Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is © The Royal Society of Chemistry 2024

Supporting Information to

BiTEMPS Methacrylate Dynamic Covalent Cross-linker

Providing Rapid Reprocessability and Extrudability of Covalent Adaptable Networks:

High-Yield Synthesis with Strong Selectivity for Disulfide Linkages

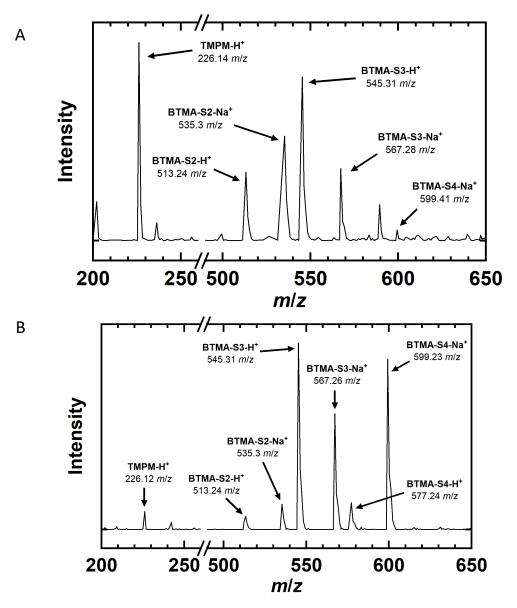
Tapas Debsharma,^{*a*,+} Nathan S. Purwanto,^{*b*,+} Logan M. Fenimore,^{*a*} Sarah Mitchell,^{*c*}

Jayme Kennedy,^c and John M. Torkelson^{*a,b,**}

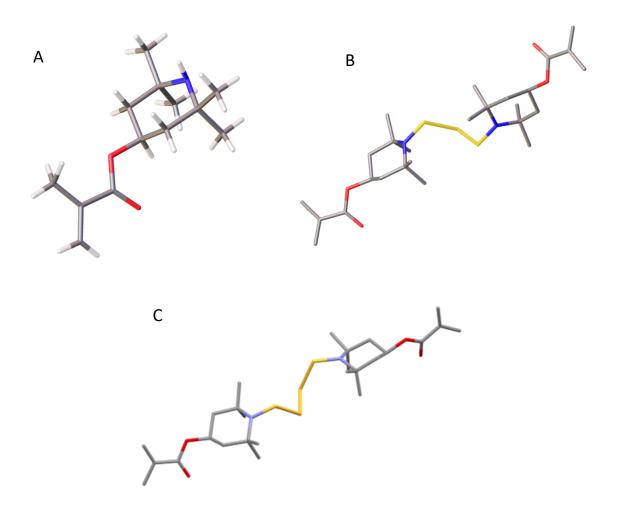
^aDepartment of Chemical and Biological Engineering,

^bDepartment of Materials Science and Engineering,

Northwestern University, Evanston, IL 60208, USA.


^cBraskem America, 550 Technology Drive, Pittsburgh, PA 15219, USA

⁺co-first authors


*Corresponding author, e-mail: j-torkelson@northwestern.edu

Scheme S1. Balanced equation for the synthesis of BTMA-S2.

Figure S1. (A/B) ESI-MS spectra of BTMA-S_n products from two different syntheses. In addition to the presence of disulfide (BTMA-S2), both spectra show the presence of protonated TMPM (TMPM-H⁺). One spectrum (B) clearly shows the presence of BTMA-S3 and BTMA-S4 while the other (A) clearly shows the presence of BTMA-S3, with a BTMA-S4 peak at slightly above noise level.

Figure S2. Unit cells of three crystals from BTMA-S_n samples measured in single-crystal X-ray crystallography: (A) unreacted TMPM, (B) BTMA-S3, (C) BTMA-S4. Grey, white, red, purple, and yellow represent carbon, hydrogen, oxygen, nitrogen, and sulfur atoms, respectively. Hydrogens were removed from BTMA-S3 and BTMA-S4 for clarity.

