Experimental procedure: The resulting 0.1 mM Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ solution (50 μ L) was added to a cuvette, which was then diluted to a volume of 2.0 mL by adding further solvent (DCM) to prepare a 2.5 μ M solution. 10.0 μ L of 2-isocyano-1,1'-biphenyl (1a) was successively added, uniformly stirred and the resulting mixture was bubbled with nitrogen for 3 minutes and irradiated at 420 nm. Fluorescence emission spectra of 0 μ L, 10.0 μ L, 20.0 μ L, 30.0 μ L, 40.0 μ L, 50.0 μ L fluorescence intensity. Follow this method and make changes to the amount of other compound to obtain the Stern–Volmer relationship in turn.

(b) Fluorescence of $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ quenched by phenylpropyl aldehyde (2a).

(c) Fluorescence of Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ quenched by NH₄Br in acetone.

(d) Fluorescence of $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ quenched by TBABr in DCM.

(e) Stern-Volmer plots of Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆.

5.3 Switched light on/off experiment

Six 10 ml reaction vessels, numbered 1, 2, 3, 4, 5, 6, were charged with 2-isocyano-1,1'biphenyl (**1a**, 0.2 mmol, 35.8 mg), phenylpropyl aldehyde (**2a**, 0.4 mmol, 53.1 μ L), NH₄Br (0.06 mmol, 5.9 mg), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (0.002 mmol, 2.3 mg), H_2O (0.2 mmol, 3.6 µL), and DCM (3.0 mL) respectively. The atmosphere was exchanged by applying vacuum and backfilling with Ar (this process was conducted for three times). The mixture was stirring at 35 °C for sequential periods (2 hours) under irradiation with a 35 W blue LED and followed by stirring in the dark for 2 hours, and so on. At each time point, one reaction vessel was taken out, and the isolated yield of **3a** was obtained. As shown in the figure, continuous light irradiation was essential for the process.

5.4 Deuteration experiment

Using D₂O under standard condition

6. Late-stage modification of product 3a

6.1 Oxidation

To a 10 mL reaction vessel was charged successively with **3a** (0.2 mmol, 62.2 mg), Dess-Martin reagent (0.3 mmol, 127.3 mg) and CH₂Cl₂ (0.2 M) at 0 °C. The reaction mixture was stirred at room temperature for 4 h. The reaction was monitored by TLC. The crude reaction mixture was quenched with NaHCO₃ (aq, 10%, 5 mL). Then the mixture was extracted with ethyl acetate for three times (3×10 mL). The organic solution was dried over sodium sulfate, and filtered. The crude material was purified by silica gel to deliver the product **5** (39.8 mg, 64%).

1-(phenanthridin-6-yl)-3-phenylpropan-1-one (5)⁸: yellow oil. ¹H NMR (400 MHz, Chloroformd) δ 8.82 (d, J = 8.2 Hz, 1H), 8.67 (d, J = 8.3 Hz, 1H), 8.65 – 8.57 (m, 1H), 8.27 – 8.21 (m, 1H), 7.93 – 7.85 (m, 1H), 7.85 – 7.69 (m, 3H), 7.36 (d, J = 6.8 Hz, 4H), 7.30 – 7.21 (m, 1H), 3.85 – 3.78 (m, 2H), 3.22 (t, J = 7.7 Hz, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 203.8, 154.1, 142.5, 141.4, 133.5, 131.0, 130.8, 129.0, 128.8, 128.6, 128.5, 128.1, 127.8, 126.1, 125.3, 123.1, 122.1, 122.1, 42.0, 30.2.

6.2 Allylation

To a solution of **3a** (0.2 mmol, 62.2 mg) and allyl bromide (0.5 mmol, 43 μ L) in THF (2 mL) at 0 °C was added t-BuONa (0.6 mmol, 58 mg) and the mixture was vigorously stirred at room temperature. After 4 hours the reaction was quenched with water (3.0 mL) and diluted with EtOAc (5.0 mL). The aqueous phase was extracted with EtOAc (3×5 mL). Combined organic extracts were washed with water (3.0 mL), brine, dried over MgSO₄ and concentrated. The diene product **6** was purified by short column chromatography.

6-(1-(allyloxy)-3-phenylpropyl)phenanthridine (6): yellow oil. ¹H NMR (400 MHz, Chloroform*d*) δ 8.78 (d, *J* = 8.3 Hz, 1H), 8.69 (d, *J* = 8.3 Hz, 1H), 8.60 (d, *J* = 8.1 Hz, 1H), 8.25 (d, *J* = 8.1 Hz, 1H), 7.87 (t, *J* = 7.6 Hz, 1H), 7.78 (t, *J* = 7.5 Hz, 1H), 7.69 (q, *J* = 7.6 Hz, 2H), 7.29 (dt, *J* = 13.3, 7.3 Hz, 5H), 7.21 (t, *J* = 7.0 Hz, 1H), 5.99 (ddt, *J* = 16.1, 10.7, 5.6 Hz, 1H), 5.36 – 5.24 (m, 1H), 5.18 (dt, *J* = 8.3, 4.1 Hz, 2H), 4.14 – 3.95 (m, 2H), 3.05 (ddd, *J* = 14.5, 10.1, 5.1 Hz, 1H), 2.91 – 2.76 (m, 1H), 2.60 (dtd, *J* = 14.3, 9.4, 5.2 Hz, 1H), 2.46 – 2.28 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 143.3, 141.8, 134.8, 133.4, 130.6, 130.1, 128.7, 128.6, 128.4, 127.2, 127.1, 126.7, 125.9, 124.4, 124.1, 122.5, 122.0, 117.0, 84.0, 70.4, 37.6, 32.7. HRMS (ESI) m/z calcd for $C_{25}H_{24}NO$ (M+H)⁺ 354.1852, found 354.1849.

6.3 Bromination and Chlorination

Bromination: To a 10 mL reaction vessel was charged successively with **3a** (0.2 mmol, 62.2 mg), CBr₄ (0.3 mmol, 99.5 mg), CH₂Cl₂ (1.0 mL), and PPh₃ (1.2 equiv, 62.9 mg) in an ice bath. After the reaction mixture was stirred for 4 h at room temperature, the reaction solution was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography to give the corresponding compound 7 (39.2 mg, 54% yield).

