# **Electronic Supplementary Information**

for

# Controlled Ring-Opening (Co)Polymerization of Macrolactones: A Pursuit for Efficient Aluminum-Based Catalysts

Chutikan Nakornkhet,<sup>a,b</sup> Sirawan Kamavichanurat,<sup>a,b</sup> Wasan Joopor<sup>a,b</sup> and Pimpa Hormnirun<sup>a,b\*</sup>

<sup>*a*</sup> Laboratory of Catalysts and Advanced Polymer Materials, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand

<sup>b</sup>Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University.

\*E-mail: fscipph@ku.ac.th

## Content

|          |                                                                                                             | page |  |
|----------|-------------------------------------------------------------------------------------------------------------|------|--|
| Fig. S1  | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of <b>1</b> in CDCl <sub>3</sub> at 298 K.  | S5   |  |
| Fig. S2  | <sup>1</sup> H NMR spectrum of <b>2</b> in CDCl <sub>3</sub> at 298 K.                                      |      |  |
| Fig. S3  | <sup>1</sup> H NMR spectrum of <b>3</b> in CDCl <sub>3</sub> at 298 K                                       |      |  |
| Fig. S4  | <sup>1</sup> H NMR spectrum of <b>4</b> in CDCl <sub>3</sub> at 298 K.                                      |      |  |
| Fig. S5  | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of <b>5</b> in THF- $d_8$ at 298 K.         |      |  |
| Fig. S6  | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of <b>6</b> in CDCl <sub>3</sub> at 298 K.  |      |  |
| Fig. S7  | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of <b>7</b> in CDCl <sub>3</sub> at 298 K.  |      |  |
| Fig. S8  | <sup>1</sup> H NMR spectrum of <b>8</b> in CDCl <sub>3</sub> at 298 K.                                      |      |  |
| Fig. S9  | <sup>1</sup> H NMR spectrum of <b>9</b> in CDCl <sub>3</sub> at 298 K.                                      |      |  |
| Fig. S10 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of <b>10</b> in CDCl <sub>3</sub> at 298 K. |      |  |
| Fig. S11 | GPC trace of PPDL using complex 9 (Table 1, entry 9)                                                        |      |  |
| Fig. S12 | Semilogarithmic plot of PDL conversion versus time in $C_6D_6$ at 70 °C with complex 1                      | S13  |  |
|          | $([PDL]_0/[Al] = 100, [Al]/[BnOH] = 1, [PDL]_0 = 1.25, [Al] = 12.5 \text{ mM}).$                            |      |  |
| Fig. S13 | Semilogarithmic plot of PDL conversion versus time in $C_6D_6$ at 70 °C with complex 2                      | S13  |  |
|          | $([PDL]_0/[A1] = 100, [A1]/[BnOH] = 1, [PDL]_0 = 1.25, [A1] = 12.5 \text{ mM}).$                            |      |  |
| Fig. S14 | Semilogarithmic plot of PDL conversion versus time in $C_6D_6$ at 70 °C with complex 3                      | S14  |  |
|          | $([PDL]_0/[Al] = 100, [Al]/[BnOH] = 1, [PDL]_0 = 1.25, [Al] = 12.5 \text{ mM}).$                            |      |  |
