Electronic Supplementary Information

Photocatalytic stereoselective synthesis of amido-substituted (E)- α -trifluoromethyl allylamines via Heck-type alkylation

LingLi Liu, Yangjian Cheng, Changduo Pan* and Jin-Tao Yu* Email: yujintao@cczu.edu.cn; panchangduo@jsut.edu.cn

Table of Contents

1. General Considerations	S2
2. General Synthetic Procedures	S2
3. Mechanism Studies	S4
4. Characterization Data for the Products	S10
5. References	S22
6. Copies of the ¹ H NMR ¹³ C NMR Spectra and ¹⁹ F NMR	S23

1. General Considerations

General Information: Unless otherwise noted, all chemicals were purchased from Energy Chemical or Bidepharmatech and used without further purification. All reactions were monitored by Thin Layer Chromatography (TLC) using silica gel F254 plates. Column chromatography was performed using EM Silica gel 60 (300-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded at ambient temperature on a Bruker-Avance 400 MHz NMR spectrometer (101 MHz for ¹³C). NMR experiments are reported in δ units, parts per million (ppm), and were referenced to CDCl₃ (δ 7.26 or 77.0) as the internal standard. The coupling constants *J* are given in Hz. High-resolution mass spectra (HRMS) were recorded on a TOF LC/MS equipped with electrospray ionization (ESI) probe operating in positive ion mode. Emission intensities were recorded using a FS5 spectrophotometer.

2. General Synthetic Procedures

2.1 All Enamides (1a-1w) were prepared according to the previous reports.^[1]

2.2 General procedure for the synthesis of Compounds 2b and 2c^[2]

To a stirred suspension of *N*-hydroxycarbamate (1.0 equiv.) in diethyl ether (0.15 M) at 0 °C, triethylamine (1.0 equiv.) was added dropwise over 10 min. 4-(Trifluoromethyl)benzoyl chloride (1.0 equiv.) was added dropwise at the same temperature and subsequently warmed to room temperature and stirred for a further 3 h before quenching by 1.0 M aq. HCl. The phases were separated, and the organic phase was washed sequentially with H_2O , sat. aq. NaHCO₃, brine, dried (MgSO₄), filtered and concentrated in vacuo to afford the crude product.

To a solution of *tert*-butyl (benzoyloxy)carbamate (10 mmol, 1.0 equiv.) in dry DMF (80 mL) was added NaH (15 mmol, 1.6 equiv, 60% dispersion in mineral oil) portion wise at 0 °C. The reaction mixture was stirred at 0 °C for 30 minutes and 2,2,2-trifluoroethyl trifluoromethanesulfonate (12 mmol, 1.5 equiv.) was added drop wise at 0 °C. The reaction mixture was allowed to warm to room temperature and

stirred for 30 minutes. After completion of the reaction (monitored by TLC), the reaction mixture was quenched by H_2O , extracted with CH_2Cl_2 . The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silicagel eluting with a mixture of pentane and EtOAc to give the desired product **2a**.

2.3 General procedure for the synthesis of Compounds (3a-3cc)

Under N₂, the mixture of enamides **1** (0.2 mmol), **2a** (0.4 mmol), *fac*-Ir(ppy)₃ (1 mol%, 1.3 mg), K₂CO₃ (0.2 mmol, 27.6 mg) and CH₃CN (2 mL) were added to a Schlenk tube and sealed. The mixture was stirred at room temperature under 380-390 nm purple LEDs for 36 hours. Then, the solvent was evaporated under reduced pressure, and the residue was purified by silica gel flash column chromatography to obtain the product **3**.

Figure S1. Photoreactor used in this work (45 W purple LEDs, $\lambda max = 395$ nm). **The Light Source and the Material of the Irradiation Vessel:**

The photochemical reaction was carried out under visible light irradiation by a purple LED at room temperature. This 45 W 380-390 nm purple LED was purchased from taobao (link: https://item.taobao.com/item.htm?id=613485925423&ft=t). The purple LED's energy peak wavelength is 388 nm, the peak width at half-height is 12.5 nm, and irradiance@45 W is 61.54 mW/cm². The reaction vessel is a borosilicate

glass tube. The distance between the tube and lamp is about 1cm, and no filter is applied.

Figure S2. The spectral distribution of 45 W 380-390 nm purple LED

2.4 Synthetic applications:

(1) Cleavage of N-Boc Protecting Group

3a (44.8 mg, 0.1 mmol) was dissolved in THF (1.0 mL) and concentrated hydrochloric acid (1 mL) was added sequentially. The mixture was stirred at rt for 12 h. Upon completion, the solution was concentrated in vacuum and the product was isolated through flash column chromatography to give **4** as colorless oil (28.2 mg, 81% yield).

(2) Hydrolysis of 3a

A mixture of **3a** (44.8 mg, 0.1 mmol), trifluoroacetic acid (57.0 mg, 0.5 mmol) in dry benzene (2.0 mL) were stirred at 110 °C for 36 h. Upon completion, the solution was concentrated in vacuum and the product was isolated through flash column chromatography to furnish **5** as colorless oil (12.7 mg, 49% yield).

