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1 Singularities in the Meyer-Lowry equation (Eq. 4): 

Solutions for specific situations: 

When r1 + r2 = 2 (r1, r2 ≠ 1): 

As the sum of r1 and r2 approaches 2 from below (from above), 𝛿 =
1−𝑟2

2−𝑟1−𝑟2
 increases (decreases) 

without bound and (𝑓10−𝛿

𝑓1−𝛿
) approaches 1. 
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When r1 = 1, r2 ≠ 1 : 

Let 𝑟1 = 1 + 𝜖 
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When r2 = 1, r1 ≠ 1 : 
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2 Indexing issue: 

In reference 25, if we switch what is monomer 1 to relabel as monomer 2, but we 

properly take the errors in F into account (take the same absolute error in both cases as 

being 10% from FVAC values): 

Vac-MDO, 10% error in FVAC: rMDO=1.012,  rVAC=  1.721 

MDO-Vac, error in FMDO  =abs error FVAC: rMDO=1.012,  rVAC=1.721 

 

 

 

 

 

 

 

Figure SI-1 Monomer 1 = MDO, Correct Joint Confidence Intervals as calculated with 

Contour, compare shape and size to Figure 2 in the main text (approximate JCIs).                                                         

 

 

 

 

 

 

 

 

Figure SI-2 Monomer 1 = VAC. Correct Joint Confidence Intervals as calculated with 

Contour, compare shape and size to Figure 2 in the main text (approximate JCIs). 



3 Simulation of Fineman-Ross, Kelen-Tüdős and NLLS estimation of reactivity 

ratios from noisy data (Figure 3): 

Figure 3 shows the results of Fineman-Ross (FR), Kelen-Tüdős (KT) and nonlinear least 

squares (NLLS) estimation of reactivity ratios applied to simulated low conversion 

copolymer composition data at reactivity ratios of r1 = r2 = 0.5 (similar to a styrene-

methyl methacrylate copolymerization) and r1 = 10, r2 = 0.1 (similar to a methyl acrylate-

vinyl acetate copolymerization). 

For each pair of reactivity ratios, a set of monomer feed-instantaneous composition (f-

F) data was generated using the Mayo-Lewis equation (1). The following values were 

used: 

Table SI-1 

r1 = r2 = 0.5 r1 = 10, r2 = 0.1 

f F f F 

0.2 0.2727 0.04 0.2941 

0.8 0.7272 0.21 0.8312 

0.33 0.3821 0.33 0.7266 

0.67 0.6179 0.67 0.9531 

 

Four data points were generated for each pair of reactivity ratios, consisting of points at 

f1 = 0.33 and 0.67, and the Tidwell-Mortimer monomer feeds for each pair of reactivity 

ratios (f1 = 0.2 and 0.8 for r1 = r2 = 0.5; f1 = 0.04 and 0.21 for r1 = 10, r2 = 0.1). 

A macro-enabled Excel worksheet (available from SH) was then used to calculate 100 

estimates of reactivity ratios using FR, KT or NLLS estimation methods. For each 

calculation, normally distributed random noise with a standard deviation of 0.01 was 

applied to the F values. The f values were assumed to be free of error. NLLS estimation 

was iterated 10 times, using the known values of r1 and r2 as initial estimates. In 

addition to the graphs shown in Figure 3, the following statistics were obtained. 

 

 



Table SI-2 

r1 = 0.5, r2 =0.5 

 
FR KT NLLS 

 
r1 r2 r1 r2 r1 r2 

average 0.4991 0.5003 0.4992 0.5008 0.4994 0.5012 

std dev 0.0398 0.0486 0.0284 0.0313 0.0277 0.0312 

cov(r1,r2) 0.00152 0.000468 0.000454 

correlation 

coefficient 

0.791 0.527 0.525 

 

Table SI-3 

r1 = 10, r2 = 0.1 

 
FR KT NLLS 

 
r1 r2 r1 r2 r1 r2 

average 10.10 0.1039 9.894 0.0975 9.851 0.0989 

std dev 2.952 0.0712 1.760 0.0228 0.538 0.0071 

cov(r1,r2) 0.205 0.0369 0.00146 

correlation 

coefficient 

0.976 0.919 0.386 

 

All methods give, on average, results for r1 and r2 that are close to the underlying values. 