| Fig. S15 | Semilogarithmic plot of PDL conversion versus time in $C_6D_6$ at 70 °C with complex 4                      | S14  |  |
|          | $([PDL]_0/[Al] = 100, [Al]/[BnOH] = 1, [PDL]_0 = 1.25, [Al] = 12.5 \text{ mM}).$                            |      |  |
| Fig. S16 | Semilogarithmic plot of PDL conversion versus time in $C_6D_6$ at 70 °C with complex 5                      | S14  |  |
|          | $([PDL]_0/[A1] = 100, [A1]/[BnOH] = 1, [PDL]_0 = 1.25, [A1] = 12.5 \text{ mM}).$                            |      |  |
| Fig. S17 | Semilogarithmic plot of PDL conversion versus time in $C_6D_6$ at 70 °C with complex 6                      | S15  |  |
|          | $([PDL]_0/[A1] = 100, [A1]/[BnOH] = 1, [PDL]_0 = 1.25, [A1] = 12.5 \text{ mM})$                             |      |  |
| Fig. S18 | Semilogarithmic plot of PDL conversion versus time in $C_6D_6$ at 70 °C with complex 7                      | S15  |  |
|          | $([PDL]_0/[A1] = 100, [A1]/[BnOH] = 1, [PDL]_0 = 1.25, [A1] = 12.5 \text{ mM}).$                            |      |  |
| Fig. S19 | Semilogarithmic plot of PDL conversion versus time in $C_6D_6$ at 70 °C with complex 8                      | S15  |  |
|          | $([PDL]_0/[A1] = 100, [A1]/[BnOH] = 1, [PDL]_0 = 1.25, [A1] = 12.5 \text{ mM}).$                            |      |  |
| Fig. S20 | Semilogarithmic plot of PDL conversion versus time in $C_6D_6$ at 70 °C with complex 9                      | S16  |  |
|          | $([PDL]_0/[A1] = 100, [A1]/[BnOH] = 1, [PDL]_0 = 1.25, [A1] = 12.5 \text{ mM}).$                            |      |  |
| Fig. S21 | Semilogarithmic plot of PDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex   | S16  |  |
|          | <b>10</b> ( $[PDL]_0/[A1] = 100$ , $[A1]/[BnOH] = 1$ , $[PDL]_0 = 1.25$ , $[A1] = 12.5$ mM).                |      |  |
| Fig. S22 | Semilogarithmic plot of HDL conversion versus time in $C_6D_6$ at 70 °C with complex 1                      | S16  |  |
|          | $([HDL]_0/[A1] = 100, [A1]/[BnOH] = 1, [HDL]_0 = 1.25, [A1] = 12.5 \text{ mM}).$                            |      |  |
| Fig. S23 | Semilogarithmic plot of HDL conversion versus time in $C_6D_6$ at 70 °C with complex 2                      | S17  |  |
|          | $([HDL]_0/[A1] = 100, [A1]/[BnOH] = 1, [HDL]_0 = 1.25, [A1] = 12.5 \text{ mM}).$                            |      |  |
| Fig. S24 | Semilogarithmic plot of HDL conversion versus time in $C_6D_6$ at 70 °C with complex 3                      | S17  |  |
|          | $([HDL]_0/[A1] = 100, [A1]/[BnOH] = 1, [HDL]_0 = 1.25, [A1] = 12.5 \text{ mM}).$                            |      |  |
| Fig. S25 | Semilogarithmic plot of HDL conversion versus time in $C_6D_6$ at 70 °C with complex 4                      | S17  |  |
|          | $([HDL]_0/[A1] = 100, [A1]/[BnOH] = 1, [HDL]_0 = 1.25, [A1] = 12.5 \text{ mM}).$                            |      |  |