3. Mechanism Studies

3.1 Radical inhibiting experiments

Under standard conditions, radical inhibitor TEMPO (0.4 mmol, 62.5 mg, 2 equiv), BHT (0.4 mmol, 88.1 mg, 2 equiv) or 1,1-diphenylethylene (0.4 mmol, 36.1 mg, 2 equiv) was added, the mixture was stirred at room temperature under 380-390 nm purple LEDs for 36 hours. Then, the mixture was detected by HRMS.

Figure S3. The HRMS spectrum for the radical-trapping experiment with TEMPO.

Figure S5. The HRMS spectrum for the radical-trapping experiment with 1,1-diphenylethylene.

3.2 Fluorescence quenching experiments

Fluorescence quenching experiments were measured on an FS5

spectrophotometer with a 4 mL quartz cuvette (d = 1 cm) with a cap. CH₃CN was degassed by N₂ bubbling for 30 minutes before using. fac-Ir(ppy)₃ was excited at 360 nm and the emission spectrum λ max = 520 nm was recorded. In a typical experiment, the emission spectrum of a 5×10⁻³ M solution of fac-Ir(ppy)₃ with different concentrations of quencher in degassed CH₃CN in 10 mm path length quartz cuvette was collected after degassing with a stream of N₂ for 5 minutes. The concentrations of the quencher stock solution were 0 M, 2.5 x 10⁻³ M, 4.90 x 10⁻³ M, 7.4 x 10⁻³ M, 9.8 x 10⁻³ M, 1.21 x 10⁻² M in MeCN, respectively. Linear regression of I₀/I against concentration is done in Origin 2018 (Figure S6).

Figure S6. Fluorescence quenching of the excited *fac*-Ir(ppy)₃ with different concentrations of **1a**.

Figure S7. Fluorescence quenching of the excited fac-Ir(ppy)₃ with different concentrations of **2a**.

Figure S8. Stern-Volmer quenching studies of the excited *fac*-Ir(ppy)₃ with **1a** and **2a 3.3 Intermolecular Kinetic Isotopic Effect (KIE) Study**

Enamide **D**₂-1**a** was prepared according to the literatures,^[3] as a light yellow oil with 92% deuterium. Under N₂, the mixture of enamides 1**a** (0.046 mmol), enamides **D**₂-1**a** (0.054 mmol), 2**a** (2 equiv), K₂CO₃ (1 equiv), *fac*-Ir(ppy)₃ (1 mol%) and MeCN (1 mL) were added to a Schlenk tube and sealed. The mixture was stirred at room temperature under 380-390nm purple LEDs for 2 hours. Then, the solvent was evaporated under reduced pressure, and the residue was purified by silica gel flash column chromatography to obtain product $3a+D_1-3a$ as colorless oil. A KIE value of 0.82 was observed.

4. Characterization Data for the Products

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-phenylbut-3-en-2-yl)carbamate (3a, 71.8 mg, 80%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, *J* = 6.5 Hz, 3H), 7.24-7.15 (m, 5H), 7.08 (d, *J* = 7.9 Hz, 2H), 5.08 (d, *J* = 9.8 Hz, 1H), 4.98-4.91 (m, 2H), 4.62 (d, *J* = 14.6 Hz, 1H), 4.21 (d, *J* = 43.3 Hz, 1H), 2.12 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 154.0, 146.0, 136.9, 133.2, 130.1, 129.1, 129.0, 128.7, 128.4, 127.5, 124.5 (q, *J*_{C-F} = 281.8 Hz), 120.7, 80.8, 51.1 (q, *J*_{C-F} = 33.3 Hz), 49.1, 28.2, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.41. HRMS (ESI) m/z calcd for C₂₄H₂₈F₃N₂O₃ [M+H⁺]: 449.2047, found 449.2038.

Tert-butyl

(E) - (4 - (N-benzylacetamido) - 1, 1, 1 - trifluoro - 4 - (p-tolyl) but - 3 - en - 2 - yl) carbamate