However, the scatter of the individual estimates, as measured by the standard deviation, varies 

depending on the method. Fineman-Ross is consistently less accurate than Kelen-Tüdős and 

NLLS. While for r1 = r2 = 0.5, there is little difference in accuracy between the KT and NLLS 

methods for r1 = 10, r2 = 0.1, NLLS gives significantly more accurate estimates of the reactivity 

ratios. 

The Visual Basic code used to generate the estimates of r1 and r2 is given below: 

Option Explicit 

 

Dim r1 As Single 

Dim r2 As Single 



Const N As Integer = 4 

Const sd As Single = 0.01 

Dim f1(N) As Single 

Dim BigF1(N) As Single 

Dim NoisyBigF1(N) As Single 

Dim eps(N) As Single 

Dim G(N) As Single 

Dim H(N) As Single 

Dim SumG As Single 

Dim sumH2 As Single 

Dim sumH As Single 

Dim sumGH As Single 

Dim alpha As Single 

Dim MinH As Single 

Dim MaxH As Single 

Dim mu(N) As Single 

Dim eta(N) As Single 

Dim summu As Single 

Dim sumeta As Single 

Dim summu2 As Single 

Dim sumetamu As Single 

Dim r1FR(100) As Single 

Dim r2FR(100) As Single 

Dim r1KT(100) As Single 

Dim r2KT(100) As Single 

Dim r1guess As Single 

Dim r2guess As Single 

Dim BigF1hat(N) As Single 

Dim residual(N) As Single 

Dim dF1dr1(N) As Single 

Dim dF1dr2(N) As Single 

Dim A(1, 1) As Single 

Dim B(1) As Single 

Dim SSR As Single 

Dim D As Single 

Dim i As Integer 

Dim j As Integer 

Dim k As Integer 

 

Private Sub CommandButton1_Click() 

r1 = Cells(1, 2).Value 

r2 = Cells(1, 4).Value 

For i = 1 To N 

    f1(i) = Cells(3 + i, 1).Value 

    BigF1(i) = Cells(3 + i, 2).Value 

Next i 

 

For i = 1 To 100 

    SumG = 0 

    sumH2 = 0 

    sumH = 0 

    sumGH = 0 

    For j = 1 To N 

        eps(j) = sd * Application.WorksheetFunction.Norm_S_Inv(Rnd()) 

        NoisyBigF1(j) = BigF1(j) + eps(j) 

        If NoisyBigF1(j) < 0.001 Then NoisyBigF1(j) = 0.001 

        If NoisyBigF1(j) > 0.999 Then NoisyBigF1(j) = 0.999 

        G(j) = f1(j) * (2 * NoisyBigF1(j) - 1) / (1 - f1(j)) / 

NoisyBigF1(j) 

        H(j) = f1(j) ^ 2 * (1 - NoisyBigF1(j)) / (1 - f1(j)) ^ 2 / 

NoisyBigF1(j) 



        SumG = SumG + G(j) 

        sumH2 = sumH2 + H(j) ^ 2 

        sumH = sumH + H(j) 

        sumGH = sumGH + G(j) * H(j) 

    Next j 

    MinH = H(1) 

    MaxH = H(1) 

    For j = 2 To N 

        If H(j) < MinH Then MinH = H(j) 

        If H(j) > MaxH Then MaxH = H(j) 

    Next j 

    alpha = (MinH * MaxH) ^ 0.5 

    sumeta = 0 

    summu2 = 0 

    summu = 0 

    sumetamu = 0 

    For j = 1 To N 

        eta(j) = G(j) / (alpha + H(j)) 

        mu(j) = H(j) / (alpha + H(j)) 

        sumeta = sumeta + eta(j) 

        summu2 = summu2 + mu(j) ^ 2 

        summu = summu + mu(j) 

        sumetamu = sumetamu + eta(j) * mu(j) 