| Fig. S26 | Semilogarithmic plot of HDL conversion versus time in $C_6D_6$ at 70 °C with complex 5                             | S18 |
|----------|--------------------------------------------------------------------------------------------------------------------|-----|
|          | $([HDL]_0/[Al] = 100, [Al]/[BnOH] = 1, [HDL]_0 = 1.25, [Al] = 12.5 \text{ mM}).$                                   |     |
| Fig. S27 | Semilogarithmic plot of HDL conversion versus time in $C_6D_6$ at 70 °C with complex 6                             | S18 |
|          | $([HDL]_0/[Al] = 100, [Al]/[BnOH] = 1, [HDL]_0 = 1.25, [Al] = 12.5 \text{ mM}).$                                   |     |
| Fig. S28 | Semilogarithmic plot of HDL conversion versus time in $C_6D_6$ at 70 °C with complex 7                             | S18 |
|          | $([HDL]_0/[Al] = 100, [Al]/[BnOH] = 1, [HDL]_0 = 1.25, [Al] = 12.5 \text{ mM})$                                    |     |
| Fig. S29 | Semilogarithmic plot of HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex 8        | S19 |
|          | $([HDL]_0/[Al] = 100, [Al]/[BnOH] = 1, [HDL]_0 = 1.25, [Al] = 12.5 \text{ mM}).$                                   |     |
| Fig. S30 | Semilogarithmic plot of HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex <b>9</b> | S19 |
|          | $([HDL]_0/[Al] = 100, [Al]/[BnOH] = 1, [HDL]_0 = 1.25, [Al] = 12.5 \text{ mM}).$                                   |     |
| Fig. S31 | Semilogarithmic plot of HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex          | S19 |
|          | <b>10</b> ([HDL] <sub>0</sub> /[Al] = 100, [Al]/[BnOH] = 1, [HDL] <sub>0</sub> = 1.25, [Al] = 12.5 mM).            |     |
| Fig. S32 | Semilogarithmic plot of 6HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex         | S20 |
|          | $1 ([6HDL]_0/[Al] = 100, [Al]/[BnOH] = 1, [6HDL]_0 = 1.25, [Al] = 12.5 \text{ mM}).$                               |     |
| Fig. S33 | Semilogarithmic plot of 6HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex         | S20 |
|          | $2 ([6HDL]_0/[Al] = 100, [Al]/[BnOH] = 1, [6HDL]_0 = 1.25, [Al] = 12.5 \text{ mM}).$                               |     |
| Fig. S34 | Semilogarithmic plot of 6HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex         | S20 |
|          | <b>3</b> ( $[6HDL]_0/[Al] = 100$ , $[Al]/[BnOH] = 1$ , $[6HDL]_0 = 1.25$ , $[Al] = 12.5$ mM).                      |     |
| Fig. S35 | Semilogarithmic plot of 6HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex         | S21 |
|          | 4 ( $[6HDL]_0/[A1] = 100$ , $[A1]/[BnOH] = 1$ , $[6HDL]_0 = 1.25$ , $[A1] = 12.5$ mM).                             |     |
| Fig. S36 | Semilogarithmic plot of 6HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex         | S21 |
|          | <b>5</b> ( $[6HDL]_0/[A1] = 100$ , $[A1]/[BnOH] = 1$ , $[6HDL]_0 = 1.25$ , $[A1] = 12.5$ mM).                      |     |
| Fig. S37 | Semilogarithmic plot of 6HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex         | S21 |
|          | <b>6</b> ( $[6HDL]_0/[A1] = 100$ , $[A1]/[BnOH] = 1$ , $[6HDL]_0 = 1.25$ , $[A1] = 12.5$ mM).                      |     |
| Fig. S38 | Semilogarithmic plot of 6HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex         | S22 |
|          | 7 ( $[6HDL]_0/[A1] = 100$ , $[A1]/[BnOH] = 1$ , $[6HDL]_0 = 1.25$ , $[A1] = 12.5$ mM).                             |     |
| Fig. S39 | Semilogarithmic plot of 6HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex         | S22 |
|          | 8 ( $[6HDL]_0/[A1] = 100$ , $[A1]/[BnOH] = 1$ , $[6HDL]_0 = 1.25$ , $[A1] = 12.5$ mM).                             |     |
| Fig. S40 | Semilogarithmic plot of 6HDL conversion versus time in $C_6D_6$ at 70 °C with complex                              | S22 |
|          | <b>9</b> ( $[6HDL]_0/[A1] = 100$ , $[A1]/[BnOH] = 1$ , $[6HDL]_0 = 1.25$ , $[A1] = 12.5$ mM).                      |     |
| Fig. S41 | Semilogarithmic plot of 6HDL conversion versus time in C <sub>6</sub> D <sub>6</sub> at 70 °C with complex         | S23 |
|          | <b>10</b> ( $[6HDL]_0/[A1] = 100$ , $[A1]/[BnOH] = 1$ , $[6HDL]_0 = 1.25$ , $[A1] = 12.5$ mM).                     |     |
| Fig. S42 | Plot of the HDL $M_n(\bullet)$ (versus polystyrene standards) and $D(\circ)$ as a function of                      | S23 |
|          | monomer conversion for HDL using $9$ /BnOH as an initiator ([HDL] <sub>0</sub> /[Al] = 100,                        |     |
|          | benzene- $d_6$ , 70 °C).                                                                                           |     |
| Fig. S43 | Plot of the 6HDL $M_n(\bullet)$ (versus polystyrene standards) and $D(\circ)$ as a function of                     | S23 |
|          | monomer conversion for 6HDL using $9/BnOH$ as an initiator ([HDL] <sub>0</sub> /[Al] = 100,                        |     |
|          | benzene- $d_6$ , 70 °C).                                                                                           | _   |
| Fig. S44 | GPC curve of Poly(PDL-b-L-LA) using complex 9 (Table 6, entry 1)                                                   | S24 |
| Fig. S45 | GPC curve of Poly(L-LA- <i>co</i> -PDL) using complex <b>9</b> (Table 6, entry 2)                                  | S24 |
|          |                                                                                                                    |     |
| Fig. S46 | GPC curve of Poly(L-LA-co-PDL) using complex 9 (Table 6, entry 3)                                                  | S24 |