6-(**1**-bromo-3-phenylpropyl)phenanthridine (7): white solid. mp: 149 – 151 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.71 (d, *J* = 8.3 Hz, 1H), 8.60 (d, *J* = 7.8 Hz, 1H), 8.31 (d, *J* = 8.2 Hz, 1H), 8.28 – 8.22 (m, 1H), 7.92 – 7.84 (m, 1H), 7.83 – 7.69 (m, 3H), 7.40 – 7.27 (m, 5H), 5.83 (t, *J* = 6.9 Hz, 1H), 3.15 – 3.05 (m, 2H), 2.99 (ddd, *J* = 20.9, 7.6, 5.6 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 157.5, 143.4, 141.1, 133.5, 130.6, 130.5, 128.8, 128.7, 128.6, 127.6, 127.4, 126.2, 125.5, 124.1, 124.1, 122.7, 122.0, 49.5, 37.5, 34.2. HRMS (ESI) m/z calcd for C₂₂H₁₉NBr (M+H)⁺ 376.0695, found 376.0688.

Chlorination: To a stirred solution of **3a** (0.2 mmol, 62.2 mg) and PPh₃ (0.4 mmol, 104.8 mg) in dry CH₂Cl₂ (0.5 mL) was added Cl₃CCONH₂ (0.4 mmol, 64.8 mg) at room temperature under an N₂ atmosphere. After reaction completion (TLC), the reaction was quenched with cold water and extracted with dichloromethane. The combined organic layer was washed with brine, dried over anhydrous MgSO₄ and filtered. The filtrate was concentrated in vacuum. Purification by silica-gel chromatography (hexane/AcOEt = 60/1) gave the corresponding product **8** (30.0 mg, 45% yield).

6-(1-chloro-3-phenylpropyl)phenanthridine (8): yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.67 (d, *J* = 8.3 Hz, 1H), 8.57 (d, *J* = 8.0 Hz, 1H), 8.28 (d, *J* = 8.3 Hz, 1H), 8.21 (d, *J* = 8.0 Hz, S16

1H), 7.85 (t, J = 7.6 Hz, 1H), 7.80 – 7.66 (m, 3H), 7.28 (tq, J = 16.1, 7.3 Hz, 5H), 5.72 (t, J = 6.5 Hz, 1H), 3.01 (q, J = 5.7, 4.0 Hz, 1H), 2.95 (ddd, J = 8.7, 6.9, 4.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 157.2, 143.2, 141.1, 133.5, 130.6, 130.6, 128.8, 128.7, 128.5, 127.6, 127.4, 126.2, 125.6, 124.2, 124.1, 122.7, 122.0, 58.4, 37.3, 33.2. HRMS (ESI) m/z calcd for C₂₂H₁₉NCl (M+H)⁺ 322.1201, found 322.1196.

7. Characterization data of products

1-(phenanthridin-6-yl)-3-phenylpropan-1-ol (3a)⁹: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3a** (36.4 mg, 58%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.65 (d, *J* = 8.3 Hz, 1H), 8.56 (d, *J* = 8.0 Hz, 1H), 8.24 – 8.10 (m, 1H), 7.95 – 7.81 (m, 2H), 7.81 – 7.71 (m, 1H), 7.72 – 7.58 (m, 2H), 7.31 – 7.22 (m, 4H), 7.18 (ddd, *J* = 6.8, 3.9, 1.9 Hz, 1H), 5.60 (s, 1H), 5.50 (d, *J* = 8.4 Hz, 1H), 3.09 – 2.97 (m, 1H), 2.90 (ddd, *J* = 13.9, 9.5, 4.8 Hz, 1H), 2.43 – 2.31 (m, 1H), 2.00 (dtd, *J* = 13.8, 9.0, 4.8 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.1, 142.1, 141.9, 133.3, 130.8, 129.5, 128.9, 128.7, 128.4, 127.4, 127.0, 125.9, 125.0, 124.2, 123.1, 122.8, 122.1, 68.8, 40.8, 32.0.

1-(8-methylphenanthridin-6-yl)-3-phenylpropan-1-ol (**3b**)⁹: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3b** (30.8 mg, 47%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.50 (d, *J* = 8.3 Hz, 2H), 8.14 (d, *J* = 9.1 Hz, 1H), 7.76 – 7.68 (m, 1H), 7.64 (d, *J* = 13.6 Hz, 2H), 7.49 (s, 1H), 7.32 (d, *J* = 6.5 Hz, 4H), 7.23 (t, *J* = 7.5 Hz, 1H), 5.58 (s, 1H), 5.45 (s, 1H), 3.06 (dt, *J* = 13.8, 8.3 Hz, 1H), 2.92 (ddd, *J* = 13.6, 8.4, 4.8 Hz, 1H), 2.49 (s, 3H), 2.44 – 2.26 (m, 1H), 1.99 (ddt, *J* = 17.0, 8.4, 4.8 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.8, 142.0, 141.7, 137.4, 132.6, 131.1, 129.3, 128.9, 128.5, 128.4, 126.9, 126.0, 124.5, 124.3, 123.1, 122.6, 121.9, 68.4, 40.8, 32.0, 21.8.

1-(8-methoxyphenanthridin-6-yl)-3-phenylpropan-1-ol (**3c**): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3c** (37.7mg, 55%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.46 (d, *J* = 9.1 Hz, 1H), 8.40 (d, *J* = 7.7 Hz, 1H), 8.15 – 8.09 (m, 1H), 7.71 – 7.58 (m, 2H), 7.39 (dd, *J* = 9.1, 2.5 Hz, 1H), 7.33 (q, *J* = 4.5, 3.7 Hz, 4H), 7.22 (tt, *J* = 5.4, 2.4 Hz, 1H), 6.93 (d, *J* = 2.5 Hz, 1H), 5.58 (s, 1H), 5.35 (dd, *J* = 9.2, 1.7 Hz, 1H), 3.69 (s, 3H), 3.19 – 3.05 (m, 1H), 2.91 (ddd, *J* = 13.2, 7.3, 4.9 Hz, 1H), 2.35 – 2.23 (m, 1H), 1.97 (dddd, *J* = 11.4, 9.1, 5.7, 3.6 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.2, 158.6, 142.0, 141.3, 129.3, 129.0, 128.5, 127.9, 127.5, 127.0, 125.9, 124.3, 124.2, 124.2, 121.6, 121.6, 104.6, 68.1, 55.4, 40.5, 32.0. HRMS (ESI) m/z calcd for C₂₃H₂₁NNaO (M+Na)⁺ 366.1465, found 366.1459.

