Supporting Information

Synthesis of Nonaromatic [16] Thiatriphyrin(2.2.1)s

Shubham Tiwari and Mangalampalli $\operatorname{Ravikanth}^*$

Department of Chemistry, IIT Bombay, Powai, Mumbai 400076,

India

Email: ravikanth@chem.iitb.ac.in

Sr. no	Details	Page no.
1	General experimental and computational details.	S2-S3
2	Figures S1-S18. Characterization (HRMS and NMR) data for	S3-S19
	all new compounds.	
3	Figure S19. Comparison of absorption spectra of the	S20
	compounds 4-6 free base and in presence of TFA (excess).	
4	Figure S20. Electrochemical data for the compounds 4-6.	S21
5	Figure S21. Ground state optimized structures of 4 and 4.H ⁺ .	S21
6	Figure S22. NICS values of compound 4 and its protonated	S22
	derivative 4.H ⁺ .	
7	Table S1-S2. Cartesian coordinates of the optimized (S_0)	S22-S25
	geometries of the compound 4 and 4.H ⁺ .	
8	References.	S25

General Experimental

All chemicals such as BF₃·OEt₂, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) were procured and used as received from Aldrich. Neutral alumina and silica gel (60-120 mesh) column chromatographic technique performed for purification purposes. The 1D, 2D & ¹³C{1H} NMR spectra were recorded in CDCl₃on Bruker 400 and 500 MHz instruments. The ¹³C NMR frequencies are 125.77 and 100.06 MHz for 500 MHz and 400 MHz instruments respectively. Shimadzu UV-Vis-NIR Spectrophotometerwas used for absorption spectral studies of compounds 4-6. Cyclic voltammetry (CV) studies were carried out with BASi C3 Cell Stand electrochemical system (Manufacturer: Bioanalytical Systems. Inc.) utilizing the three-electrode configuration consisting of a glassy carbon (working electrode), platinum wire (auxiliary electrode) and saturated calomel as reference electrode (the electrode is composed of Hg/Hg₂Cl₂/Saturated KCl solution). The experiments were done in dry dichloromethane using 0.1 M tetrabutylammonium perchlorate as supporting electrolyte. The initial and final potential was at 0 V, first switching potential at -2.0 V and second switching potential at 2.0 V. Glassy carbon-disk working electrodes (3-mm diameter, part # CHI 104) were purchased from CH Instruments, Inc. Bruker maXis Impact and LC-MS Q-TOF micro mass spectrometer instrument were used for recording HR mass spectra.

Computational Details

Geometry of compound **4** and **4.H**⁺ were optimized by using Gaussian 09 program package.¹ For both the compounds **4** and **4.H**⁺, the B3LYP/6-31G(d,p)² basis set was used for the density functional theory (DFT)³ for optimization in S₀ state. To substantiate genuine global minimum energy structures the frequency calculations were performed on S₀ optimized geometries. The optimized geometries used to obtain frontier molecular orbitals (FMOs) and also subjected to TD-DFT calculations for the first 50 $S_0 \rightarrow S_n$ transitions⁴ to understand absorption properties of macrocycle **4** and **4.H**⁺. The integral equation formalism polarizable continuum model (PCM)⁵ within the self-consistent reaction field (SCRF) theory was used in the TD-DFT calculations.

C₃₄H₃₄N₂O₄S Calculated Mass[M+H]⁺= 567.2323 Observed Mass[M+H]⁺= 567.2322

Figure S1. HR mass spectrum of the compound 8.

Figure S2. ¹H NMR spectrum of the compound 8 recorded in CDCl₃ at 25°C at 400 MHz NMR instrument. Asterisk indicates the solvent peaks.

Figure S3. ${}^{13}C{}^{1}H$ NMR spectrum of the compound **8** recorded in CDCl₃ at 25°C at 400 MHz NMR instrument.

 $C_{24}H_{18}N_2S$

Calculated Mass[M+Na]⁺= 367.1261

Observed Mass[M+Na]⁺= 367.1260

Figure S4. HR mass spectrum of the compound 9.

Figure S5. ¹H NMR spectrum of the compound **9** recorded in CDCl₃ at 25°C at 400 MHz NMR instrument. Asterisk indicates the residual solvent peaks.

Figure S6. ¹³C{¹H} NMR spectrum of the compound **9** recorded in CDCl₃ at 25°C at 400 MHz NMR instrument. Asterisk indicates the residual solvent peaks.