| Fig. S47 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of polypentadecalactone (PPDL) in CDCl <sub>3</sub> at 298 K.                                                                                                         | S25         |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|
| Fig. S48 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of polyhexadecalactone (PHDL) in CDCl <sub>3</sub> at 298 K. S2                                                                                                       |             |  |  |
| Fig. S49 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of poly( $\omega$ -6-hexadecenlactone, 6HDL) in CDCl <sub>3</sub> at 298 S                                                                                            |             |  |  |
|          | К.                                                                                                                                                                                                                                    |             |  |  |
| Fig. S50 | <sup>1</sup> H NMR spectrum of poly(PDL-co-CL) in C <sub>6</sub> D <sub>6</sub> at 298 K (Table 4, entry 1).                                                                                                                          | S28         |  |  |
| Fig. S51 | <sup>1</sup> H NMR spectrum of poly(HDL-co-CL) in C <sub>6</sub> D <sub>6</sub> at 298 K (Table 4, entry 2).                                                                                                                          |             |  |  |
| Fig. S52 | <sup>1</sup> H NMR spectrum of poly(6HDL-co-CL) in C <sub>6</sub> D <sub>6</sub> at 298 K (Table 4, entry 3).                                                                                                                         |             |  |  |
| Fig. S53 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of poly(PDL-co-CL) in CDCl <sub>3</sub> at 298 K                                                                                                                      |             |  |  |
|          | (Table 4, entry 1).                                                                                                                                                                                                                   |             |  |  |
| Fig. S54 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of poly(HDL-co-CL) in CDCl <sub>3</sub> at 298 K                                                                                                                      | <b>S</b> 31 |  |  |
|          | (Table 4, entry 2).                                                                                                                                                                                                                   |             |  |  |
| Fig. S55 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of poly(6HDL- <i>b</i> -CL) in CDCl <sub>3</sub> at 298 K                                                                                                             | S32         |  |  |
|          | (Table 4, entry 3).                                                                                                                                                                                                                   |             |  |  |
| Fig. S56 | <sup>1</sup> H NMR spectra of poly(PDL- <i>b</i> -CL) in $C_6D_6$ at 298 K.                                                                                                                                                           | S33         |  |  |
| Fig. S57 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of poly(PDL- <i>b</i> -CL) in CDCl <sub>3</sub> at 298 K (Table 4, entry 4)                                                                                           |             |  |  |
| Fig. S58 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of poly(PDL- <i>co</i> -CL) in CDCl <sub>3</sub> at 298 K (Table 4, entry 5)                                                                                          | S35         |  |  |
| Fig. S59 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of poly(HDL- <i>b</i> -CL) in CDCl <sub>3</sub> at 298 K<br>(Table 4, entry 6)                                                                                        | S36         |  |  |
| Fig. S60 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of poly(HDL- <i>co</i> -CL) in CDCl <sub>3</sub> at 298 K                                                                                                             | S37         |  |  |
|          | (Table 4, entry 7).                                                                                                                                                                                                                   |             |  |  |
| Fig. S61 | <sup>1</sup> H NMR spectrum of poly(6HDL- <i>b</i> -CL) in $C_6D_6$ at 298 K (Table 4, entry 8).                                                                                                                                      | S38         |  |  |
| Fig. S62 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of poly(6HDL- <i>b</i> -CL) in CDCl <sub>3</sub> at 298 K                                                                                                             | S39         |  |  |
|          | (Table 4, entry 8).                                                                                                                                                                                                                   |             |  |  |
| Fig. S63 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of poly(6HDL- <i>co</i> -CL) in CDCl <sub>3</sub> at 298 K (Table 4, antry 0)                                                                                         | S40         |  |  |
| Fig. S64 | The DOSY NMR spectrum of a poly(PDL- $co$ -L-LA) in CDCl <sub>3</sub> (Table 6, entry 2).                                                                                                                                             | S41         |  |  |
| Fig. S65 | <sup>1</sup> H NMR spectrum of poly(L-LA- <i>co</i> - PDL) (Table 6, entry 3).                                                                                                                                                        | S41         |  |  |
| Fig. S66 | The DOSY NMR spectrum of a poly(L-LA-co- PDL) in CDCl <sub>3</sub> (Table 6, entry 3).                                                                                                                                                | S42         |  |  |
| Fig. S67 | <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR spectra of poly(L-LA- <i>b</i> -PDL) in CDCl <sub>3</sub> at 298 K (Table 6, entry                                                                                            | S43         |  |  |
| Fig. S68 | 1).<br><sup>13</sup> C{ <sup>1</sup> H} NMR spectra at the methylene region of poly(PDL- <i>b</i> -CL) in CDCl <sub>3</sub> at 298 K<br>(Table 7 entry 1)                                                                             | S44         |  |  |
| Fig. S69 | <sup>13</sup> C{ <sup>1</sup> H} NMR spectra at the methylene region of poly(PDL- <i>b</i> -CL) ( <b>a</b> , 30 + 5 min)<br>and ( <b>b</b> , 30 + 360 min) poly(PDL- <i>co</i> -CL) in CDCl <sub>3</sub> at 298 K (Table 7, entry 2). | S44         |  |  |
| Fig. S70 | $^{13}C{^{1}H}$ NMR spectra at the methylene region of poly(PDL- <i>b</i> -CL) in CDCl <sub>3</sub> at 298 K (Table 7, entry 3).                                                                                                      | S44         |  |  |
| Table S1 | Kinetic results for the ROP of MLs and L-LA using aluminum complexes $1-10$ in the presence of benzyl alcohol. <sup><i>a</i></sup>                                                                                                    | S46         |  |  |