1-(8-phenoxyphenanthridin-6-yl)-3-phenylpropan-1-ol (**3d**): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3d** (42.1 mg, 52%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.61 (d, *J* = 9.1 Hz, 1H), 8.49 (d, *J* = 7.6 Hz, 1H), 8.19 – 8.12 (m, 1H), 7.76 – 7.64 (m, 2H), 7.58 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.49 – 7.39 (m, 3H), 7.22 (dd, *J* = 13.9, 5.8 Hz, 3H), 7.17 – 7.07 (m, 5H), 5.56 (s, 1H), 5.30 (d, *J* = 8.5 Hz, 1H), 2.88 (t, *J* = 7.9 Hz, 2H), 2.27 (dtd, *J* = 16.7, 8.6, 2.4 Hz, 1H), 1.92 (dq, *J* = 15.0, 8.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.3, 156.6, 156.5, 141.8, 141.6, 130.2, 129.5, 129.1, 128.6, 128.5, 128.4, 127.3, 125.8, 124.9, 124.3, 124.2, 124.1, 123.4, 121.8, 119.2, 112.5, 69.1, 40.5, 32.1. HRMS (ESI) m/z calcd for C₂₈H₂₄NO₂ (M+H)⁺ 406.1802, found 406.1801.

3-phenyl-1-(8-phenylphenanthridin-6-yl)propan-1-ol (3e): yellow oil. Purification by

preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3e** (41.3 mg, 53%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.66 (d, *J* = 8.6 Hz, 1H), 8.54 (d, *J* = 7.6 Hz, 1H), 8.21 – 8.14 (m, 1H), 8.07 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.96 (d, *J* = 1.5 Hz, 1H), 7.75 (ddd, *J* = 8.2, 7.0, 1.4 Hz, 1H), 7.67 (ddd, *J* = 8.3, 7.0, 1.4 Hz, 1H), 7.63 – 7.50 (m, 4H), 7.50 – 7.42 (m, 1H), 7.33 – 7.26 (m, 4H), 7.22 (ddd, *J* = 8.4, 5.1, 2.3 Hz, 1H), 5.63 – 5.43 (m, 1H), 3.11 (dt, *J* = 13.8, 8.3 Hz, 1H), 2.91 (ddd, *J* = 13.3, 7.8, 4.8 Hz, 1H), 2.45 – 2.33 (m, 1H), 2.03 (dtt, *J* = 16.7, 7.9, 4.8 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.3, 142.1, 141.8, 140.1, 139.8, 132.3, 130.0, 129.5, 129.1, 128.9, 128.6, 128.1, 127.4, 127.1, 126.0, 124.0, 123.4, 123.3, 122.8, 122.2, 68.2, 40.8, 31.8. HRMS (ESI) m/z calcd for C₂₈H₂₄NO (M+H)⁺ 390.1852, found 390.1859.

1-(8-fluorophenanthridin-6-yl)-3-phenylpropan-1-ol (**3f**)⁹: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3f** (35.8 mg, 54%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.577 (dd, J= 9.2, 5.2 Hz, 1H), 8.439 (d, J= 8 Hz, 1H), 8.132 (d, J= 8 Hz, 1H), 7.739-7.702 (m, 1H), 7.648 (t, J= 7.6 Hz, 1H), 7.572-7.522 (m, 1H), 7.395 (dd, J= 9.6, 2.8 Hz, 1H), 7.321-7.268 (m, 2H), 7.255-7.231 (m, 1H), 7.203-7.167 (m, 1H), 5.437 (s, 1H), 5.341 (d, J= 8.8 Hz, 1H), 3.042-2.967 (m, 1H), 2.932-2.864 (m, 1H), 2.344-2.268 (m, 1H), 2.042-1.922 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.2 (d, *J* = 249.4 Hz), 160.2 (d, *J* = 4.2 Hz), 141.7, 141.6, 129.9, 129.5, 128.7, 128.6, 128.4, 127.3, 125.9, 125.3 (d, *J* = 8.6 Hz), 124.1 (d, *J* = 7.9 Hz), 123.7, 121.8, 120.0 (d, *J* = 23.7 Hz), 109.7 (d, *J* = 21.8 Hz), 68.8, 40.4, 31.8; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -111.00.

1-(8-chlorophenanthridin-6-yl)-3-phenylpropan-1-ol (**3g**)⁹: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3g** (31.2 mg, 45%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.50 (d, *J* = 8.8 Hz, 1H), 8.44 (d, *J* = 8.1 Hz, 1H), 8.13 (d, *J* = 8.1 Hz, 1H), 7.73 (dd, *J* = 13.6, 5.0 Hz, 3H), 7.65 (t, *J* = 7.5 Hz, 1H), 7.29 (dt, *J* = 12.8, 7.2 Hz, 4H), 7.20 (t, *J* = 7.0 Hz, 1H), 5.34 (d, *J* = 7.4 Hz, 1H), 3.02 (dt, *J* = 14.0, 8.3 Hz, 1H),

2.90 (ddd, *J* = 13.6, 8.7, 4.8 Hz, 1H), 2.31 (dt, *J* = 15.0, 8.2 Hz, 1H), 1.97 (ddt, *J* = 18.5, 8.5, 5.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.1, 142.0, 141.6, 133.5, 131.6, 131.4, 129.6, 129.2, 128.7, 128.5, 127.4, 126.0, 124.5, 124.4, 123.9, 123.6, 122.0, 68.6, 40.6, 31.9.

3-phenyl-1-(8-(trifluoromethyl)phenanthridin-6-yl)propan-1-ol (3h): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3h** (36.6 mg, 48%) as a yellow oil; ¹H NMR (400 MHz, Chloroform*-d*) δ 8.713 (d, J= 8.4 Hz, 1H), 8.532 (d, J= 8.4 Hz, 1H), 8.168 (d, J= 8.4 Hz, 1H), 8.050 (s, 1H), 8.001 (d, J= 8.4 Hz, 1H), 7.804 (dd, J= 8, 7.2 Hz, 1H), 7.721-7.683 (m, 1H), 7.306-7.268 (m, 3H), 7.224-7.157 (m, 1H), 7.243 (s, 1H), 5.403 (d, J= 8.8 Hz, 1H), 5.348 (s, 1H), 3.077-3.001 (m, 1H), 2.933-2.867 (m, 1H), 2.354-2.275 (m, 1H), 2.014-1.925 (m, 1H); ¹³C NMR (101 MHz, Chloroform*-d*) δ 161.2, 142.8, 141.3, 135.4, 130.1, 129.7, 129.2 (q, J = 33.0 Hz), 128.7, 128.6, 127.6, 126.7 (q, J=3.0 Hz), 126.1, 123.9, 123.8 (q, J = 257 Hz), 123.2, 122.5, 122.4, 68.4, 40.8, 31.8; ¹⁹F NMR (376 MHz, Chloroform*-d*) δ -62.19. HRMS (ESI) m/z calcd for C₂₃H₁₈NONaF₃ (M+Na)⁺ 404.1233, found 404.1244.

