Fenton–RAFT Polymerization in Organic Media

Amin Reyhani,^{a,b} Ross A.L. Wylie,^a Arunjunai R.S. Santha Kumar,^a Alicia Rasines Mazo,^a Omid Mazaheri,^a Kathryn A. Mumford,^a and Greg G. Qiao^{a,*}

a. Department of Chemical Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.

b. Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Straße 4, 64287 Darmstadt, Germany.

Contents	Page
Characterization date of the Fe(II)-MOF particles	2
Deoxygenated organic Fenton-RAFT polymerization	3
Deoxygenated organic Fenton-RAFT polymerization	4
Kinetic study of the organic Fenton-RAFT polymerization	5
Fenton reaction-mediated bulk polymerization	6
Effect of MA/DMSO ratio on the polymerization rate	7
Recycling experiments	8
Temperature effect on the polymerization rate	9
References	10

- Characterization date of the Fe(II)-MOF particles

Figure S1. HR-TEM image of the employed Fe(II)–MOF particles in this study.

Figure S2. FTIR spectra of the employed Fe(II)–MOF particles.

Figure S3. XPS analysis of the Fe(II)–MOF particles before the polymerization.¹

- Non-deoxygenated organic Fenton-RAFT polymerization

Figure S4. ¹H NMR and SEC peaks of the synthesized PMA with TTC-1 *via* the non-deoxygenated Fenton-RAFT in DMSO. [Fe(II)-MOF] = 1.6 mg mL⁻¹, and $[H_2O_2]_0$ = 35 mM.

- Deoxygenated organic Fenton-RAFT polymerization

Figure S5. ¹H NMR and SEC peaks of the synthesized PMA with TTC-2 *via* the deoxygenated Fenton-RAFT in DMSO. [Fe(II)-MOF] = 3.2 mg mL^{-1} , and [H₂O₂]₀ = 70 mM.

- Kinetic study of the organic Fenton-RAFT polymerization

Table S1. Characterization data of the synthesized PMA via the kinetic study when [Fe(II)-MOF] = 9.6 mg mL⁻¹ and $[H_2O_2]_0 = 70$ mM.

time (h)	Conversion (%)	M _{n, the.} (kDa)	M _{n, SEC} (kDa)	Ð (-)
0.5	2	-	-	-
1	15	-	-	-
3	34	6.1	3.2	1.34
5	46	8.2	4.3	1.35
7	56	9.9	7.4	1.26
9	71	12.5	10.0	1.19
11	80	14.1	12.8	1.15

Figure S6. SEC chromatograms of PDMA synthesized via a bulk RAFT polymerization. [Fe(II)- $MOF] = 9.6 \text{ mg mL}^{-1}$, and $[H_2O_2]_0 = 70 \text{ mM}$. *Note:* $M_{n, SEC}$ and \mathcal{D} values of this polymer were obtained by using a light scattering detector coupled with SEC through an aqueous system.

- Effect of MA/DMSO ratio on the polymerization rate

 $\label{eq:Figure S7} \begin{array}{l} \mbox{Reaction time (h)} \\ \mbox{Figure S7.} \ \mbox{Rate of organic Fenton-RAFT polymerization at different volume percentages of MA in DMSO when targeted DP = 200, [Fe(II)-MOF]_0 = 9.6 \mbox{ mg mL}^{-1} \mbox{ and } [H_2O_2] = 70 \mbox{ mM}. \end{array}$

MA/DMSO (vol%)	Time (h)	Conversion (%)	Ln [M]₀/[M]t	M _{n, SEC} (kDa)	Ð (-)
25	0.5	16.7	0.183	-	-
	1	31.9	0.384	3.0	1.19
	2	51.8	0.730	6.6	1.15
	3	63.4	1.006	9.1	1.13
	4	70.7	1.228	10.7	1.11
	5	73.4	1.325	11.8	1.10
	0.5	20.4	0.228	-	-
	1	39.2	0.498	4.1	1.20
05	2	60.4	0.927	8.4	1.14
30	3	69.9	1.202	11.2	1.15
	4	77.9	1.509	13.0	1.12
	5	80.9	1.653	13.9	1.11
	0.5	2	0.020	-	-
	1	15	0.163	-	-
50	2	Not taken	Not taken	-	-
	3	34	0.416	3.2	1.34
	4	Not taken	Not taken	-	-
	5	46	0.616	4.3	1.35
90 and 95	0.5	0	0	-	-
	1	0	0	-	-
	2	0	0	-	-
	3	0	0	-	-
	4	0	0	-	-
	5	0	0	-	-

Table S2. The experimental data obtained from the reactions comparing polymerization rates at different MA/DMSO volume ratios.

- Recycling experiments

Figure S8. Recyclability of the Fe(II)-MOF particles: monomer conversion after 8 h via recycling runs of Fe(II)-MOF particles in the organic Fenton-RAFT polymerization when CTA was TTC-3 and targeted DP was 200.

Table S3. Characterization data of the synthesized PMA after 8 h *via* the experiments with recovered MOFs when targeted DP = 200, $[Fe(II)-MOF]_0 = 9.6 \text{ mg mL}^{-1} \text{ and } [H_2O_2] = 70 \text{ mM}.$

Cycle #	Conversion (%)	M _{n, SEC} (kDa)	Ð (-)
1	92.7	11.1	1.15
2	94.1	10.3	1.11
3	89.2	14.2	1.10
4	93.1	19.4	1.12

- Temperature effect on the polymerization rate

T (°)	Time (min)	Conversion (%)	M _{n, the.} (kDa)	M _{n, SEC} (kDa)	Ð (-)
	0	0.0	-	-	-
	10	18.3	-	-	-
	20	29.6	5.4	3.0	1.19
	30	43.9	7.8	4.6	1.22
	40	48.5	8.6	6.0	1.21
30	50	55.2	9.8	7.5	1.19
	60	55.6	9.9	8.5	1.16
	90	76.6	13.5	11.1	1.18
	120	86.8	15.2	12.8	1.19
	180	90.1	15.8	14.8	1.21
	240	94.7	16.6	16.0	1.22
	300	97.4	17.0	16.7	1.23
	0	0.0	-	-	-
	10	60.2	10.7	6.7	1.19
45	20	70.4	12.4	8.8	1.15
	30	78.2	13.8	10.2	1.15
	40	83.8	14.8	11.0	1.15
	50	89.3	15.7	12.2	1.16
	60	93.4	16.3	13.1	1.21
	70	94.8	16.6	13.5	1.17
	0	12.7	-	-	-
60	10	97.2	17022.122	10802	1.30
	20	97.8	17126.096	10684	1.31

Table S4. Characterization data of the synthesized PMA in the experiments with different Ts when targeted CTA is TTC-3, DP = 200, $[Fe(II)-MOF]_0 = 9.6 \text{ mg mL}^{-1}$, and $[H_2O_2] = 70 \text{ mM}$.

References

1. A. Reyhani, H. Ranji-Burachaloo, T. G. McKenzie, Q. Fu and G. G. Qiao, *Macromolecules*, 2019, **52**, 3278-3287.