Fig. S1 <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of 1 in CDCl<sub>3</sub> at 298 K.



Fig. S2 <sup>1</sup>H NMR spectrum of 2 in CDCl<sub>3</sub> at 298 K.



**Fig. S3** <sup>1</sup>H NMR spectrum of **3** in CDCl<sub>3</sub> at 298 K.



**Fig. S4** <sup>1</sup>H NMR spectrum of **4** in CDCl<sub>3</sub> at 298 K.







Fig. S5 <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of 5 in THF- $d_8$  at 298 K.







Fig. S6 <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of 6 in CDCl<sub>3</sub> at 298 K.







Fig. S7 <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of 7 in CDCl<sub>3</sub> at 298 K.



Fig. S8 <sup>1</sup>H NMR spectrum of 8 in CDCl<sub>3</sub> at 298 K.





Fig. S9 <sup>1</sup>H NMR spectrum of 9 in CDCl<sub>3</sub> at 298 K.



Fig. S10  $^{1}$ H and  $^{13}C{^{1}H}$  NMR spectra of 10 in CDCl<sub>3</sub> at 298 K.



Fig. S11 GPC trace of PPDL using complex 9 (Table 1, entry 9)



**Fig. S12** Semilogarithmic plot of PDL conversion versus time in  $C_6D_6$  at 70 °C with complex 1 ([PDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [PDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S13** Semilogarithmic plot of PDL conversion versus time in  $C_6D_6$  at 70 °C with complex 2 ([PDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [PDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S14** Semilogarithmic plot of PDL conversion versus time in  $C_6D_6$  at 70 °C with complex **3** ([PDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [PDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S15** Semilogarithmic plot of PDL conversion versus time in  $C_6D_6$  at 70 °C with complex 4 ([PDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [PDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S16** Semilogarithmic plot of PDL conversion versus time in  $C_6D_6$  at 70 °C with complex 5 ([PDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [PDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S17** Semilogarithmic plot of PDL conversion versus time in  $C_6D_6$  at 70 °C with complex 6 ([PDL]<sub>0</sub>/[Al] = 100, [Al]/[BnOH] = 1, [PDL]<sub>0</sub> = 1.25, [Al] = 12.5 mM).



**Fig. S18** Semilogarithmic plot of PDL conversion versus time in  $C_6D_6$  at 70 °C with complex 7 ([PDL]<sub>0</sub>/[Al] = 100, [Al]/[BnOH] = 1, [PDL]<sub>0</sub> = 1.25, [Al] = 12.5 mM).



**Fig. S19** Semilogarithmic plot of PDL conversion versus time in  $C_6D_6$  at 70 °C with complex 8 ([PDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [PDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S20** Semilogarithmic plot of PDL conversion versus time in  $C_6D_6$  at 70 °C with complex 9 ([PDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [PDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S21** Semilogarithmic plot of PDL conversion versus time in  $C_6D_6$  at 70 °C with complex **10** ([PDL]<sub>0</sub>/[Al] = 100, [Al]/[BnOH] = 1, [PDL]<sub>0</sub> = 1.25, [Al] = 12.5 mM).