1-(6-(1-hydroxy-3-phenylpropyl)phenanthridin-8-yl)ethan-1-one (3i): white solid. mp: 88 – 90 °C. Purification by preparative thin layer chromatography was performed (PE/EA: 3/1) to yield **3i** (36.0 mg, 46%) as a white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.82 (d, *J* = 8.7 Hz, 1H), 8.64 – 8.50 (m, 2H), 8.37 – 8.28 (m, 1H), 8.23 (d, *J* = 8.1 Hz, 1H), 7.87 (t, *J* = 7.6 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.23 (t, *J* = 7.5 Hz, 4H), 7.14 (t, *J* = 6.6 Hz, 1H), 5.56 – 5.48 (m, 1H), 5.34 (s, 1H), 3.12 (s, 3H), 3.02 (dt, *J* = 14.3, 8.2 Hz, 1H), 2.89 (ddd, *J* = 13.8, 8.8, 5.0 Hz, 1H), 2.39 (dtd, *J* = 16.5, 8.9, 2.4 Hz, 1H), 2.04 (ddd, *J* = 16.4, 8.1, 3.8 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.4, 143.0, 141.3, 139.2, 136.6, 130.8, 129.7, 128.6, 128.6, 128.0, 127.9, 125.9, 125.5, 124.6, 123.0, 122.8, 122.6, 68.8, 44.6, 40.7, 31.6. HRMS (ESI) m/z calcd for C₂₃H₂₂NSO₃ (M+H)⁺ 392.1315, found 392.1311.

1-(9-methoxyphenanthridin-6-yl)-3-phenylpropan-1-ol (**3j**): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3j** (22.6 mg, 33%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.52 (d, *J* = 8.0 Hz, 1H), 8.25 (d, *J* = 8.2 Hz, 1H), 8.22 – 8.07 (m, 1H), 7.84 – 7.70 (m, 2H), 7.70 – 7.61 (m, 1H), 7.37 – 7.24 (m, 4H), 7.24 – 7.14 (m, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 5.82 (dd, *J* = 8.9, 1.9 Hz, 1H), 3.76 (s, 3H), 3.04 (dtt, *J* = 17.8, 8.5, 4.9 Hz, 2H), 2.32 – 2.20 (m, 1H), 1.69 (ddt, *J* = 18.3, 8.9, 5.3 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.6, 158.0, 142.85, 141.8, 135.9, 131.4, 129.1, 129.0, 128.9, 128.3, 126.8, 125.6, 123.7, 122.6, 115.2, 114.8, 108.3, 72.0, 55.3, 41.6, 33.0. HRMS (ESI) m/z calcd for C₂₃H₂₁NNaO₂ (M+Na)⁺ 366.1465, found 366.1468.

1-(10-methoxyphenanthridin-6-yl)-3-phenylpropan-1-ol (**3k**): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3k** (28.8 mg, 42%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 9.49 (d, *J* = 8.5 Hz, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 7.4 Hz, 1H), 7.66 (t, *J* = 7.7 Hz, 1H), 7.59 (t, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 8.1 Hz, 1H), 7.32 (d, *J* = 7.9 Hz, 1H), 7.26 (p, *J* = 7.3 Hz, 4H), 7.18 (t, *J* = 6.8 Hz, 1H), 5.47 (d, *J* = 7.9 Hz, 1H), 4.15 (s, 3H), 3.01 (dt, *J* = 14.1, 8.2 Hz, 1H), 2.88 (ddd, *J* = 14.0, 9.7, 4.7 Hz, 1H), 2.42 – 2.28 (m, 1H), 1.98 (ddt, *J* = 18.4, 9.0, 5.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.6, 158.6, 142.0, 131.0, 129.1, 128.7, 128.4, 128.3, 128.0, 127.7, 126.9, 125.8, 125.1, 124.0, 123.9, 117.2, 111.9, 69.0, 55.9, 40.6, 32.0. HRMS (ESI) m/z calcd for C₂₃H₂₂NO₂ (M+H)⁺344.1645, found 344.1641.

1-(6,8-dimethylphenanthren-9-yl)-3-phenylpropan-1-ol (3l): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3l** (20.5 mg, 30%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.52 (d, *J* = 8.2 Hz, 1H), 8.34 (s, 1H), 8.09 (d, *J* = 8.0 Hz, 1H), 7.70 (t, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.29 – 7.17 (m, 5H), 7.14 (t, *J* = 6.9 Hz, 1H), 6.31 (s, 1H), 5.73 – 5.65 (m, 1H), 2.99 – 2.91 (m, 2H), 2.67 (s, 3H), 2.56 (s, 3H), 2.11 – 1.99 (m, 1H), 1.70 – 1.56 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.8, 142.1, 141.0, 140.6, 135.7, 135.3, 133.9, 128.8, 128.7, 128.7, 128.4, 126.8, 125.8, 124.4, 122.40 121.6, 120.9, 71.0, 42.1, 32.47, 24.7, 21.9. HRMS (ESI) m/z calcd for C₂₄H₂₄NO₂ (M+H)⁺ 342.1852, found 342.1852.

1-(dibenzo[i,k]phenanthridin-5-yl)-3-phenylpropan-1-ol (**3m**): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3m** (37.2 mg, 45%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.75 (d, *J* = 8.2 Hz, 1H), 8.71 – 8.59 (m, 3H), 8.26 – 8.17 (m, 2H), 7.77 (q, *J* = 7.2 Hz, 2H), 7.72 – 7.57 (m, 3H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.15 (dq, *J* = 14.3, 7.1 Hz, 3H), 7.04 (d, *J* = 6.9 Hz, 2H), 5.88 (dd, *J* = 8.8, 2.6 Hz, 1H), 2.83 (dt, *J* = 13.9, 8.2 Hz, 1H), 2.72 (ddd, *J* = 13.6, 8.7, 5.0 Hz, 1H), 2.20 (dtd, *J* = 13.7, 8.4, 2.7 Hz, 1H), 1.90 (dtd, *J* = 13.8, 8.7, 5.1 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.2, 144.0, 141.7, 135.6, 132.3, 130.4, 130.0, 128.9, 128.8, 128.7, 128.5, 128.3, 128.1, 128.0, 127.6, 127.6, 127.4, 127.1, 127.0, 126.4, 125.8, 123.8, 123.6, 123.4, 121.4, 71.7, 39.6, 32.1. HRMS (ESI) m/z calcd for C₃₀H₂₃NNaO (M+Na)⁺ 36.1672, found 436.1659.