    Next j 

    r1FR(i) = (N * sumGH - SumG * sumH) / (N * sumH2 - sumH ^ 2) 

    r2FR(i) = -(sumH2 * SumG - sumH * sumGH) / (N * sumH2 - sumH ^ 2) 

    r1KT(i) = (N * sumetamu - sumeta * summu) / (N * summu2 - summu ^ 2) + 

(summu2 * sumeta - summu * sumetamu) / (N * summu2 - summu ^ 2) 

    r2KT(i) = -alpha * (summu2 * sumeta - summu * sumetamu) / (N * summu2 - 

summu ^ 2) 

    Cells(i + 1, 9).Value = r1FR(i) 

    Cells(i + 1, 10).Value = r2FR(i) 

    Cells(i + 1, 11).Value = r1KT(i) 

    Cells(i + 1, 12).Value = r2KT(i) 

'NLLS 

    r1guess = r1 

    r2guess = r2 

    For k = 1 To 10 

        A(0, 0) = 0 

        A(0, 1) = 0 

        A(1, 1) = 0 

        B(0) = 0 

        B(1) = 0 

        SSR = 0 

        For j = 1 To N 

            BigF1hat(j) = (r1guess * f1(j) ^ 2 + f1(j) * (1 - f1(j))) / 

(r1guess * f1(j) ^ 2 + 2 * f1(j) * (1 - f1(j)) + r2guess * (1 - f1(j)) ^ 2) 

            residual(j) = NoisyBigF1(j) - BigF1hat(j) 

            dF1dr1(j) = (1 - f1(j)) * f1(j) ^ 2 * (r2guess * (1 - f1(j)) + 

f1(j)) / (r1guess * f1(j) ^ 2 + 2 * f1(j) * (1 - f1(j)) + r2guess * (1 - 

f1(j)) ^ 2) ^ 2 

            dF1dr2(j) = -(1 - f1(j)) ^ 2 * f1(j) * (r1guess * f1(j) + (1 - 

f1(j))) / (r1guess * f1(j) ^ 2 + 2 * f1(j) * (1 - f1(j)) + r2guess * (1 - 

f1(j)) ^ 2) ^ 2 

            A(0, 0) = A(0, 0) + dF1dr1(j) ^ 2 

            A(0, 1) = A(0, 1) + dF1dr1(j) * dF1dr2(j) 

            A(1, 1) = A(1, 1) + dF1dr2(j) ^ 2 

            B(0) = B(0) + residual(j) * dF1dr1(j) 

            B(1) = B(1) + residual(j) * dF1dr2(j) 

            SSR = SSR + residual(j) ^ 2 

        Next j 



        D = A(1, 1) * A(0, 0) - A(0, 1) ^ 2 

        r1guess = r1guess + A(1, 1) / D * B(0) - A(0, 1) / D * B(1) 

        r2guess = r2guess + A(0, 0) / D * B(1) - A(0, 1) / D * B(0) 

    Next k 

    Cells(i + 1, 13).Value = r1guess 

    Cells(i + 1, 14).Value = r2guess 

Next i 

End Sub 

 
4 Copolymerization examples 

4a Simulated dataset for IUPAC method testing 

 

Table SI-4 r1=  0.4 and r2= 0.6, random noise of ±0.005 on X and F added. Obtained with 

Contour, estimated errors and error in F constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure SI-3 Corresponding 95% joint confidence interval for r1=  0.4 and r2= 0.6, random 

noise of ±0.005 on X and F added. 

 

 

 

 

 

 

 

 

 

 

0.594

0.596

0.598

0.6

0.602

0.604

0.606

0.608

0.394 0.396 0.398 0.4 0.402 0.404 0.406

r 2

r1

JCI 95%



4b Experimental dataset APSA-VIM 

Table SI-5 Full APSA-VIM data set with absolute error constant in F (0.03). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4-c Recalculation with f10=0.05 and f10=0.1 taken out: 

Table SI-6 Partial APSA-VIM data set (f10=0.05 and f10=0.1) taken out with absolute error 

constant in F (0.03). 