**Fig. S22** Semilogarithmic plot of HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 1 ([HDL]<sub>0</sub>/[Al] = 100, [Al]/[BnOH] = 1, [HDL]<sub>0</sub> = 1.25, [Al] = 12.5 mM).



**Fig. S23** Semilogarithmic plot of HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 2 ([HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S24** Semilogarithmic plot of HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 3 ([HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S25** Semilogarithmic plot of HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 4 ([HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S26** Semilogarithmic plot of HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 5 ([HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S27** Semilogarithmic plot of HDL conversion versus time in  $C_6D_6$  at 70 °C with complex **6** ([HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S28** Semilogarithmic plot of HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 7 ([HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S29** Semilogarithmic plot of HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 8 ([HDL]<sub>0</sub>/[Al] = 100, [Al]/[BnOH] = 1, [HDL]<sub>0</sub> = 1.25, [Al] = 12.5 mM).



**Fig. S30** Semilogarithmic plot of HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 9 ([HDL]<sub>0</sub>/[Al] = 100, [Al]/[BnOH] = 1, [HDL]<sub>0</sub> = 1.25, [Al] = 12.5 mM).



**Fig. S31** Semilogarithmic plot of HDL conversion versus time in  $C_6D_6$  at 70 °C with complex **10** ([HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S32** Semilogarithmic plot of 6HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 1 ([6HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [6HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S33** Semilogarithmic plot of 6HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 2 ([6HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [6HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S34** Semilogarithmic plot of 6HDL conversion versus time in  $C_6D_6$  at 70 °C with complex **3** ([6HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [6HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S35** Semilogarithmic plot of 6HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 4 ([6HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [6HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S36** Semilogarithmic plot of 6HDL conversion versus time in  $C_6D_6$  at 70 °C with complex **5** ([6HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [6HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S37** Semilogarithmic plot of 6HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 6 ([6HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [6HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S38** Semilogarithmic plot of 6HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 7 ([6HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [6HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S39** Semilogarithmic plot of 6HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 8 ([6HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [6HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S40** Semilogarithmic plot of 6HDL conversion versus time in  $C_6D_6$  at 70 °C with complex 9 ([6HDL]<sub>0</sub>/[A1] = 100, [A1]/[BnOH] = 1, [6HDL]<sub>0</sub> = 1.25, [A1] = 12.5 mM).



**Fig. S41** Semilogarithmic plot of 6HDL conversion versus time in  $C_6D_6$  at 70 °C with complex **10** ([P6HDL]<sub>0</sub>/[Al] = 100, [Al]/[BnOH] = 1, [6HDL]<sub>0</sub> = 1.25, [Al] = 12.5 mM).



**Fig. S42** Plot of the HDL  $M_n$  (•) (*versus* polystyrene standards) and D ( $\circ$ ) as a function of monomer conversion for HDL using 9/BnOH as an initiator ([HDL]<sub>0</sub>/[Al] = 100, C<sub>6</sub>D<sub>6</sub>, 70 °C).



**Fig. S43** Plot of the 6HDL  $M_n$  (•) (versus polystyrene standards) and PDI ( $\circ$ ) as a function of monomer conversion for 6HDL using 9/BnOH as an initiator ([6HDL]<sub>0</sub>/[Al] = 100, C<sub>6</sub>D<sub>6</sub>, 70 °C).



Fig. S44 GPC curve of Poly(PDL-*b*-L-LA) using complex 9 (Table 6, entry 1)



Fig. S45 GPC curve of Poly(L-LA-co-PDL) using complex 9 (Table 6, entry 2)



Fig. S46 GPC curve of Poly(L-LA-co-PDL) using complex 9 (Table 6, entry 3)



**Fig. S47** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of polypentadecalactone (PPDL) in CDCl<sub>3</sub> at 298 K.



**Fig. S48** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of polyhexadecalactone (PHDL) in CDCl<sub>3</sub> at 298 K.





**Fig. S49** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of  $poly(\omega$ -6-hexadecenlactone, 6HDL) in CDCl<sub>3</sub> at 298 K.



Fig. S50 <sup>1</sup>H NMR spectrum of poly(PDL-co-CL) in C<sub>6</sub>D<sub>6</sub> at 298 K (Table 4, entry 1).



Fig. S51 <sup>1</sup>H NMR spectrum of poly(HDL-co-CL) in C<sub>6</sub>D<sub>6</sub> at 298 K (Table 4, entry 2).