 $C_{31}H_{16}F_5N_2S$

Calculated Mass[M+H]⁺= 543.0949

Observed Mass[M+H]⁺= 543.0944

DEPARTMENT OF CHEMISTRY, I.I.T.(B) Analysis Info Acquisition Date 8/31/2023 3:37:58 PM Analysis Name D:\Data\AUG-2023\mr-tbpy.d Method NalCsl_pos_1000-a.m Operator PG SRD IN mr-tbpy Instrument maXis impact 282001.00081 Sample Name C31H15F5N2S Comment **Acquisition Parameter** Ion Polarity Set Capillary Set End Plate Offset Positive 3700 V Set Nebulizer Set Dry Heater Set Dry Gas 0.3 Bar 180 °C 4.5 I/min Source Type ESI Not active Focus Scan Begin Scan End 50 m/z 1000 m/z -500 V 2000 V Set Charging Voltage Set Corona Set Divert Valve Set APCI Heater Source 0 nA 0°C Intens. mr-tbpy.d: +MS, 0.44-0.49min #26-29 ×106 543.0944 4-2-609.3377 0 200 300 400 500 600 700 m/z Intens. mr-tbpy.d: +MS, 0.44-0.49min #26-29 ×106 543.0944 4 2 540.5302 0. 525 530 535 540 545 550 555 560 m/z mSigma 93.6 Meas. m/z # 543.0944 1 lon Formula m/z err [ppm] C31H16F5N2S 543.0949 0.8 # mSigma e Conf Score 100.00 rdb N-Rule

Figure S7. HR mass spectrum of the compound 4.

1

25.0

even

ok

Figure S8. ¹H NMR spectrum of the compound **4** recorded in CDCl₃ at 25°C at 500 MHz NMR instrument. Asterisk indicates the residual solvent peaks.

Figure S9. Partial ¹H and ¹H-¹H COSY NMR spectrum of the compound **4** recorded in CDCl₃ at 25°C at 400 MHz NMR instrument.

Figure S10. ¹H-¹H NOSY NMR spectrum of the compound **4** recorded in CDCl₃ at 25°C at 400 MHz NMR instrument.

 $C_{32}H_{22}N_2S \\$

Calculated Mass[M+H]⁺= 467.1576

Observed Mass[M+H]⁺= 467.1585

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Figure S13. ¹H NMR spectrum of the compound **5** recorded in CDCl₃ at 25°C at 400 MHz NMR instrument. The asterisk indicates the residual solvent peaks.

Figure S14. ¹³C{¹H} NMR spectrum of the compound **5** recorded in CDCl₃ at 25°C at 400 MHz NMR instrument. The asterisk indicates the residual solvent peaks.

 $C_{32}H_{22}N_2OS$

Calculated Mass[M+H]⁺= 483.1532

Observed Mass[M+H]⁺= 483.1533

MassHunter Qual 10.0 (End of Report)

Figure S15. HR mass spectrum of the compound 6.

Figure S16. ¹H NMR spectrum of the compound **6** recorded in CDCl₃ at 25°C at 400 MHz NMR instrument. The asterisk indicates the residual solvent peaks.

Figure S17. ¹³C{¹H} NMR spectrum of the compound **6** recorded in CDCl₃ at 25°C at 400 MHz NMR instrument. The asterisk indicates the residual solvent peaks.

Figure S18. Comparison of ¹H NMR spectrum of macrocycles 4-6.

Figure S19. Comparison of UV-Vis absorption spectra of Macrocycles **4-6** free base (pink line) and in the presence of excess TFA (blue line) recorded in chloroform at 25°C.

Figure S20. Cyclic voltammograms (colored lines) along with differential pulse voltammograms (dotted lines) of macrocycles 4-6 recorded in CH_2Cl_2 containing 0.1 M TBAP as the supporting electrolyte and a saturated calomel electrode (SCE) as the reference electrode at scan rates of 50 mVs⁻¹.

Figure S21. Ground state optimized structures of macrocycles 4 and 4.H⁺.

Figure S22. NICS values of compound **4** (A) and its protonated derivative **4.H**⁺ (B) on the optimized structures (B3LYP/6-31g(d,p))(Black dots represent Bq atoms.)

Table S1. S₀ optimized geometry of the compound 4 at B3LYP/6-31g (d,p) level of theory

 # Sum of imaginary frequencies= 0

Atom	X	Y	Z	Atom	X	Y	Z
С	3.364572	-1.24609	0.546149	С	-0.38843	-3.45579	-0.26677
С	3.072969	-0.75672	1.79236	С	-1.51448	0.019821	-0.08169
С	3.057081	0.669362	1.853526	С	-3.00871	-0.01038	-0.02587
С	3.327936	1.26773	0.653134	С	-3.78668	0.424642	-1.10356
S	3.67243	0.068691	-0.57025	С	-5.17907	0.400521	-1.06426
С	3.279819	2.700773	0.283472	С	-5.82719	-0.07021	0.074726
С	3.372729	-2.64589	0.060922	С	-5.08019	-0.5119	1.16419
С	4.482296	3.416951	0.232386	С	-3.68933	-0.47747	1.103229
С	4.51634	4.765115	-0.11934	F	-7.16135	-0.0976	0.123016
С	3.324954	5.416676	-0.43262	F	-3.0033	-0.9019	2.172448