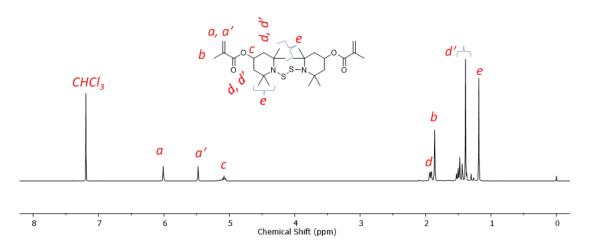
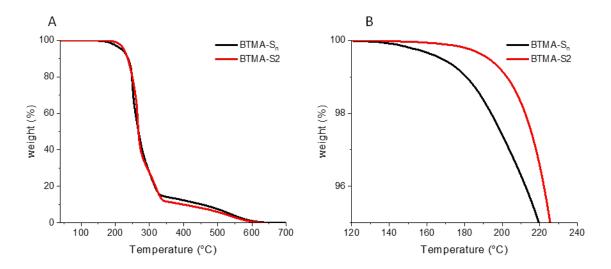



Figure S3. ¹H NMR (CDCl₃, 500 MHz) of crude BTMA-S2 synthesized in dry DCM at -70 °C.

Figure S4. TGA thermogram of BTMA-S_n and BTMA-S2: A) normalized weight as a function of temperature from 40 °C to 700 °C. B) Normalized weight from 100 % to 95 % as a function of temperature from 120 °C to 240 °C.

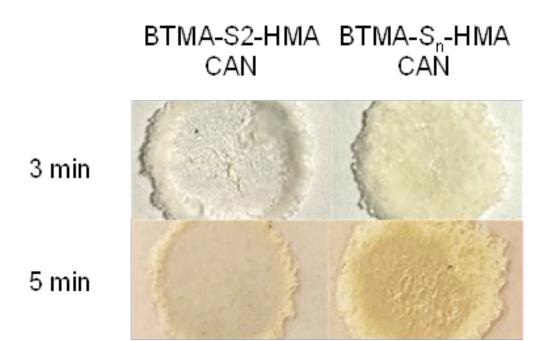


Figure S5. Images of compression-molded samples of BTMA-S2-HMA CAN and BTMA-S_n-HMA CAN at 130 $^{\circ}$ C and 10 MPa after 3 min and 5 min.

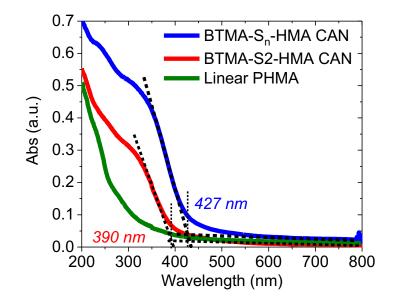


Figure S6. UV-Vis diffuse reflectance spectroscopy of BTMA-S2-HMA CAN and BTMA-S_n-HMA CAN materials.

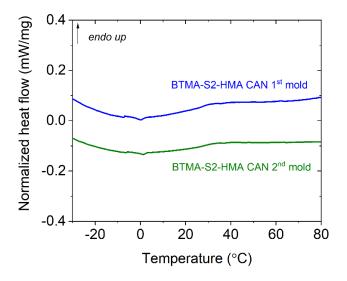
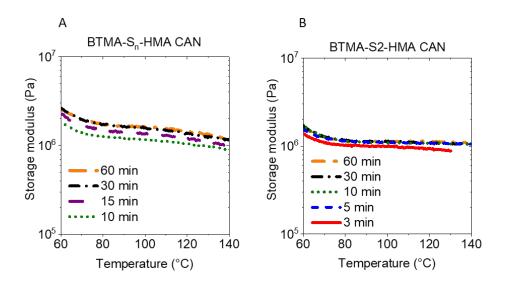
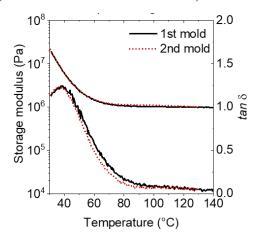




Figure S7. DSC thermograms of 1st and 2nd compression molded BTMA-S2-HMA CAN.