Fig. S52 <sup>1</sup>H NMR spectrum of poly(6HDL-co-CL) in C<sub>6</sub>D<sub>6</sub> at 298 K (Table 4, entry 3).



Fig. S53 <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of poly(PDL-co-CL) in CDCl<sub>3</sub> at 298 K (Table 4, entry 1).



Fig. S54 <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of poly(HDL-co-CL) in CDCl<sub>3</sub> at 298 K (Table 4, entry 2).





Fig. S55 <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of poly(6HDL-co-CL) in CDCl<sub>3</sub> at 298 K (Table 4, entry 3).

### Sequential monomer addition



**Fig. S56** <sup>1</sup>H NMR spectra of poly(PDL-*b*-CL) in C<sub>6</sub>D<sub>6</sub> at 298 K.



**Fig. S57** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of poly(PDL-*b*-CL) in CDCl<sub>3</sub> at 298 K (Table 4, entry 4).



**Fig. S58** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of poly(PDL-*co*-CL) in CDCl<sub>3</sub> at 298 K (Table 4, entry 5).



**Fig. S59** <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of poly(HDL-b-CL) in CDCl<sub>3</sub> at 298 K (Table 4, entry 6).



Fig. S60 <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of poly(HDL-*co*-CL) in CDCl<sub>3</sub> at 298 K (Table 4, entry 7).



Fig. S61 <sup>1</sup>H NMR spectrum of poly(6HDL-*b*-CL) in C<sub>6</sub>D<sub>6</sub> at 298 K (Table 4, entry 8).



Fig. S62 <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of poly(6HDL-*b*-CL) in CDCl<sub>3</sub> at 298 K (Table 4, entry 8).



Fig. S63 <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of poly(6HDL-co-CL) in CDCl<sub>3</sub> at 298 K (Table 4, entry 9).



Fig. S64 The DOSY NMR spectrum of a poly(PDL-co-L-LA) in CDCl<sub>3</sub> (Table 6, entry 2).



Fig. S65 <sup>1</sup>H NMR spectrum of poly(L-LA-*co*- PDL) (Table 6, entry 3).



Fig. S66 The DOSY NMR spectrum of a poly(L-LA-co- PDL) in CDCl<sub>3</sub> (Table 6, entry 3).



Fig. S67 <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra of poly(L-LA-*b*-PDL) in CDCl<sub>3</sub> at 298 K (Table 6, entry 1).



**Fig. S68** <sup>13</sup>C{<sup>1</sup>H} NMR spectra at the methylene region of poly(PDL-b-CL) in CDCl<sub>3</sub> at 298 K (Table 7, entry 1).



**Fig. S69**<sup>13</sup>C{<sup>1</sup>H} NMR spectra at the methylene region of poly(PDL-*b*-CL) ( $\mathbf{a}$ , 30 + 5 min) and ( $\mathbf{b}$ , 30 + 360 min) poly(PDL-*co*-CL) in CDCl<sub>3</sub> at 298 K (Table 7, entry 2).



**Fig. S70** <sup>13</sup>C{<sup>1</sup>H} NMR spectra at the methylene region of poly(PDL-*b*-CL) in CDCl<sub>3</sub> at 298 K (Table 7, entry 3).