(**3b**, 65.7 mg, 71%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.14 (m, 5H), 7.11 -7.07 (m, 4H), 5.18-4.78 (m, 3H), 4.61 (d, *J* = 14.5 Hz, 1H), 4.16 (d, 1H), 2.31 (s, 3H), 2.10 (s, 3H), 1.34 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 154.1, 146.0, 140.2, 137.0, 130.1, 129.8, 129.0, 128.5, 128.3, 127.4, 124.5 (q, *J*_{C-F} = 283.5 Hz), 120.1, 80.7, 51.1 (q, *J*_{C-F} = 31.9 Hz), 49.0 (q, *J*_{C-F} = 11.3 Hz), 28.1, 22.3, 21.4; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.47. HRMS (ESI) m/z calcd for C₂₅H₃₀F₃N₂O₃ [M+H⁺]: 463.2203, found 463.2200.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-4-(4-(tert-butyl)phenyl)-1,1,1-trifluorobut-3-en-2-yl) carbamate (3c, 91.8 mg, 91%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7.2 Hz, 4H), 7.09 (d, J = 7.8 Hz, 2H), 4.99 (s, 3H), 4.62 (d, J = 14.4 Hz, 1H), 4.15 (d, J = 14.4 Hz, 1H), 2.10 (s, 3H), 1.36 (s, 9H), 1.27 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 154.1, 153.2, 145.8, 137.0, 129.1, 128.4, 128.3, 127.4, 126.1, 124.5 (q, $J_{C-F} = 281.5$ Hz), 120.3, 80.8, 51.1 (q, $J_{C-F} = 31.9$ Hz), 49.1, 34.8, 31.2, 28.2, 28.17, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.43. HRMS (ESI) m/z calcd for C₂₈H₃₆F₃N₂O₃ [M+H⁺]: 505.2673, found 505.2664.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-(4-methoxyphenyl)but-3-en-2-yl)car bamate (3d, 83.3 mg, 87%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, *J* = 7.3 Hz, 5H), 7.08 (d, *J* = 7.0 Hz, 2H), 6.87 (d, *J* = 8.3 Hz, 2H), 5.12-4.76 (m, 3H), 4.60 (d, *J* = 14.4 Hz, 1H), 4.19 (d, *J* = 14.6 Hz, 1H), 3.76 (s, 3H), 2.09 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 160.8, 154.2, 145.7, 137.0, 130.1, 129.0, 128.3, 127.4, 124.5 (q, *J*_{C-F} = 280.6 Hz), 125.2, 119.5, 114.5, 80.7, 55.4, 51.2 (q, *J*_{C-F} = 31.9 Hz), 49.0, 28.2, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.44. HRMS (ESI) m/z calcd for C₂₅H₃₀F₃N₂O₄ [M+H⁺]: 479.2152, found 479.2153.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-(4-(methylthio)phenyl)but-3-en-2-yl)carbamate (3e, 81.1 mg, 82%), colorless oil; ¹H NMR (400 MHz,CDCl₃) δ 7.21-7.12 (m, 7H), 7.08 (d, *J* = 7.6 Hz, 2H), 5.15-4.76 (m, 3H), 4.61 (d, *J* = 14.4 Hz, 1H), 4.19 (d, *J* = 14.6 Hz, 1H), 2.43 (s, 3H), 2.10 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 154.1, 145.5, 141.6, 136.8, 129.0, 128.4, 127.5, 126.2, 124.5 (q, *J*_{C-F} = 283.8 Hz), 120.4, 80.8, 51.1 (q, *J*_{C-F} = 32.6 Hz), 49.1, 28.1, 22.3, 15.1; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.40. HRMS (ESI) m/z calcd for C₂₅H₃₀F₃N₂O₃S [M+H⁺]: 495.1924, found 495.1914.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-(4-fluorophenyl)but-3-en-2-yl)carba mate (3f, 71.8 mg, 77%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.14 (m,