1-(2-methylphenanthridin-6-yl)-3-phenylpropan-1-ol (**3n**)⁹: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3n** (25.5 mg, 39%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.61 (d, *J* = 8.3 Hz, 1H), 8.31 (s, 1H), 8.04 (d, *J* = 8.3 Hz, 1H), 7.88 – 7.76 (m, 2H), 7.64 – 7.52 (m, 2H), 7.33 – 7.22 (m, 4H), 7.22 – 7.14 (m, 1H), 5.62 (s, 1H), 5.47 (dd, *J* = 8.5, 2.2 Hz, 1H), 3.01 (ddd, *J* = 13.8, 9.2, 7.5 Hz, 1H), 2.88 (td, *J* = 9.5, 4.8 Hz, 1H), 2.62 (s, 3H), 2.36 (tdd, *J* = 13.9, 8.5, 2.3 Hz, 1H), 1.98 (dtd, *J* = 13.8, 9.1, 4.8 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.0, 142.0, 140.4, 136.9, 133.1, 130.6, 130.6, 129.2, 128.7, 128.4, 127.2, 125.9, 125.0, 124.0, 123.1, 122.7, 121.8, 68.8, 40.8, 32.0, 22.0.

1-(3-methylphenanthridin-6-yl)-3-phenylpropan-1-ol (**3o**)⁹: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3o** (26.8 mg, 41%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.58 (d, *J* = 8.3 Hz, 1H), 8.41 (d, *J* = 8.3 Hz, 1H), 7.95 (s, 1H), 7.90 – 7.75 (m, 2H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.49 (d, *J* = 8.3 Hz, 1H), 7.26 (q, *J* = 6.7, 6.3 Hz, 4H), 7.19 (d, *J* = 5.0 Hz, 1H), 5.65 (s, 1H), 5.48 (d, *J* = 8.4 Hz, 1H), 3.02 (dt, *J* = 15.7, 8.2 Hz, 1H), 2.95 – 2.82 (m, 1H), 2.60 (t, *J* = 2.2 Hz, 3H), 2.46 – 2.28 (m, 1H), 1.99 (ddt, *J* = 18.4, 9.2, 3.9 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.0, 142.2, 142.0, 139.2, 133.4, 130.8, 129.0, 128.8, 128.7, 128.4, 126.9, 125.9, 125.0, 122.7, 122.6, 121.9, 121.8, 68.8, 40.8, 32.0, 21.6.

1-(4-methylphenanthridin-6-yl)-3-phenylpropan-1-ol (**3p**)⁹: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3p** (30.1 mg, 46%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.64 (d, *J* = 8.4 Hz, 1H), 8.42 (d, *J* = 8.0 Hz, 1H), 7.90 – 7.79 (m, 2H), 7.66 – 7.53 (m, 3H), 7.27 (p, *J* = 7.2, 6.6 Hz, 4H), 7.18 (t, *J* = 6.8 Hz, 1H), 5.81 (s, 1H), 5.51 (d, *J* = 6.8 Hz, 1H), 3.10 – 2.98 (m, 1H), 2.89 (s, 4H), 2.40 (ddt, *J* = 14.2, 7.3, 3.7 Hz, 1H), 2.00 (dtd, *J* = 13.8, 9.0, 4.9 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.5, 141.9, 140.5, 137.0, 133.7, 130.7, 129.7, 128.7, 128.4, 127.2, 126.7, 125.9, 124.9, 124.0, 123.0, 122.7, 120.0, 69.0, 40.8, 32.0, 18.4.

1-(3-methoxyphenanthridin-6-yl)-3-phenylpropan-1-ol (**3q**)⁹: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3q** (28.2 mg, 42%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.52 (d, *J* = 8.3 Hz, 1H), 8.41 (d, *J* = 9.0 Hz, 1H), 7.86 – 7.75 (m, 2H), 7.56 (d, *J* = 7.8 Hz, 2H), 7.29 (dt, *J* = 17.6, 9.1 Hz, 5H), 7.19 (t, *J* = 6.4 Hz, 1H), 5.49 (d, *J* = 7.6 Hz, 1H), 4.01 (s, 3H), 3.03 (dt, *J* = 16.4, 8.3 Hz, 1H), 2.91 (td, *J* = 14.0, 11.7, 4.7 Hz, 1H), 2.36 (dt, *J* = 14.8, 8.2 Hz, 1H), 2.00 (dtd, *J* = 13.8, 8.9, 5.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.6, 160.3, 143.6, 141.9, 133.5, 130.9, 128.7, 128.4, 126.3, 125.9, 125.0, 123.4, 122.3, 122.0, 118.2, 118.0, 109.3, 68.9, 55.6, 40.8, 32.0.

1-(2-chlorophenanthridin-6-yl)-3-phenylpropan-1-ol (3r): white solid. mp: 169 – 172 °C. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3r** (38.2 mg, 55%) as a white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.47 (d, *J* = 8.7 Hz, 1H), 8.42 (d, *J* = 2.0 Hz, 1H), 8.03 (d, *J* = 8.7 Hz, 1H), 7.81 (dt, *J* = 7.2, 3.0 Hz, 2H), 7.69 – 7.59 (m, 2H), 7.31 – 7.21 (m, 4H), 7.18 (t, *J* = 6.9 Hz, 1H), 5.44 (d, *J* = 8.3 Hz, 1H), 3.01 (dt, *J* = 14.0, 8.3 Hz, 1H), 2.90 (ddd, *J* = 13.8, 9.3, 4.8 Hz, 1H), 2.32 (dt, *J* = 16.2, 8.5 Hz, 1H), 1.97 (ddt, *J* = 18.1, 8.9, 5.0 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.4, 141.8, 140.4, 132.9, 132.2, 131.1, 130.8, 129.4, 128.7, 128.4, 128.1, 126.0, 125.2, 125.1, 123.1, 122.7, 121.8, 68.9, 40.7, 32.0. HRMS (ESI) m/z calcd for C₂₂H₁₈NOClNa (M+Na)⁺ 370.0969, found 370.0965.