S23							
2.261701	-0.95934	-5.7007	F	-0.38353	4.719962	2.121817	С
-2.11313	0.821908	-5.89442	F	-0.03036	3.35753	2.059293	С
-2.21857	0.875889	-3.19946	F	-0.33567	-3.31256	2.181776	С
2.633408	-1.40074	2.84156	Н	-0.81088	-4.6353	2.297947	С
2.74455	1.23274	2.804942	Н	-0.88524	-5.28634	3.523237	С
0.47985	2.896278	5.40239	Н	-0.48907	-4.62759	4.687001	С
-0.15059	5.296365	5.462704	Н	-0.02702	-3.31693	4.599984	С
-0.7193	6.464044	3.329316	Н	-0.27047	-2.74009	0.827201	С
-0.6518	5.235927	1.206828	Н	-0.00064	2.715268	0.728658	С
-1.15196	-5.15164	1.407915	Н	0.148837	3.462576	-0.51962	С
-1.26209	-6.30369	3.568126	Н	0.125091	2.546297	-1.52363	С
-0.54509	-5.12384	5.650876	Н	-0.03631	1.25357	-0.88427	С
0.281847	-2.78733	5.495954	Н	-0.10676	1.412792	0.500403	N
0.292468	4.529439	-0.61738	Н	-0.20903	-1.41473	0.50243	N
0.234499	2.727433	-2.58362	Н	-0.16942	-1.24866	-0.86694	С
-0.20649	-0.60365	1.117381	Н	-0.20752	-2.53754	-1.43357	С
-0.18737	-2.76056	-2.4898	Н				
-0.27317	-4.53097	-0.48382	Н				

Table S2. S₀ optimized geometry of the compound **4.H**⁺ at B3LYP/6-31g (d,p) level of theory# Sum of imaginary frequencies= 0

Atom	Χ	Y	Ζ	Atom	Χ	Y	Ζ
С	3.344101	-1.25624	0.468126	С	-0.27851	-3.20783	-1.24126
С	3.241094	-0.70038	1.719074	С	-1.54037	0.008865	0.001532
С	3.253926	0.727671	1.717773	С	-3.01611	-0.013	0.010318
С	3.381882	1.274475	0.468863	С	-3.78604	0.917454	-0.71098
S	3.523618	0.006819	-0.73869	С	-5.17743	0.90467	-0.69813
С	3.315821	2.706354	0.09223	С	-5.85439	-0.0659	0.035941
С	3.317103	-2.69317	0.102989	С	-5.12883	-1.01131	0.756563
С	4.498154	3.387575	-0.2273	С	-3.73824	-0.97322	0.74215
С	4.498385	4.753575	-0.4996	F	-7.19088	-0.09008	0.048736
С	3.294876	5.459823	-0.45357	F	-3.08977	-1.88274	1.483198
С	2.108594	4.795955	-0.16339	F	-5.77406	-1.93654	1.478961
С	2.081846	3.412863	0.106229	F	-5.8694	1.804721	-1.40906
С	2.140372	-3.34944	-0.35811	F	-3.18702	1.847648	-1.46748
С	2.240796	-4.7289	-0.64795	Н	3.135157	-1.30389	2.613994
С	3.431932	-5.42786	-0.51406	Н	3.139659	1.334105	2.608861
С	4.581754	-4.77489	-0.06482	Н	5.430711	2.831145	-0.23433
С	4.509379	-3.41959	0.240622	Н	5.427713	5.260996	-0.73874
С	0.834791	-2.71462	-0.54654	Н	3.2769	6.525218	-0.66321
С	0.78295	2.790771	0.377129	Н	1.170192	5.340667	-0.17459
С	-0.34369	3.338633	0.998542	Н	1.352032	-5.26303	-0.9639
С	-1.36863	2.383049	0.973039	Н	3.459366	-6.48784	-0.74884
С	-0.88075	1.23311	0.322578	Н	5.517161	-5.31311	0.050603
Ν	0.438879	1.509864	-0.00389	Н	5.391398	-2.89294	0.592299

							S25
Ν	0.459552	-1.48115	-0.04361	Н	-0.38545	4.316065	1.457885
С	-0.85908	-1.19353	-0.36481	Н	-2.35463	2.479343	1.403308
С	-1.32087	-2.28291	-1.12616	Н	0.99482	0.93563	-0.62042
				Н	0.996169	-0.97604	0.646332
				Н	-2.29843	-2.34949	-1.58072
				Н	-0.30842	-4.12646	-1.80834

References:

- 1 O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, **102**, 346–354.
- 2 C. Xiii, F. Component, L. Radom, W. J. Hehre and J. A. Pople, 1971, 4064, 2371–2381.
- 3 A. D. Becke, J. Chem. Phys., 1993, 98, 1372–1377.
- 4 J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, **105**, 2999–3093.
- 5 R. Bauernschmitt and R. Ahlrichs, *Chem. Phys. Lett.*, 1996, **256**, 454–464.