 

5 Comparison of analysis of X vs f data and the same data converted to f0-X-F data. 

A simulated set of X vs f is used with original reactivity ratios of 0.3 and 2 and some 

random noise added. Initial monomer fraction f10=0.4. VSSS method with individual 

point weighting, in both cases with absolute error in X constant ±0.005, for second case 

also error in f of ±0.005 assumed, error propagation according to Equation 8 in the 

paper, leading to variable errors in F. 



 

Table SI-7 Simulated set of X vs f with original reactivity ratios of 0.3 and 2 and random 

noise added. Initial monomer fraction f10=0.4. 

         f10           f         X   Delta X Delta f         f10        X                F Delta F 

0.4 0.45 0.246 0.005 0.005 0.4 0.246 0.247 0.01587 

0.4 0.5 0.419 0.005 0.005 0.4 0.419 0.261 0.00750 

0.4 0.55 0.546 0.005 0.005 0.4 0.546 0.275 0.00486 

0.4 0.6 0.641 0.005 0.005 0.4 0.641 0.288 0.00371 

0.4 0.65 0.714 0.005 0.005 0.4 0.714 0.300 0.00317 

0.4 0.7 0.771 0.005 0.005 0.4 0.771 0.311 0.00293 

0.4 0.75 0.818 0.005 0.005 0.4 0.818 0.322 0.00284 

0.4 0.8 0.856 0.005 0.005 0.4 0.856 0.333 0.00286 

0.4 0.85 0.888 0.005 0.005 0.4 0.888 0.343 0.00292 

0.4 0.9 0.917 0.005 0.005 0.4 0.917 0.355 0.00301 

0.4 0.95 0.945 0.005 0.005 0.4 0.945 0.368 0.00309 

 

Table SI-8 Fit with the original f10-f-X data, absolute error in X constant: 

 

 



 

Table SI-9 Data of table SI-5.2 converted to f10-X-F data where the error in F is obtained 

through error propagation. Fit with individual error per point used in weighing. 

Fit with the converted data, individual errors in F used as weighing factor:  

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



-6 Effects of systematic errors 

 

 

 

 

 

 

 

 

 

Figure SI-4 For the data in Figure 7 (r1=0.4, r2=0.6, modification 1) the residuals space is 

showing clear systematic trends in the residues. 

We now look at the effect of systematic error on a copolymerization with substantial 

composition drift, given by reactivity ratios r1=13.0 and r2=0.30, where we first added a random 

error of ±0.005 to X and F. We first of all look at the residuals, but without systematic errors in 

f10. 

 

 

 

 

 

 

 

 

Figure SI-5 No systematic errors in f10, r1=13, r2=0.3, residuals space, red is positive, blue 

negative and black almost zero residues (less than 10% of the estimated errors). 



As expected we do not see structure in the residuals, as it should be if no systematic errors are 

present and the terminal model is adequate. 

Now we add a systematic error by alternatingly adding and subtracting 0.01 to f10 (systematic 

error 1 is + - + -, systematic error 2 is - + - +). 

 

 

 

 

 

 

 

Figure SI-6 residuals space for a systematic error in f10 (systematic 1) 

We now see again clear patterns in the residuals. 

 

 

 

 

 



 

Figure SI-7 95% JCI’s obtained through equation 11 for reactivity ratios 13 and 0.3 (red dot), 

with no systematic errors but with random noise (orange JCI) and with systematic errors 1 

(green) and systematic errors 2 (blue). 

7 Effect of changes in f10 value 

In a dataset with r1=0.4 and r2=0.6 the correct f10 value is 0.5. When only changing the f10 value 

(introducing a systematic error in the data) the new reactivity ratios are shown below. 

 

Figure SI-8. The results are very sensitive for the value of f10, here shown for simulated  X vs f 
data with random noise of ±0.005 on X, r1=0.4 (blue), r2=0.6 (orange) and the true f10=0.5. Sum of 
Squares of Residuals (SSR) shown in green. 
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