Figure S8. Storage modulus (in log scale) as a function of temperature of samples compression molded at different times: A) BTMA-S_n-HMA CAN and B) BTMA-S2-HMA CAN.

Figure S9. Storage modulus as a function of temperature for the 1st and 2nd reprocessed BTMA-S2-HMA CAN samples obtained after compression molding at 130 °C for 5 min.

Figure S10. Image of twin-screw extruder instrument used in this study (Thermo Scientific Haake MiniLab 3)

Table S1. Storage modulus (*E*') as a function of temperature for reprocessed BTMA-S2-HMA CAN and BTMA-S_n-HMA CAN samples obtained from compression molding at 130 °C for 60 min.

E' (MPa)	90 °C	100 °C	110 °C	120 °C	130 °C	140 °C
BTMA-S _n -HMA CAN (1 st mold)	1.66 ± 0.12	$\begin{array}{c} 1.62 \pm \\ 0.04 \end{array}$	$\begin{array}{c} 1.56 \pm \\ 0.06 \end{array}$	$\begin{array}{c} 1.48 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 1.33 \pm \\ 0.07 \end{array}$	$\begin{array}{c} 1.23 \pm \\ 0.10 \end{array}$
BTMA-S _n -HMA CAN (2 nd mold)	$\begin{array}{c} 1.68 \pm \\ 0.12 \end{array}$	$\begin{array}{c} 1.66 \pm \\ 0.07 \end{array}$	$\begin{array}{c} 1.57 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 1.52 \pm \\ 0.12 \end{array}$	$\begin{array}{c} 1.38 \pm \\ 0.09 \end{array}$	$\begin{array}{c} 1.28 \pm \\ 0.09 \end{array}$
BTMA-S2-HMA CAN (1 st mold)	$\begin{array}{c} 1.11 \pm \\ 0.05 \end{array}$	1.11 ± 0.04	$\begin{array}{c} 1.12 \pm \\ 0.08 \end{array}$	$\begin{array}{c} 1.12 \pm \\ 0.09 \end{array}$	$\begin{array}{c} 1.10 \pm \\ 0.06 \end{array}$	$\begin{array}{c} 1.08 \pm \\ 0.10 \end{array}$
BTMA-S2-HMA CAN (2 nd mold)	$\begin{array}{c} 1.09 \pm \\ 0.06 \end{array}$	$\begin{array}{c} 1.10 \pm \\ 0.11 \end{array}$	$\begin{array}{c} 1.10 \pm \\ 0.14 \end{array}$	1.11 ± 0.09	$\begin{array}{c} 1.10 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 1.07 \pm \\ 0.10 \end{array}$
BTMA-S2-HMA CAN (extrudate)	$\begin{array}{c} 1.11 \\ \pm \\ 0.05 \end{array}$	1.11 ± 0.04	$\begin{array}{c} 1.14 \pm \\ 0.08 \end{array}$	$\begin{array}{c} 1.18 \pm \\ 0.09 \end{array}$	$\begin{array}{c} 1.20 \pm \\ 0.06 \end{array}$	$\begin{array}{c} 1.25 \pm \\ 0.10 \end{array}$

Table S2. Characteristic relaxation times (τ^*), stretching exponent (β), average relaxation times ($\langle \tau \rangle$), and Arrhenius activation energy (E_a) values from stress relaxation measurements of 1st compression molded samples of BTMA-S2-HMA CAN and BTMA-S_n-HMA CAN materials at different temperatures.

Sample	Т (°С)	τ* (s)	β	$<_{\tau}>$ (s)	R^2	E _a (kJ/mol)	R^2
BTMA-S2-HMA CAN	130	128	0.79	146	0.999	102 ± 4	0.999
	140	57	0.79	65	0.989		
	150	29	0.82	32	0.997		
	160	15	0.81	16	0.998		
BTMA-S _n -HMA CAN	120	1090	0.72	1350	0.999	107 ± 3	0.997
	130	422	0.73	514	0.998		
	140	168	0.79	192	0.997		
	150	62	0.91	67	0.997		