1-(2-chlorophenanthridin-6-yl)-3-phenylpropan-1-ol (3s): white solid. mp: 104 - 107 °C. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **3s** (35.0 mg, 50%) as a white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.375 (d, J= 8 Hz, 1H), 8.184

(dd, J= 11.6, 8 Hz, 1H), 7.887-7.815 (m, 3H), 7.645 (t, J= 7.6 Hz, 1H), 7.313-7.264 (m, 3H), 7.243 (s, 1H), 7.224-7.185 (m, 1H), 5.455 (d, J= 8 Hz, 1H), 5.308 (s, 1H), 3.060-2.985 (m, 1H), 2.955-2.885 (m, 1H), 2.370-2.288 (m, 1H), 2.026-1.935 (m, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.9, 152.4 (d, J = 14.3 Hz), 151.3 (d, J = 14.4 Hz), 149.9 (d, J = 15.0 Hz), 148.8 (d, J = 14.5 Hz), 141.7, 139.1 (d, J = 9.8 Hz), 132.3, 131.2, 128.6 (d, J = 28.4 Hz), 127.8, 126.0, 125.2, 122.6, 121.1 (d, J = 6.0 Hz), 116.4 (d, J = 16.5 Hz), 109.3 (d, J = 19.0 Hz), 68.9, 40.7, 32.0; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -134.33 (d, J = 21.9 Hz), -135.73 (d, J = 21.8 Hz). HRMS (ESI) m/z calcd for C₂₂H₁₇NOF₂Na (M+Na)⁺ 372.1170, found 372.1169.

1-(phenanthridin-6-yl)ethan-1-ol (**4a**)¹⁰: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4a** (25.0 mg, 56%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.66 (d, *J* = 8.3 Hz, 1H), 8.56 (d, *J* = 8.4 Hz, 1H), 8.18 – 8.09 (m, 2H), 7.91 – 7.83 (m, 1H), 7.79 – 7.63 (m, 3H), 5.64 (q, *J* = 6.5 Hz, 2H), 1.66 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.1, 142.1, 133.4, 130.9, 129.4, 129.0, 127.5, 127.0, 125.3, 124.2, 123.0, 122.8, 122.1, 66.0, 25.3.

1-(phenanthridin-6-yl)propan-1-ol (4b): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4b** (25.6 mg, 54%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.61 (d, *J* = 8.3 Hz, 1H), 8.51 (d, *J* = 8.1 Hz, 1H), 8.14 (d, *J* = 8.1 Hz, 1H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.83 (t, *J* = 7.6 Hz, 1H), 7.77 – 7.60 (m, 3H), 5.54 (s, 1H), 5.51 – 5.41 (m, 1H), 2.15 (dqd, *J* = 14.6, 7.4, 2.8 Hz, 1H), 1.74 (dp, *J* = 14.5, 7.3 Hz, 1H), 1.07 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.1, 142.0, 133.2, 130.8, 129.5, 128.9, 127.4, 127.0, 125.2, 124.1, 123.2, 122.7, 122.1, 70.7, 31.8, 9.9. HRMS (ESI) m/z calcd for C₁₆H₁₆NO (M+H)⁺ 238.1227, found 238.1226.

1-(phenanthridin-6-yl)propan-1-ol (4c): white solid. mp: 90 – 93 °C. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4c** (23.3 mg, 44%) as a white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.65 (d, *J* = 8.3 Hz, 1H), 8.55 (d, *J* = 7.9 Hz, 1H), 8.13 (dd, *J* = 19.7, 7.8 Hz, 2H), 7.86 (t, *J* = 7.7 Hz, 1H), 7.79 – 7.61 (m, 3H), 5.55 – 5.46 (m, 1H), 2.14 – 1.99 (m, 1H), 1.68 (ddq, *J* = 17.5, 10.1, 5.7, 5.1 Hz, 2H), 1.52 (dddd, *J* = 17.7, 11.6, 7.7, 2.3 Hz, 1H), 1.46 – 1.37 (m, 1H), 1.37 – 1.28 (m, 1H), 0.90 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.5, 142.1, 133.3, 130.9, 129.4, 128.9, 127.4, 127.0, 125.2, 124.1, 123.1, 122.8, 122.1, 69.7, 38.8, 27.9, 22.8, 14.1. HRMS (ESI) m/z calcd for C₁₈H₂₀NO (M+H)⁺ 266.1539, found 266.1511.

1-(phenanthridin-6-yl)hexan-1-ol (**4d**): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4d** (13.4 mg, 24%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.67 (d, *J* = 8.3 Hz, 1H), 8.57 (d, *J* = 8.1 Hz, 1H), 8.16 (d, *J* = 8.1 Hz, 1H), 8.11 (d, *J* = 8.2 Hz, 1H), 7.88 (t, *J* = 7.7 Hz, 1H), 7.72 (ddd, *J* = 19.4, 11.2, 8.1 Hz, 3H), 5.51 (d, *J* = 4.9 Hz, 1H), 2.06 (t, *J* = 10.4 Hz, 1H), 1.68 (dq, *J* = 17.9, 10.3 Hz, 2H), 1.62 – 1.48 (m, 1H), 1.35 – 1.27 (m, 4H), 0.88 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.5, 142.1, 133.3, 130.9, 129.4, 128.9, 127.4, 127.0, 125.2, 124.1, 123.1, 122.8, 122.1, 69.8, 39.1, 31.9, 25.5, 22.7, 14.1. HRMS (ESI) m/z calcd for C₁₉H₂₁NONa (M+Na)⁺ 302.1515, found 302.1524.

1-(phenanthridin-6-yl)decan-1-ol (4e): white solid. mp: 65 – 69 °C. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4e** (26.8 mg, 40%) as a white solid; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.65 (d, *J* = 8.3 Hz, 1H), 8.55 (d, *J* = 8.1 Hz, 1H), 8.15 (d, *J* = 8.0 Hz, 1H), 8.10 (d, *J* = 8.2 Hz, 1H), 7.86 (t, *J* = 7.6 Hz, 1H), 7.79 – 7.61 (m, 3H), 5.56 – 5.47 (m, 1H), 2.06 (t, *J* = 10.1 Hz, 1H), 1.75 – 1.61 (m, 2H), 1.38 (dd, *J* = 13.9, 8.9 Hz, 1H), 1.24 (s,

12H), 0.87 (t, J = 6.7 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.5, 142.0, 133.3, 130.9, 129.4, 128.9, 127.4, 127.0, 125.2, 124.1, 123.1, 122.8, 122.1, 69.8, 39.1, 31.9, 29.6, 29.6, 29.4, 25.8, 22.7, 14.2. HRMS (ESI) m/z calcd for C₂₃H₃₀NO (M+H)⁺ 336.2322, found 336.2293.