5H), 7.04 (t, J = 8.1 Hz, 4H), 5.45-5.09 (m, 2H), 4.90-4.84 (m, 1H), 4.57 (d, J = 14.7 Hz, 1H), 4.20 (d, J = 14.5 Hz, 1H), 2.10 (s, 3H), 1.33 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 163.5 (d, $J_{C-F} = 252.1$ Hz), 154.2, 144.9, 136.7, 130.7 (d, $J_{C-F} = 8.5$ Hz), 129.2, 128.9, 128.4, 127.6, 124.4 (q, $J_{C-F} = 282.9$ Hz), 120.9, 116.3 (d, $J_{C-F} = 21.9$ Hz), 80.9, 51.1 (q, $J_{C-F} = 32.1$ Hz), 49.1, 28.1, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.31, -110.05. HRMS (ESI) m/z calcd for C₂₄H₂₇F₄N₂O₃ [M+H⁺]: 467.1952, found 467.1949.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-4-(4-chlorophenyl)-1,1,1-trifluorobut-3-en-2-yl)carb amate (**3g**, 68.6 mg, 71%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.2 Hz, 2H), 7.18 (m, 5H), 7.08-7.05 (m, 2H), 5.08 (d, *J* = 9.4 Hz, 1H), 4.87 (d, *J* = 7.7 Hz, 2H), 4.61 (d, *J* = 14.5 Hz, 1H), 4.18 (d, *J* = 14.6 Hz, 1H), 2.11 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 154.0, 144.9, 136.6, 136.2, 131.6, 130.0, 129.5, 128.9, 128.4, 127.6, 124.3 (q, *J*_{C-F} = 283.2 Hz), 121.2, 81.0, 51.1 (q, *J*_{C-F} = 32.1 Hz), 49.0, 28.1, 22.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.29. HRMS (ESI) m/z calcd for C₂₄H₂₇ClF₃N₂O₃ [M+H⁺]: 483.1657, found 483.1658.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-(4-iodophenyl)but-3-en-2-yl)carbam ate (3h, 44.8 mg, 39%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.8 Hz, 2H), 7.08 (d, *J* = 5.3 Hz, 2H), 6.97-6.95 (m, 2H), 6.85 (d, *J* = 8.1 Hz, 2H), 4.96 (d, *J* = 10.0 Hz, 1H), 4.76-4.65 (m, 2H), 4.52 (d, *J* = 14.5 Hz, 1H), 4.07 (d, *J* = 14.4 Hz, 1H), 2.00 (s, 3H), 1.24 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 154.0, 145.1, 138.4, 136.7, 132.7, 130.3, 128.9, 128.4, 127.6, 124.3 (q, *J*_{C-F} = 283.8 Hz), 121.3, 96.5, 81.1, 51.1 (q, *J*_{C-F} = 33.9 Hz), 49.1, 28.1, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.33. HRMS (ESI) m/z calcd for C₂₄H₂₇IF₃N₂O₃ [M+H⁺]: 575.1013, found 575.0987.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-(4-(trifluoromethyl)phenyl)but-3-en -2-yl)carbamate (3i, 73.3 mg, 71%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 7.9 Hz, 2H), 7.36 (d, *J* = 7.9 Hz, 2H), 7.21-7.18 (m, 3H), 7.09-7.03 (m, 2H), 5.16 (d, *J* = 8.4 Hz, 1H), 4.87 (d, *J* = 11.8 Hz, 2H), 4.62 (d, *J* = 14.6 Hz, 1H), 4.18 (d, *J* = 14.6 Hz, 1H), 2.13 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 154.1, 144.6, 136.9, 136.5, 131.9 (q, *J*_{C-F} = 33.2 Hz), 129.2, 128.9, 128.5, 127.7, 126.2 (q, *J*_{C-F} = 1.3 Hz), 124.2 (q, *J*C-F = 282.7 Hz), 125.0, 122.4 (q, *J*C-F = 3.4 Hz), 81.2, 51.4 (q, *J*_{C-F} = 33.3 Hz), 49.2, 28.1, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -62.90, -75.28. HRMS (ESI) m/z calcd for C₂₅H₂₆F₆N₂O₃ [M+H⁺]: 517.1920, found 517.1903.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-4-(4-cyanophenyl)-1,1,1-trifluorobut-3-en-2-yl)carba mate (3j, 68.2 mg, 72%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.9 Hz, 2H), 7.42 (d, *J* = 7.9 Hz, 2H), 7.17 (d, *J* = 5.1 Hz, 3H), 7.13-7.11 (m, 2H), 5.28 (d, *J* = 10.2 Hz, 1H), 4.98-4.86 (m, 2H), 4.68 (d, *J* = 14.5 Hz, 1H), 4.37-4.26 (m, 1H), 2.20 (s, 3H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 154.0, 144.3 136.3, 132.8, 132.1, 129.4, 128.8, 128.7, 128.5, 127.7, 126.6, 124.1 (q, *J*_{C-F} = 283.3 Hz), 118.0, 113.7, 81.2, 51.1 (q, *J*_{C-F} = 31.7 Hz), 49.9, 28.1, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.13. HRMS (ESI) m/z calcd for C₂₅H₂₆F₃N₃NaO₃ [M+Na⁺]: 496.1818, found 496.1796.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-4-(3,4-dimethylphenyl)-1,1,1-trifluorobut-3-en-2-yl)c arbamate (3k, 91.5 mg, 96%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.14 (m, 3H), 7.09 (t, *J* = 7.3 Hz, 3H), 6.94 (d, *J* = 8.6 Hz, 2H), 5.04-4.94 (m, 3H), 4.68 (d,

