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Experimental Details

1. Materials

Chlorosulfonic acid (CSA) was purchased from Alfa Aesar.  Commercially available monomers, 

4,4'-bis(4-trifluorovinyloxy)biphenyl (BP) and 2,2'-bis(4-trifluorovinyloxy) biphenyl-1,1,1,3,3,3-

hexafluoropropane (6F) and their oligomers (BPo and 6Fo) were kindly donated by Tetramer 

Technologies, L.L.C.  6F monomer was purified by column with hexane before use.  All other 

chemicals and solvents were obtained from Aldrich and used as received unless stated otherwise.   

2. Instrumentations

1H and 19F NMR spectra were recorded on a JEOL Eclipse + 300 with 15s relaxation times (T1).  

Gel permeation chromatography (GPC) data were collected in CHCl3 from a Waters 2690 Alliance 

System with photodiode array detection.  Molecular weights were obtained using polystyrene as a 

standard.  Elemental microanalysis data for carbon, hydrogen, and fluorine were obtained from 

Atlantic Microlab, Inc. (Norcross, GA).  Thermal gravimetric analysis (TGA) was performed on a 

Mettler-Toledo 851 instrument in nitrogen and air at a heating rate of 10 °C/min up to 800 °C. 

Differential scanning calorimetry (DSC) analysis was performed on a TA Q1000 instrument in 

nitrogen at a heating rate of 10 °C/min up to 200 °C.  The glass transition temperature (Tg) of 

PFCB copolymers was obtained from a second heating cycle using TA Universal Analysis 2000 

software suite.  

3. Preparation and characterization of copolymers and sulfonated copolymers 

3.1.  Synthesis of PFCB1 (Copolymerization of BPo with 6Fo.)
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Synthesis of copolymer PFCB1 was conducted as follows: 5g of BP oligomer (BPo) and 5g of 6F 

oligomer (6Fo, Mn= 15,000 g/mol), 10 mL of diphenylether were added to three-neck 250 mL 

flask, equipped with a condenser, argon inlet and a mechanical stirrer.  The reaction mixture was 

slightly heated at 60 °C and the melted system was sparged with argon gas for 30 min.  The thermal 

step-growth cyclopolymerization was conducted at 140 °C for 24 h, 160 °C for 72 h, 180 °C for 

24 h, and 210 °C for 14 h under argon blanket.  The resulting viscous crude polymer was cool 

down and dissolved in tetrahydrofuran (THF).  The solution was precipitated from a large excess 

of methanol. The resulting off-white fibrous copolymer was extracted via soxhlet extractor with 

methanol for 24 h to remove diphenylether and unreacted monomers.  The copolymer was dried 

at 60 °C in vacuum for 24 h.  Yield: 60%, 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J = 9 Hz, Hf '), 

7.40‒7.30 (m, Hg'), 7.30‒7.20 (m, overlapped by He' and CDCl3), 7.07 (d, J = 6 Hz, Hh'); 19F NMR 

(283 MHz, CDCl3) δ ‒64 (s, Fd'), ‒126 ‒ (‒133) (m, the overlap of cyclobutyl–F6 on BP and 6F 

segments). Elemental Analysis: Found: C, 51.47; H, 1.89; F, 38.57.

3.2.  Synthesis of PFCB2 (Copolymerization of BPo with 6Fm.)  

A segmented copolymer PFCB2 of BP oligomer (BPo, Mn= 8,000 g/mol, 10g), 6F monomer (6Fm, 

10g), was prepared using the same synthesis and purification routine of polymer PFCB1.  Yield: 

80-85%, 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J = 9 Hz, Hf '), 7.40‒7.30 (m, Hg'), 7.30‒7.20 (m, 

overlapped by He' and CDCl3), 7.07 (d, J = 6 Hz, Hh'); 19F NMR (283 MHz, CDCl3) δ ‒64 (s, Fd'), 

‒126 ‒ (‒133) (m, the overlap of cyclobutyl–F6 on BP and 6F segments). Elemental Analysis: 

Found: C, 50.59; H, 1.94; F, 40.08.

3.3.  Synthesis of PFCB3 (Copolymerization of BPm with 6Fm.)  
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A copolymer of BPm and 6Fm was also synthesized without solvent, diphenylether, at 140 °C for 

24 h, 160 °C for 48 h, 180 °C for 24 h with argon inlet.  The resulting viscous copolymer was cool 

down and dissolved in THF.  The solution was precipitated in a methanol and the resulting off-

white fibrous copolymer was purified in a soxhlet extractor with methanol for 24 h.  The copolymer 

was dried at 60 °C in vacuum for 24 h.  Yield: 85%, 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J = 9 

Hz, Hf '), 7.40‒7.30 (m, Hg'), 7.30‒7.20 (m, overlapped by He' and CDCl3), 7.07 (d, J = 6 Hz, Hh'); 

19F NMR (283 MHz, CDCl3) δ ‒64 (s, Fd'), ‒126 ‒ (‒133) (m, the overlap of cyclobutyl–F6 on BP 

and 6F segments).  Elemental Analysis: Found: C, 50.27; H, 1.83; F, 40.23.

3.4.  Sulfonation of PFCB aryl ether copolymers, PFCB2 and PFCB3.

Five grams of PFCB2 aryl ether copolymer was dissolved in 100 mL of dichloromethane (DCM).  