5-chloro-1-(phenanthridin-6-yl)pentan-1-ol (4f)⁹: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4f** (36.6 mg, 69%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.62 (d, *J* = 8.3 Hz, 1H), 8.52 (d, *J* = 8.1 Hz, 1H), 8.13 (d, *J* = 8.1 Hz, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.75 – 7.60 (m, 3H), 5.56 (d, *J* = 9.4 Hz, 1H), 5.44 (s, 1H), 2.26 (dqt, *J* = 13.3, 6.6, 4.2 Hz, 1H), 1.74 (ddd, *J* = 13.6, 10.0, 1.6 Hz, 1H), 1.57 (ddd, *J* = 14.1, 8.4, 3.8 Hz, 1H), 1.24 (d, *J* = 6.6 Hz, 3H), 0.96 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.9, 142.1, 133.1, 130.8, 129.4, 128.9, 127.4, 126.9, 125.1, 124.1, 123.0, 1228, 122.1, 68.2, 48.6, 25.5, 24.0, 21.6.

5-chloro-1-(phenanthridin-6-yl)pentan-1-ol (4g): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4g** (35.9 mg, 60%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.64 (d, *J* = 8.3 Hz, 1H), 8.54 (d, *J* = 8.1 Hz, 1H), 8.17 – 8.11 (m, 1H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.90 – 7.82 (m, 1H), 7.78 – 7.63 (m, 3H), 5.51 (dd, *J* = 7.7, 2.4 Hz, 1H), 3.53 (t, *J* = 6.4 Hz, 2H), 2.18 – 2.03 (m, 1H), 1.83 (dddd, *J* = 19.8, 13.5, 10.4, 6.8 Hz, 3H), 1.76 – 1.59 (m, 2H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.9, 142.0, 133.3, 130.9, 129.5, 129.0, 127.5, 127.1, 125.0, 124.1, 123.0, 122.9, 122.1, 69.5, 45.0, 38.2, 32.6, 23.3. HRMS (ESI) m/z calcd for C₁₈H₁₈NOClNa (M+Na)⁺ 322.0969, found 322.0969.

1-(phenanthridin-6-yl)undec-10-en-1-ol (4h): yellow oil. Purification by preparative thin layer

chromatography was performed (PE/EA: 10/1) to yield **4h** (13.2 mg, 19%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.66 (d, J = 8.3 Hz, 1H), 8.56 (d, J = 8.0 Hz, 1H), 8.18 – 8.13 (m, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.90 – 7.83 (m, 1H), 7.77 – 7.64 (m, 3H), 5.80 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.51 (d, J = 4.8 Hz, 1H), 5.04 – 4.89 (m, 2H), 2.02 (dt, J = 14.4, 6.2 Hz, 3H), 1.66 (td, J = 11.3, 3.5 Hz, 2H), 1.37 – 1.32 (m, 2H), 1.27 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.5, 142.1, 139.3, 133.3, 130.8, 129.5, 128.9, 127.4, 127.0, 125.2, 124.1, 123.2, 122.8, 122.1, 114.1, 69.8, 39.1, 33.8, 29.6, 29.6, 29.4, 29.1, 28.9, 25.8. HRMS (ESI) m/z calcd for C₂₄H₂₉NNaO (M+Na)⁺ 370.2141, found 370.2156.

2-ethyl-1-(phenanthridin-6-yl)hexan-1-ol (4i): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4i** (17.6 mg, 35%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.66 (d, *J* = 8.3 Hz, 1H), 8.56 (d, *J* = 8.1 Hz, 1H), 8.17 (d, *J* = 8.1 Hz, 1H), 8.12 (d, *J* = 8.2 Hz, 1H), 7.86 (t, *J* = 7.7 Hz, 1H), 7.71 (dq, *J* = 22.2, 7.3 Hz, 3H), 5.43 (s, 1H), 5.38 (s, 1H), 2.40 – 2.26 (m, 1H), 1.32 (d, *J* = 6.9 Hz, 3H), 0.63 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.0, 142.1, 133.3, 130.8, 129.5, 128.9, 127.4, 127.0, 125.6, 124.1, 123.4, 122.7, 122.1, 69.0, 17.72, 2.7, 0.9. HRMS (ESI) m/z calcd for C₁₇H₁₈NNaO (M+Na)⁺ 274.1202, found 274.1182.

cyclopropyl(phenanthridin-6-yl)methanol (4j)⁹: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4j** (15.0 mg, 30%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.58 (d, *J* = 8.3 Hz, 1H), 8.49 (d, *J* = 8.0 Hz, 1H), 8.23 (d, *J* = 8.2 Hz, 1H), 8.12 (d, *J* = 8.1 Hz, 1H), 7.86 – 7.78 (m, 1H), 7.76 – 7.58 (m, 3H), 5.49 (d, *J* = 4.3 Hz, 1H), 5.41 (s, 1H), 1.36 (tq, *J* = 9.6, 5.2 Hz, 1H), 0.81 (dq, *J* = 9.1, 5.1, 3.8 Hz, 1H), 0.54 (ddt, *J* = 14.5, 9.6, 5.0 Hz, 2H), 0.31 (ddd, *J* = 12.7, 6.3, 3.2 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.7, 141.9, 133.3, 130.8, 129.5, 128.9, 127.3, 127.0, 125.4, 124.0, 123.4, 122.8, 122.1, 73.6, 34.6, 21.0, 14.6.

cyclopentyl(phenanthridin-6-yl)methanol (4k): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4k** (11.1 mg, 20%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.66 (d, J = 8.3 Hz, 1H), 8.55 (d, J = 7.8 Hz, 1H), 8.22 – 8.12 (m, 2H), 7.90 – 7.83 (m, 1H), 7.77 – 7.62 (m, 3H), 5.60 (d, J = 2.8 Hz, 1H), 5.44 (s, 1H), 2.53 (pd, J = 8.5, 2.9 Hz, 1H), 1.92 (ddt, J = 11.3, 7.8, 3.5 Hz, 2H), 1.74 (dq, J = 12.1, 7.3, 6.4 Hz, 1H), 1.62 (tdd, J = 12.7, 5.9, 2.6 Hz, 1H), 1.51 (dtd, J = 12.6, 7.9, 4.2 Hz, 2H), 1.45 – 1.33 (m, 1H), 0.96 (dtd, J = 11.8, 7.6, 4.4 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.1, 142.0, 133.3, 130.8, 129.5, 128.8, 127.3, 126.9, 125.3, 124.1, 123.3, 122.7, 122.1, 70.9, 46.2, 30.1, 26.1, 25.9, 24.7. HRMS (ESI) m/z calcd for C₁₉H₂₀NO (M+H)⁺ 278.1539, found 278.1507.