J = 14.4 Hz, 1H), 4.11 (d, J = 14.5 Hz, 1H), 2.20 (d, J = 6.8 Hz, 6H), 2.09 (s, 3H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 154.1, 146.3, 139.0, 137.5, 137.0, 130.3, 129.8, 129.0, 128.3, 127.4, 126.0, 124.6 (q, $J_{C-F} = 285.2$ Hz), 119.76, 80.7, 51.1 (q, $J_{C-F} = 31.5$ Hz), 28.2, 22.3, 19.8, 19.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.60. HRMS (ESI) m/z calcd for C₂₆H₃₂F₃N₂O₃ [M+H⁺]: 477.2360, found 477.2359.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-4-(3,4-dichlorophenyl)-1,1,1-trifluorobut-3-en-2-yl)c arbamate (3l, 95.2 mg, 92%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.3 Hz, 1H), 7.24-7.17 (m, 4H), 7.09-6.98 (m, 3H), 5.50-5.11 (m, 2H), 4.88-4.81 (m, 1H), 4.60 (d, *J* = 14.6 Hz, 1H), 4.21 (d, *J* = 14.7 Hz, 1H), 2.09 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 154.1, 143.8, 136.4, 134.5, 133.6, 133.2, 131.2, 130.5, 128.9, 128.5, 128.0, 127.7, 124.3 (q, *J*_{C-F} = 282.8 Hz), 122.1, 81.1, 51.1 (q, *J*_{C-F} = 32.0 Hz), 49.3, 28.1, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.23. HRMS (ESI) m/z calcd for C₂₄H₂₆Cl₂F₃N₂O₃ [M+H⁺]: 517.1267, found 517.1281.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-(naphthalen-2-yl)but-3-en-2-yl)carb amate (3m, 90.7 mg, 91%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.6 Hz, 1H), 7.89-7.85 (m, 2H), 7.81 (s, 1H), 7.57-7.55 (m, 2H), 7.37 (d, *J* = 8.7 Hz, 1H), 7.31-7.24 (m, 4H), 7.20-7.18 (m, 2H), 5.29-5.1 (m, 2H), 4.88-4.80 (m, 2H), 4.26-4.21 (m, 1H), 2.26 (s, 3H), 1.46 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 154.0, 146.2, 136.9, 133.8, 133.0, 130.3, 129.2, 129.0, 128.6, 128.4, 127.8, 127.5, 127.4, 126.9, 126.4, 124.5 (q, *J*_{C-F} = 283.6 Hz), 125.0, 120.8, 80.9, 51.2 (q, *J*_{C-F} = 33.8 Hz), 49.2, 28.2, 22.5; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.45. HRMS (ESI) m/z calcd for C₂₈H₃₀F₃N₂O₃ [M+H⁺]: 499.2203, found 499.2200.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-(3-methoxyphenyl)but-3-en-2-yl)car bamate (3n, 74.6 mg, 78%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 8.0 Hz, 1H), 7.21-7.09 (m, 5H), 6.89 (d, *J* = 8.4, 2.4 Hz, 1H), 6.81 (d, *J* = 7.7 Hz, 1H), 6.73 (s, 1H), 5.08-4.81 (m, 3H), 4.66 (d, *J* = 14.6 Hz, 1H), 4.16 (d, *J* = 14.5 Hz, 1H), 3.72 (s, 3H), 2.11 (s, 3H), 1.34 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 160.0, 154.1, 145.9, 136.9, 134.5, 130.2, 129.0, 128.3, 127.5, 124.5 (q, *J*_{C-F} = 283.5 Hz), 120.9, 120.6, 115.9, 113.9, 80.8, 55.3,51.1 (q, *J*_{C-F} = 28.4 Hz), 49.2, 28.1, 22.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.42. HRMS (ESI) m/z calcd for C₂₅H₃₀F₃N₂O₄ [M+Na⁺]: 501.1972, found 501.1961.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-4-(3-chlorophenyl)-1,1,1-trifluorobut-3-en-2-yl)carb amate (30, 79.2 mg, 83%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.28 (m, 2H), 7.22-7.12 (m, 5H), 7.07 (d, *J* = 7.0 Hz, 2H), 5.13 (d, *J* = 10.2 Hz, 2H), 4.98-4.83 (m, 2H), 4.62 (d, *J* = 14.6 Hz, 1H), 4.18 (d, *J* = 14.9 Hz, 1H), 2.11 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 154.0, 144.7, 136.6, 135.2, 130.4, 130.2, 128.9, 128.6, 128.4, 127.6, 127.0, 124.3 (q, *J*_{C-F} = 283.4 Hz), 121.7, 81.0, 51.1 (q, *J*_{C-F} = 31.5 Hz), 49.2, 28.2, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.34. HRMS (ESI) m/z calcd for C₂₄H₂₇ClF₃N₂O₃ [M+H⁺]: 483.1657, found 483.1666.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-4-(3-bromophenyl)-1,1,1-trifluorobut-3-en-2-yl)carb amate (3p, 67.5 mg, 64%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.29 (m, 2H), 7.25-7.16 (m, 5H), 7.08-7.06 (m, 2H), 5.12 (d, *J* = 8.3 Hz, 1H), 4.86 (s, 2H), 4.65 (d, *J* = 14.6 Hz, 1H), 4.16 (d, *J* = 14.8 Hz, 1H), 2.12 (s, 3H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 154.0, 144.7, 136.6, 135.2, 133.2, 131.5, 130.6, 128.9, 128.4, 127.6, 127.4, 124.3(q, *J*_{C-F} = 282.9 Hz), 123.3, 121.7, 81.1, 51.0 (q, *J*_{C-F} = 32.7 Hz), 49.2, 28.2, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.37. HRMS (ESI) m/z calcd for C₂₄H₂₇BrF₃N₂O₃ [M+H⁺]: 527.1152, found 527.1145.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-(3-(trifluoromethyl)phenyl)but-3-en -2-yl)carbamate (3q, 72.3 mg, 70%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 7.7 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 1H), 7.43-7.39 (m, 2H), 7.18 (d, *J* = 6.1 Hz, 3H), 7.05 (d, *J* = 6.6 Hz, 2H), 5.21 (d, *J* = 10.3 Hz, 1H), 4.96 (d, J = 9.4 Hz, 1H), 4.84-4.77 (m, 1H), 4.64 (d, *J* = 14.7 Hz, 1H), 4.19 (d, *J* = 14.7 Hz, 1H), 2.13 (s, 3H), 1.34 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 154.0, 144.8, 136.5, 134.3, 132.1, 131.7 (q, *J*_{C-F} = 33.1 Hz), 129.7, 128.9, 128.5, 127.7, 126.8 (q, *J*_{C-F} = 2.6 Hz), 124.3 (q, *J*_{C-F} = 282.9 Hz), 125.5 (q, *J*_{C-F} = 3.2 Hz), 123.6 (q, *J*_{C-F} = 273.7 Hz), 122.0, 81.10, 51.4 (q, *J*_{C-F} = 31.9 Hz), 49.3, 28.1, 22.4; ¹⁹F NMR (282 MHz, CDCl₃) δ -62.79, -75.34. HRMS (ESI) m/z calcd for C₂₅H₂₆F₆N₂O₃ [M+H⁺]: 517.1920, found 517.1911.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-(2-fluorophenyl)but-3-en-2-yl)carba mate (3r, 53.2 mg, 57%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.32 (m, 1H), 7.20-7.02 (m, 8H), 5.27 (d, *J* = 10.0 Hz, 1H), 5.06-5.00 (m, 1H), 4.74-4.65 (m, 1H),4.57 (d, *J* = 14.8 Hz, 1H), 4.23 (d, J = 15.1 Hz, 1H), 2.17 (s, 3H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 160.3 (d, *J*_{C-F} = 251.1 Hz), 154.1, 141.4, 136.9, 132.0 (d, *J*_{C-F} = 8.5 Hz), 131.5, 128.6, 128.3, 127.4, 124.3 (q, *J*_{C-F} = 285.0 Hz), 124.6 (d, *J*_{C-F} = 3.6 Hz), 121.0, 116.5 (d, *J*_{C-F} = 21.7 Hz), 80.7, 51.3 (q, *J*_{C-F} = 33.3 Hz), 48.7, 28.1, 22.3, 22.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.54, -112.52. HRMS (ESI) m/z calcd for C₂₄H₂₇F₄N₂O₃ [M+H⁺]: 467.1952, found 467.1949.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-4-(2-bromophenyl)-1,1,1-trifluorobut-3-en-2-yl)carb amate (3s, 78.0 mg, 74%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* =