The chlorosulfonic acid (CSA) was added at 36 °C internal temperature and then the mixture was 

stirred vigorously for 1 h at the same temperature.  The various degree of sulfonation was obtained 

by controlling the equivalent of chlorosulfonic acid (Sample No: weight ratio CSA 

(g)/Polymers(g), sPFCB2-1: 1.5/1, sPFCB2-2: 2.0/1, sPFCB2-3: 2.5/1, sPFCB3: 2.5/1).  The 

precipitate, being sPFCB, was recovered by decanting DCM into a crushed ice and then washed 

in cold and boiling deionized water several times to remove excess acids.  The supernatant has 

been removed and the final precipitate was recovered by filtration and dried in a vacuum oven for 

24 h at 60 °C.  Yield: 90-97%, 1H NMR (300 MHz, DMSO-d6) δ 8.05 (s, br, He), 7.70 (s, br, Hb), 

7.50 (s, br, Hd), 7.35 (s, br, Ha), 7.20 (s, br, Hc); 19F NMR (283 MHz, DMSO-d6) δ ‒63 (s, -CF3, 

6F), ‒94‒(‒140) (m, br, the overlap of cyclobutyl–F6 on BP and 6F).  
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Figure S1. 1H NMR (in CDCl3*, left) and 19F NMR (in CDCl3*, right) spectra of BP oligomer 
(BPo),  6F monomer (6Fm),  and  PFCB2 (BPo-co-6Fm) copolymer. 
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Figure S2. 19F NMR (in CDCl3) spectra of (a) PFCB1 (BPo-co-6Fo), (b) PFCB2 (BPo-co-6Fm), 
and (c) PFCB3 (BPm-co-6Fm) copolymers with their compositional ratios of the BP and 6F 
repeat unit in the copolymer chains.
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Scheme S3. Rationalization of copolymer types along with ratios of BP homo-linkage, 6F homo-
linkage, and BP-6F hetero-linkage: Block, Segmented, Random, and Alternating Copolymer. 
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Figure S4. TGA curves of PFCB copolymers. 
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Figure S5. DSC thermogram of PFCB copolymers.
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4. Computational Details

All calculations were performed using the Gaussian 09 software [1].  The transition state structures 

were located at the B3LYP/6-31G(d) level of theory at singlet state (singlet transition states were 

found to have lower energy than the triplet).  Presence of only one imaginary frequency was 

confirmed by frequency calculations and the vibrational frequencies were visualized using the 

Avogadro software [2] to ensure that the imaginary frequency motion corresponds to the Carbon-

Carbon (C2-C2) bond formation.  Finally, the single point energy calculations were performed on 

the B3LYP/6-31G(d) optimized transition state structures at five different levels of theory: 

B3LYP/6-31+G(d), B3LYP/6-311++G(d,p), mPW1PW91/6-31+G(d,p), ωB97X/cc-pVTZ and 

M062X/6-31+G(d,p).  The reactant, intermediate, and product structures were optimized using the 

aforementioned five methods.

Table S1.  Computational Data: Ea for S11, S12, and S22 with different DFT methods.

Ea(kcal/mol)

B3LYP/
6-31+G(d)

B3LYP/
6-311++G(d,p)

mPW1PW91/
6-31G+(d,p)

ωB97X/
cc-VTZ

M062X/
6-31+G(d,p)

S11
(S1 + S1)a 28.0 29.9 27.3 39.9 28.0

S12
(S1 + S2)b 28.1 30.0 27.5 40.1 28.5

S22
(S2 + S2)c 43.4 40.2 43.5 57.3 46.0

a Homo-dimerizations of S1 small molecule (BP-TFVE), b Co-dimerizations of S1 and S2 small 
molecules (BP-TFVE and 6F-TFVE), and c Homo-dimerizations of S2 small molecule (6F-TFVE). 
 S1 and S2 small molecule structures are illustrated in Scheme S4.
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Figure S7. Optimized transition state structures for S11, S12 and S22.

TS-S11-cis

 -1827.2395 Hartrees                                             

TS-S11-trans

 -1827.2392  Hartrees                                              

TS-S12-trans

-2540.6405 Hartrees                                             
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-3254.0177 Hartrees    
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Table S2.  Computational Data: Geometries of TS-S11, TS-S12 and TS-S22.

Bond Length (Å) Angle (°)

C1-C2
(C3-C4) C2-C3 C1-C2-C3

(C2-C3-C4) C1-C2-C3-C4

TS-S11-cis 1.42
(1.41) 1.78 111.6

(113.1) -179.5

TS-S11-trans 1.42
(1.41) 1.78 113.0

(111.8) -178.7

TS-S12-trans 1.42
(1.41) 1.79 113.0

(111.3) -179.2

TS-S22-cis 1.41
(1.42) 1.79 112.0

(111.6) -177.8

Table S3.  Computational Data: Energies (Hartrees) of Reactants, Products and Transition States 
at the B3LYP/6-31+G(d) level of theory.

Reactant TS Product

S11
(S1 + S1)a -1827.2836 -1827.2395 (cis)

-1827.2392 (trans)
-1827.3423 (cis)
-1827.3437 (trans)

S12
(S1 + S2)b -2540.6851 -2540.6405 (trans) -2540.7439 (cis)

-2540.7451 (trans)

S22
(S2 + S2)c -3254.0866 -3254.0177 (cis) -3254.1451 (cis)

-3254.1464 (trans)

a Homo-dimerization of S1 small molecule (BP-TFVE), b Co-dimerization of S1 and S2 small 
molecules (BP-TFVE and 6F-TFVE), and c Homo-dimerization of S2 small molecule (6F-TFVE).  
S1 and S2 small molecule structures are illustrated in Scheme S4.
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