Acid- and Base-Resistant Antimicrobial Hydrogels based on Polyoxometalates and Chitosan

Callum McWilliams,^{a,b} Isabel Franco-Castillo,^{a,b} Andrés Seral Ascaso,^{a,b} Sonia García-Embid,^{a,b} Mariella Malefioudaki,^{a,b} Johann G. Meier,^c Rafael Martín-Rapún^{*},^{a,b} Scott G. Mitchell^{*a,b}

a Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain.

b CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.

c ITAINNOVA – Instituto Tecnológico de Aragón, Calle María de Luna, nº 7, Zaragoza, 50018, Spain.

* corresponding author email: scott.mitchell@csic.es

Keywords: Polyoxometalate, chitosan, hydrogels, antimicrobial materials, acid-resistance, base-resistance

Figure S2. a) SEM and b) TEM images of CoSiW₁₁@CS after supercritical drying and coating with Au/Pd.

Figure S3. EDS imaging, via TEM, displaying the homogeneous dispersion of the elements of $K_6[Co(H_2O)SiW_{11}O_{39}]$ throughout the CoSiW_{11}@CS hydrogel.

Figure S4. Corresponding EDS spectrum of $CoSiW_{11}@CS$. Note that the presence of Cu and C peaks corresponded to the copper TEM grid coated in carbon.

Figure S5. POM@CS hydrogels after 24 hours in solutions of different pH.

Figure S6. Young's modulus as a function of pH. The dotted line represents a guide for the general tendency of poorer stability and toughness at higher pH values.

Figure S7. Synthesis of the CoSiW₁₁@CS@oil hydrogels with: a) eugenol, b) cinnamon oil. Below: chitosan solution and the corresponding essential oil were added to an Eppendorf vial and emulsified using a sonic tip and placed in well-plates for gelation.

Figure S8. Optical microscopy imaging of 5 and 10% $CoSiW_{11}@CS@oil$ hydrogels (doped with eugenol) with yellow arrows on the SEM images highlighting the oil droplets in the hydrogel.

Figure S9. Size dispersion histogram of the oil droplets contained in CoSiW₁₁@CS@oil hydrogels. Data obtained from ImageJ measurements of the oil droplet diameters obtained from SEM images.

Table S1. Minimum Inhibitory Concentration (MIC) values: starting materials, eugenol, and cinnamaldehyde.

Compound	MIC (mg/mL)	
	E. coli	B. subtilis
$K_8[\alpha-SiW_{11}O_{39}]$	>12.68	12.68
Chitosan	0.25	0.15
Eugenol	0.50	0.50
Cinnamaldehyde	0.625	0.625

Figure S10. SEM imaging of washed samples; a) plastic control sample, b) $CoSiW_{11}@CS$ hydrogel (0% oil content) and eugenol doped $CoSiW_{11}@CS$ hydrogels; c) 5%, and d) 10%, after antibiofilm assay with *B. subtilis*.

Figure S11. Conidiophores and conidia of *A. niger* visualised on the glass control sample (from the antifungal assay) and SEM imaging.

Figure S12. *C. cladosporioides* mould visualised on the glass control sample (from the antifungal assay) and SEM imaging.

Figure S13. Performance of the CoSiW₁₁@CS and CoSiW₁₁@CS@oil hydrogels in antifungal assays against *A. niger* and *C. cladosporioides*, demonstrating the absence of fungal growth on CoSiW₁₁@CS and CoSiW₁₁@CS@oil hydrogels, compared with control growth on glass and on plastic.