7.9 Hz, 1H), 7.38-7.24 (m, 6H), 7.16-7.14 (m, 2H), 5.18 (d, J = 10.5 Hz, 1H), 4.97-4.80 (m, 2H), 4.74 (d, J = 14.6 Hz, 1H), 4.23 (d, J = 14.8 Hz, 1H), 2.20 (s, 3H), 1.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 153.9, 144.7, 136.6, 135.2, 133.2, 131.4, 130.6, 128.9, 128.4, 127.6, 127.4, 124.3 (q, $J_{C-F} = 283.5$ Hz), 123.3, 121.6, 81.13, 51.0 (q, $J_{C-F} = 32.5$ Hz), 49.1, 28.2, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.38. HRMS (ESI) m/z calcd for C₂₄H₂₇BrF₃N₂O₃ [M+H⁺]: 527.1152, found 527.1152.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-(thiophen-2-yl)but-3-en-2-yl)carba mate (3t, 70.0 mg, 77%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 5.0 Hz, 1H), 7.26-7.18 (m, 4H), 7.14-7.11 (m, 2H), 7.04 (t, *J* = 4.4 Hz, 1H), 5.24-5.18 (m, 1H), 5.01-4.89 (m, 2H), 4.59 (d, J= 15.0 Hz, 1H), 4.47-4.42 (m, 1H), 2.04 (s, 3H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 154.3, 139.1, 136.7, 136.5, 129.6, 129.4, 128.7, 128.4, 128.2, 127.7, 127.1, 124.4 (q, *J*_{C-F} = 280.1 Hz), 121.4, 81.0, 51.2 (q, *J*_{C-F} = 34.3 Hz), 49.6, 28.7, 21.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.36. HRMS (ESI) m/z calcd for C₂₂H₂₆F₃N₂O₃S [M+H⁺]: 455.1611, found 455.1606.

Tert-butyl

(*E*)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-(thiophen-3-yl)but-3-en-2-yl)carba mate (3u, 79.0 mg, 87%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.34-7.32 (m, 1H), 7.20-7.15 (m, 3H), 7.11-7.09 (m, 2H), 6.98 (d, *J* = 5.0 Hz, 1H), 5.13-4.96 (m, 3H), 4.64 (d, *J* = 14.2 Hz, 1H), 4.27 (d, *J* = 14.2 Hz, 1H), 2.03 (s, 3H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 154.3, 140.9, 136.8, 134.5, 129.2, 128.3, 127.6, 127.3, 127.0, 124.4 (q, *J*_{C-F} = 283.1 Hz), 120.8, 80.9, 51.0 (q, *J*_{C-F} = 32.0 Hz), 49.4, 28.2, 22.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.39. HRMS (ESI) m/z calcd for C₂₂H₂₆F₃N₂O₃S [M+H⁺]: 455.1611, found 455.1609.

Tert-butyl

(*E*)-(1,1,1-trifluoro-4-(N-(4-fluorobenzyl)acetamido)-4-phenylbut-3-en-2-yl)carba mate (3v, 68.1 ,68.1 mg, 73%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.37 (m, 3H), 7.25-7.23 (m, 2H), 7.08-7.04 (m, 2H), 6.87 (t, *J* = 8.5 Hz, 2H), 5.06-4.92 (m, 3H), 4.57 (d, *J* = 14.5 Hz, 1H), 4.13 (d, *J* = 14.4 Hz, 1H), 2.13 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 162.1 (d, *J*_{C-F} = 246.7 Hz), 154.0, 145.9, 133.0, 132.7, 130.7 (d, *J*_{C-F} = 8.1 Hz), 130.1, 129.2, 128.6, 124.4 (q, JC-F = 282.9 Hz), 120.8, 115.2 (d, *J*_{C-F} = 21.4 Hz), 80.9, 51.1 (q, *J*_{C-F} = 31.5 Hz), 48.2, 28.1, 22.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.33, -114.85. HRMS (ESI) m/z calcd for C₂₄H₂₇F₄N₂O₃ [M+H⁺]: 467.1952, found 467.19491.

