Supporting Information

January 9, 2024

Facile Synthesis of Cyclic RAFT Agents and Ring Expansion Radical Polymerization of Vinyl Monomers Having Cyclic Topology

Hiroki Ito, Kota Oto, Akinori Takasu*, Masahiro Higuchi

Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

Figure S1. ¹H-NMR spectrum of cyclic-TTC prepared in chloroform-*d*.

Figure S2. ¹³C-NMR spectrum of cyclic-TTC prepared in chloroform-*d*.

Figure S3. HMQC spectrum of cyclic-TTC prepared in chloroform-d.

Figure S4. ESI-MS spectrum of cyclic-TTC.

Table S1	. RAFT	Polymerization	of n-BA Mono	omer via Dih	vdroxy-TTC. ^a
		•/			•/ •/

run	[M] ₀ /[dihydroxy- TTC]	[M] ₀ (mol/L)	Time (h)	Conv ^b (%)	$M_{\rm p}{}^c$ (kg/mol)	$M_{ m w}/M_{ m n}{}^c$
1 ^d	100 / 1	2.0	6	53	7.62	1.33
2 ^e	100 / 1	0.67	3	86	9.00	1.56
3 ^e	100 / 1	2.0	3	97	14.7	1.31

^{*a*}Reaction temperature = r. t., in DMF (deoxidized). ^{*b*}Monomer conversion measured by ¹H NMR in CDCl₃. ^{*c*}Determined by SEC with a standard series of poly(styrene)s. ^{*d*}Polymerization without radical initiator under UV irradiation.

ePolymerization using Ir(ppy)3 as a redox catalyst without radical initiator under blue-LED irradiation.

Figure S5. SEC traces of poly(*n*-BA)s (black line = 1 h, red line = 5 h, blue line = 9 h, yellow line = 23 h, violet line = 31 h) (run 3 in Table 2).

Figure S6. SEC trace of poly(n-BA)s (black line = before addition of hydroquinone and UV irradiation, red line = before addition of hydroquinone and UV irradiation).

Figure S7. MALDI-TOF mass spectrum of poly(*n*-BA) synthesized with 2.0 M monomer concentration under UV irradiation (run 3 in Table 2).

Figure S8. EDS mapping of poly(*n*-BA) (run 3 in Table 2). (a) STEM image, (b) carbon, (c) oxygen

Figure S9. TEM observation of cyclic and linear poly(n-BA)s (run 1 in Table 2) prepared from toluene solution at 1.0 µg/mL.

Figure S10. TEM observation of cyclic and linear poly(n-BA)s (run 2, 4 in Table 2) prepared from toluene solution at 1.0 μ g/mL.

Figure S11. SEC traces of poly(n-BA)s synthesized at 6.7 mM cyclic-TTC concentration (black line = before aminolysis, red line = after aminolysis) and 20 mM cyclic-TTC concentration (black line = before aminolysis, red line = after aminolysis).