cyclohexyl(phenanthridin-6-yl)methanol (4l)⁹: yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4l** (14.0 mg, 24%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.66 (d, J = 8.3 Hz, 1H), 8.56 (d, J = 8.0 Hz, 1H), 8.19 – 8.10 (m, 2H), 7.90 – 7.83 (m, 1H), 7.78 – 7.62 (m, 3H), 5.43 – 5.35 (m, 1H), 1.93 (dd, J = 14.7, 5.1 Hz, 2H), 1.83 (d, J = 12.9 Hz, 1H), 1.72 (qd, J = 12.8, 3.4 Hz, 1H), 1.59 (d, J = 9.8 Hz, 2H), 1.33 – 1.24 (m, 2H), 1.16 (dt, J = 13.0, 3.4 Hz, 1H), 1.04 (d, J = 13.2 Hz, 1H), 0.95 (dt, J = 12.3, 3.2 Hz, 1H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.6, 141.9, 133.2, 130.8, 129.5, 128.9, 127.4, 126.9, 125.4, 124.0, 123.5, 122.8, 122.1, 73.6, 44.9, 31.2, 26.8, 26.3, 26., 25.1.

3-(4-(tert-butyl)phenyl)-2-methyl-1-(phenanthridin-6-yl)propan-1-ol (**4m**): yellow oil. Purification by preparative thin layer chromatography was performed (PE/EA: 10/1) to yield **4m** (19.2 mg, 25%) as a yellow oil; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.63 (d, *J* = 8.3 Hz, 1H), 8.53 (d, *J* = 8.3 Hz, 1H), 8.16 (d, *J* = 8.9 Hz, 1H), 8.12 (d, *J* = 8.2 Hz, 1H), 7.90 – 7.81 (m, 1H), 7.80 – 7.63 (m, 3H), 6.91 (d, J = 8.3 Hz, 2H), 6.64 (d, J = 8.2 Hz, 2H), 5.52 (d, J = 2.4 Hz, 1H), 2.54 (tdd, J = 11.2, 5.7, 3.4 Hz, 1H), 2.49 – 2.31 (m, 2H), 1.29 (s, 3H), 1.14 (s, 9H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.3, 147.9, 141.8, 137.6, 133.2, 130.8, 129.5, 128.9, 128.5, 127.3, 127.0, 125.2, 124.5, 124.1, 123.5, 122.8, 122.1, 73.7, 41.8, 35.1, 34.1, 31.3, 18.4. HRMS (ESI) m/z calcd for C₂₇H₃₀NO (M+H)⁺384.2322, found 384.2323.

8. Reference

- 1. Q. Wang, X. Dong, T. Xiao and L. Zhou, Org. Lett., 2013, 15, 4846-4849.
- 2. Q. Li, C. Y. Zhou and C. Wang, Org. Lett., 2022, 24, 7654-7658.
- 3. J. Rong, L. Deng, P. Tan, C. Ni, Y. Gu, J. Hu, Angew. Chem., Int. Ed., 2016, 55, 2743-2747.
- H. Y. Wu, Z. Cao, S. Q. Li, Y. W. Fu, J. M. Li, X. H. Li, C. M. He and J. Y. Chen, *J. Org. Chem.*, 2023, 88, 17322-17329.
- 5. W. Wan, G. Ma, J. Li, Y. Chen, Q. Hu, M. Li, H. Jiang, H. Deng and J. Hao, *Chem. Commun.*, 2016, **52**, 1598-1601.
- 6. M. Lübbesmeyer, D. Leifert, H. Schäfer and A. Studer, *Chem. Commun.*, 2018, 54, 2240-2243.
- 7. T. Zhang, M. Yu and H. Huang, Chem. Sci., 2021, 12, 10501-10505.
- 8. X. Y. Zhang, W. Z. Weng, H. Liang, H. Yang and B. Zhang, Org. Lett., 2018, 20, 4686-4690.
- H. T. Ji, Q. H. Peng, J. S. Wang, Y. H. Lu, H. Dai, Q. X. Luo and W. M. He, *Green Chem.*, 2024, 26, 12084-12089.
- 10. C. A. Correia, L. Yang and C. J. Li, Org. Lett., 2011, 13, 4581-4583.

9. NMR Spectra ¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 3a

-161.06 -161.06 -112.09 -123.30 -123.30 -122.04

f1 (ppm) -10 210 200 140 130

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 3b

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 3c

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 3d

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 3e

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (sppm)

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 3g

-160.14 -160.14 -160.14 -131.50 -131.50 -131.40 -131.40 -122.43

90

80 70 60

50

40

20 10

-10

180 170 160 150 140 130 120 110 100 f1 (ppm)

210 200

190

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 3i

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 3k

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 31

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 30

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 3q

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 3r

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 3s

-134.30 -134.36 -135.70 -135.75

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4a

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4b

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4c

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4d

5.0 f1 (ppm)

4.5 4.0

3.5 3.0 2.5

2.214 1.344 4.054

1.5

1.18

2.0

3.381

1.0 0.5

0.0

1.18<u>H</u>

5.5

6.0

1.00<u>4</u> 0.994

8.5 8.0

9.0

10.0 9.5

0.984 0.97/ 1.00<u>4</u> 2.947

7.5 7.0 6.5

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4e

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4f

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4g

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4h

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4i

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4j

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4k

¹H NMR (400 MHz, CDCl3), ¹³C NMR (100 MHz, CDCl3) spectra of product 4l

¹H NMR (400 MHz, CDCl₃), 13C NMR (100 MHz, CDCl₃) spectra of product 5

S65

- 160.72 - 141.828 - 141.828 - 141.828 - 133.845 - 133.845 - 133.845 - 133.845 - 122.867 - 122.867 - 122.406 - 122.4

¹H NMR (400 MHz, CDCl₃), 13C NMR (100 MHz, CDCl₃) spectra of product 7

¹H NMR (400 MHz, CDCl₃), 13C NMR (100 MHz, CDCl₃) spectra of product 8