Tert-butyl

(*E*)-(4-(N-(4-chlorobenzyl)acetamido)-1,1,1-trifluoro-4-phenylbut-3-en-2-yl)carb amate (3w, 76.3 mg, 79%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.44 (m, 3H), 7.32-7.30 (m, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 5.16-4.86 (m, 3H), 4.66 (d, *J* = 14.6 Hz, 1H), 4.17 (d, *J* = 14.6 Hz, 1H), 2.20 (s, 3H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 154.1, 145.9, 135.4, 133.3, 132.9, 130.4, 130.2, 129.2, 128.6, 128.5, 124.4 (q, *J*_{C-F} = 283.8 Hz), 120.8, 80.9, 51.2 (q, *J*_{C-F} = 31.1 Hz), 48.3, 28.1, 22.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.31. HRMS (ESI) m/z calcd for C₂₄H₂₇ClF₃N₂O₃ [M+H⁺]: 483.1657, found 483.1656.

Tert-butyl

(*E*)-(4-(N-(4-bromobenzyl)acetamido)-1,1,1-trifluoro-4-phenylbut-3-en-2-yl)carb amate (3x, 71.7 mg, 68%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.44 (m, 3H), 7.40-7.37 (m, 2H), 7.32-7.30 (m, 2H), 7.04 (d, *J* = 8.4Hz, 2H), 5.15-5.13 (m, 1H), 5.00 (s, 2H), 4.66 (d, *J* = 14.5 Hz, 1H), 4.13 (d, *J* = 14.6 Hz, 1H), 2.20 (s, 3H), 1.43 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 154.0, 145.9, 135.9, 132.9, 131.5, 130.7, 130.2, 129.2, 128.6, 124.4 (q, *J*_{C-F} = 282.7 Hz), 121.5, 120.8, 81.0, 51.2 (q, *J*_{C-F} = 29.9 Hz), 48.4, 28.2, 22.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -75.33. HRMS (ESI) m/z calcd for C₂₄H₂₇BrF₃N₂O₃ [M+H⁺]: 527.1152, found 527.1152.

Tert-butyl

(*E*)-(4-(N-(2-bromobenzyl)acetamido)-1,1,1-trifluoro-4-phenylbut-3-en-2-yl)carb amate (3y, 73.8 mg, 70%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 8.0 Hz, 1H), 7.36-7.32 (m, 3H), 7.17-7.14 (m, 2H), 7.11 (d, *J* = 7.5 Hz, 1H), 7.06-6.99 (m, 2H), 5.33 (d, *J* = 10.2 Hz, 1H), 5.02 (d, *J* = 9.4 Hz, 1H), 4.95-4.89 (m, 1H), 4.74 (d, *J* = 15.4 Hz, 1H), 4.41 (d, *J* = 15.2 Hz, 1H), 2.18 (s, 3H), 1.33 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 154.0, 146.0, 135.8, 132.8, 130.9, 130.1, 129.0, 128.6, 127.3, 124.5 (q, *J*_{C-F} = 283.7 Hz), 123.8, 120.7, 80.8, 51.0 (q, *J*_{C-F} = 31.4 Hz), 49.2, 28.1, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.47. HRMS (ESI) m/z calcd for C₂₄H₂₇BrF₃N₂O₃ [M+H⁺]: 527.1152, found 527.1155.

AC_N Ph F₃C NHBoc

Tert-butyl

(*E*)-(4-(N-allylacetamido)-1,1,1-trifluoro-4-phenylbut-3-en-2-yl)carbamate (3z, 45.4 mg, 57%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.32 (m, 3H), 7.25-7.21 (m, 2H), 5.72-5.62 (m, 1H), 5.40 (d, *J* = 10.2 Hz, 1H), 5.22 (d, *J* = 9.5 Hz, 1H), 5.04-4.85 (m, 3H), 4.02-3.97 (m, 1H), 3.73-3.67 (m, 1H), 2.10 (s, 3H), 1.37 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 154.1, 146.5, 133.4, 132.5, 130.0, 129.1, 128.6, 124.6 (q, *J*_{C-F} = 281.7 Hz), 119.7, 118.3, 80.9, 51.2 (q, *J*_{C-F} = 31.6 Hz), 48.8, 28.1, 22.3; ⁹F NMR (282 MHz, CDCl₃) δ -75.52. HRMS (ESI) m/z calcd for C₂₀H₂₆F₃N₂O₃ [M+H⁺]: 399.1890, found 399.1892.