#### **Ring-Opening Polymerization of L-LA using complexes 1–10**

The polymerizations of high ring strain L-lactide (L-LA) were also carried out in order to compare the results with the polymerizations of MLs (Table S1). The values of the apparent rate constants ( $k_{app}$ ) collected in Table S1 show that the catalytic activity decreases in the order 5 > 7 > 4 > 4 $6 > 9 \approx 10 > 8 > 2 > 1 > 3$ . Complex 5, featuring electron-withdrawing iodo atoms, was the most active catalyst examined in this study. Despite its acknowledged significance, complex 5 is the most active aluminum salen catalyst reported thus far. A smaller, although substantial, rate enhancement was also seen upon replacing a phenyl with a naphthalene ring (complex 4 vs. complex 7). However, complex **6** with the electron withdrawing NO<sub>2</sub> groups ( $k_{app} = (176 \pm 7.77) \times 10^{-5} \text{ s}^{-1}$ ) displayed lower catalytic activity than the unsubstituted complex **4** ( $k_{app} = (226 \pm 6.59) \times 10^{-5} \text{ s}^{-1}$ ). The observed lower catalytic activity in complex 6 may be attributed to the stronger binding of the ring-opened alkoxide chain to the more Lewis acidic aluminum center that hinders the subsequent insertion step.<sup>1-4</sup> For the *bis*(pyrrolidene) aluminum complexes 9 and 10, the similar  $k_{app}$  values were observed ( $k_{app} = (51.00 \pm$  $(2.70) \times 10^{-5} \text{ s}^{-1}$  for  $\mathbf{9}^{55}$  and  $k_{\text{app}} = (52.29 \pm 2.64) \times 10^{-5} \text{ s}^{-1}$  for  $\mathbf{10}$ ), indicating that the steric effect was not evidenced in this group. It can be observed that the tetradentate aluminum complexes with the gem-dimethyl-substituted propylene backbone (4–7 and 9–10) exhibited higher catalytic performance than tetradentate aluminum complexes with ethylene linker (complexes 3 and 8). The observed higher catalytic activity could be attributed to the greater flexibility of the 2,2-dimethylpropylene backbone imparted to the metal coordination sphere and hence better accommodation of the geometric requirements of the transition states for the ring-opening process.<sup>5</sup> In addition, changing the backbone from a C<sub>2</sub> alkylene linker to a C<sub>3</sub> unit results in a change in the conformation from *meridional* to *facial*.<sup>6</sup> The *facial* conformation is more reactive because there is more space for the monomer to coordinate *cis* to the growing polymer chain, which is required for the insertion step. Similar to the polymerization of MLs, the low coordinate bidentate aluminum complexes 1 and 2 displayed lower activity than the high coordinate tetradentate ones.<sup>7,8</sup>

| Entry | Complex | k <sub>app</sub> (10 <sup>-5</sup> s <sup>-1</sup> ) |
|-------|---------|------------------------------------------------------|
| 1     | 1       | $9.19\pm0.23$                                        |
| 2     | 2       | $16.96\pm0.76$                                       |
| 3     | 3       | $6.85\pm0.27$                                        |
| 4     | 4       | $226\pm6.59$                                         |
| 5     | 5       | $1288 \pm 55.46$                                     |
| 6     | 6       | $176\pm7.77$                                         |
| 7     | 7       | $463\pm20.07$                                        |
| 8     | 8       | $33.82\pm0.92$                                       |
| 9     | 9       | $51.00 \pm 2.70^{9}$                                 |
| 10    | 10      | $52.29 \pm 2.64$                                     |

**Table S1** Kinetic results for the ROP of MLs and L-LA using aluminum complexes 1-10 in the presence of benzyl alcohol.<sup>*a*</sup>

<sup>*a*</sup>[L-LA]<sub>0</sub>:[Al]:[BnOH] = 50, [L-LA]<sub>0</sub> = 0.42 M, [Al] = 8.33 mM, toluene, 70 °C.

#### References

- K. Ding, M. O. Miranda, B. Moscata-Goodpaster, N. Ajellal, L. E. Breyfogle, E. D. Hermes, C.
  P. Schaller, S. E. Roe, C. J. Cramer, M. A. Hillmyer and W. B. Tolman, *Macromolecules*, 2012, 45, 5387–5396.
- [2] S. Bian, S. Abbina, Z. Lu, E. Kolodka and G. Du, Organometallics, 2014, 33, 2489–2495.
- [3] S. Kamavivhanurat, K. Jampakaew and P. Hormnirun, Polym. Chem. 2023, 14, 1752–1772.
- [4] C. Nakonkhet, T. Nanok, P. Chuawong, W. Wattanathana and P. Hormnirun, *Dalton Trans.*, 2017, 46, 11013–11030.
- [5] P. Hormnirun, E. L. Marshall, V. C. Gibson, R. I. Pugh and A. J. P. White, *Proc. Natl. Acad. Sci.*, 2006, **103**, 15343–15348.
- [6] M. P. F. Pepels, M. Bouyahyi, A. Heise, and R. Duchateau, *Macromolecules*, 2013, 46, 4324–4334.
- [7] Y. Liu, W.-S. Dong, J.-Y. Liu and Y.-S. Li, *Dalton Trans.*, 2014, **43**, 2244–2251.
- [8] H.-C. Huang, B. Wang, Y.-P. Zhang and Y.-S. Li, Polym. Chem., 2016, 7, 5819–5827.
- [9] S. Tabthong, T. Nanok, P. Sumrit, P. Kongsaeree, S. Prabpai, P. Chuawong and P. Hormnirun, *Macromolecules*, 2015, 48, 6846–6861.