Precision synthesis of biobased myrcene thermoplastic elastomer by using amphiphilic macro-raft agent via emulsion polymerization in aqueous medium

Wen Li,[‡]^a Guoyu Chen,[‡]^a Jie Liu, ^a Youfang Zhang,^a Jianyun Ding,^a Runguo Wang,^{*}^b Dean Shi,^{*}^a Weiwei Lei,^{*}^a Liqun Zhang^b

^aHubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministryof-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan, 430062, PR China.

^bState Key Laboratory for Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.

*Correspondence to: Runguo Wang (E-mail: wangrg@mail.buct.edu.cn), Dean Shi (Email: deanshi2012@hubu.edu.cn), Weiwei Lei(Email: leiweiwei@hubu.edu.cn)

‡These authors contributed equally.

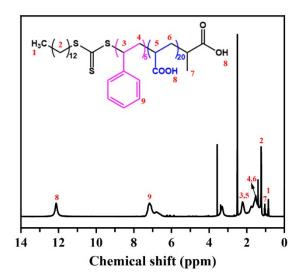


Fig. S1 ¹H NMR spetrum of Macro-RAFT agent.

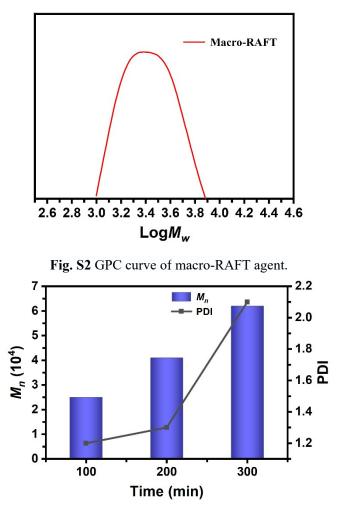


Fig. S3 Changes in Mn and PDI of PtBA at 100min, 200min, and 300min.

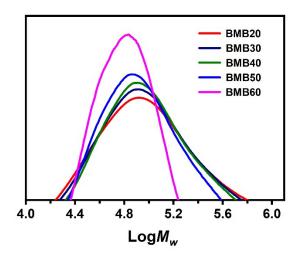


Fig. S4 GPC curves of BMBs.

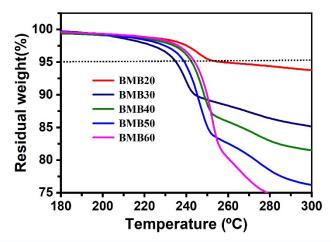


Fig. S5 The decomposition temperature of 5% mass loss of the BMBs.

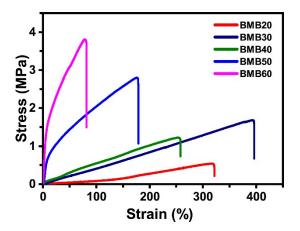


Fig. S6 Typical stress-strain curves of BMBs.

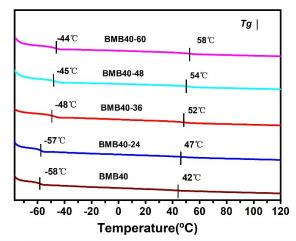


Fig. S7 DSC curves of BMB40 after hydrolysis modification.

Sample	DT5(°C)
BMB20	254
BMB30	235
BMB40	242
BMB50	239
BMB60	244

Table S1 DT5 of BMBs.