Tert-butyl

(E)-(1,1,1-trifluoro-4-phenyl-4-(N-(prop-2-yn-1-yl)acetamido)but-3-en-2-yl)carba mate (3aa, 69.0 mg, 87%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.43 (m, 3H), 7.36-7.34 (m, 2H), 5.62 (d, J = 10.2 Hz, 1H), 5.33-4.89 (m, 2H), 4.30 (d, J = 19.8 Hz, 1H), 3.97 (d, J = 17.5 Hz, 1H), 2.20-2.19 (d, J = 2.3 Hz, 1H), 2.16 (s, 3H),

1.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 154.1, 145.9, 132.8, 130.2, 129.1, 128.7, 124.6 (q, $J_{C-F} = 283.3$ Hz), 120.2, 81.0, 78.3, 72.2, 51.2 (q, $J_{C-F} = 32.0$ Hz), 35.6, 28.2, 22.2; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.47. HRMS (ESI) m/z calcd for C₂₀H₂₄F₃N₂O₃ [M+H⁺]: 397.1734, found 397.1731.

Benzyl

(E)-(4-(N-benzylacetamido)-1,1,1-trifluoro-4-phenylbut-3-en-2-yl)carbamate

(**3bb**, 69.5 mg, 72%), colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 5.3 Hz, 2H), 7.39-7.28 (m, 8H), 7.25 (d, J = 6.6 Hz, 3H), 7.16-7.14 (m, 2H), 5.36 (d, J = 9.0 Hz, 1H), 5.17-5.07 (m, 4H), 4.72 (d, J = 14.5 Hz, 1H), 4.23 (d, J = 14.5 Hz, 1H), 2.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 154.9, 146.4, 136.8, 135.8, 135.5, 133.0, 130.2, 129.2, 128.9, 128.6, 128.5, 128.4, 128.2, 128.1, 127.5, 124.3 (q, J_{C-F} = 283.4 Hz), 120.1, 67.6, 51.7 (q, J_{C-F} = 32.9 Hz), 49.1, 22.3; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.35. HRMS (ESI) m/z calcd for C₂₇H₂₆F₃N₂O₃ [M+Na⁺]: 505.1709, found 505.1673.

(*E*)-N-(3-amino-4,4,4-trifluoro-1-phenylbut-1-en-1-yl)-N-benzylacetamide (4, 56.4 mg, 81%) colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.44 (m, 3H), 7.40-7.36 (m, 2H), 7.31-7.24 (m, 3H), 7.19-7.17 (m, 2H), 5.20 (d, *J* = 10.2 Hz, 1H), 4.84 (d, *J* = 14.4 Hz, 1H), 4.14 (d, *J* = 14.2 Hz, 1H), 3.99-3.91 (m, 1H), 2.23 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 145.0, 136.9, 133.7, 129.8, 129.1, 129.0, 128.6, 128.4, 127.5, 125.6 (q, *J*_{C-F} = 283.1 Hz), 123.5, 52.4 (q, *J*_{C-F} = 30.5 Hz), 49.0, 22.4; ¹⁹F NMR (282 MHz, CDCl₃) δ -77.38. HRMS (ESI) m/z calcd for C₁₉H₁₉F₃N₂O [M+H⁺]: 349.1522, found 349.1523.

O NHAC CF3

N-(1,1,1-trifluoro-4-oxo-4-phenylbutan-2-yl)acetamide (5, 25.4 mg, 49%) colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.95-7.93 (m, 2H), 7.64-7.60 (m, 1H), 7.52-7.48 (m, 2H), 6.59 (d, *J* = 9.5 Hz, 1H), 5.30-5.18 (m, 1H), 3.50-3.43 (m, 1H), 3.32-3.27 (m, 1H), 2.03 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 195.7, 169.9, 136.0, 134.0, 129.2,

128.9, 128.1, 125.0 (J_{C-F} = 283.0 Hz), 47.3 (J_{C-F} = 32.0 Hz), 36.1, 23.1, 21.1; ¹⁹F NMR (282 MHz, CDCl₃) δ -74.97. HRMS (ESI) m/z calcd for C₁₂H₁₂F₃NO [M+H⁺]: 260.0893, found 260.0897.

5. References

[1] K. Tang, Y. Chen, J. Guan, Z. Wang, K. Chen, H. Xiang and H. Yang, *Org. Biomol. Chem.*, 2021, **19**, 7475.

[2] J. Wang, S. Liu, Y. Huang, X.-H. Xu and F.-L. Qing, *Chem. Commun.*, 2022, **58**, 1346.

[3] W. Yu, J. Chen, K. Gao, Z. Liu and Y. Zhang, Org. Lett., 2014, 16, 4870.

--75.288

110 100 f1 (ppm) 150 140 130 120 Ó -10 1 70

7,40767,33777,33477,33477,33477,13537,119567,119587,119587,119587,119587,119587,119587,119587,119587,119587,119587,100886,98646,98646,98646,98646,98644,90744,90744,90744,90744,90744,90744,25794,90744,25794,25794,29794,25794,25794,29794,29794,25794,2759

$\begin{array}{c} 7.4412\\ 7.4325\\ 7.4325\\ 7.3318\\ 7.33541\\ 7.3378\\ 7.338\\ 7.38$

