## **Supporting Information**

## Self-healing and mechanically robust poly(thiourea-disulfide) elastomers based on synergistic tri-dynamic bondings

Kai Chen, Haiming Xie,\* and Jun Liu\*

National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, China

## Table of Contents

| 1. <sup>1</sup> H NMR specctrum of PTUS <sub>1</sub>                       | S2     |
|----------------------------------------------------------------------------|--------|
| 2. <sup>1</sup> H NMR specctrum of PTUS <sub>2</sub>                       | S2     |
| 3. <sup>1</sup> H NMR specctrum of PTUS <sub>3</sub>                       | S3     |
| 4. <sup>1</sup> H NMR specctrum of PTUS <sub>4</sub>                       | S3     |
| 5. <sup>1</sup> H NMR specctrum of PTUS <sub>5</sub>                       | S4     |
| 6. <sup>1</sup> H NMR specctrum of PTUS <sub>6</sub>                       | S4     |
| 7. <sup>1</sup> H NMR specctrum of PTUS <sub>7</sub>                       | S5     |
| 8. <sup>1</sup> H NMR specctrum of PTUS <sub>8</sub>                       | S5     |
| 9. XPS spectra of PTUS <sub>4</sub> and PTUS <sub>8</sub>                  | S6     |
| 10. XRD curve of $PTUS_8$                                                  | S6     |
| 11. Table S1. Summary of mechanical properties of PTUSx                    | S7     |
| 12. Table S2. Summary of self-healing and mechanical properties of polyure | ethane |
| elastomers reported in the literatures                                     | S7     |
| 13. Synthesis of PTU and PUS                                               | S7     |
| 14. References                                                             | S8     |
|                                                                            |        |



Fig. S2 <sup>1</sup>H NMR of PTUS<sub>2</sub>.





Fig. S6 <sup>1</sup>H NMR of PTUS<sub>6</sub>.



S5



Fig. S9 XPS spectra of  $PTUS_4$  and  $PTUS_8$ : (a) XPS survey scan of  $PTUS_4$ , (b) C-N of  $PTUS_4$ , (c) XPS survey scan of  $PTUS_8$ , (b) C-N of  $PTUS_8$ .



Fig. S10 XRD curve of PTUS<sub>8</sub>.

| Samples           | Tensile strength | Elongation at break | Young's modulus | Toughness             |
|-------------------|------------------|---------------------|-----------------|-----------------------|
|                   | (MPa)            | (%)                 | (MPa)           | (MJ m <sup>-3</sup> ) |
| PTUS <sub>4</sub> | 0.33             | 167                 | 1.37            | 47.17                 |
| PTUS <sub>5</sub> | 0.12             | 114                 | 0.70            | 4.54                  |
| PTUS <sub>7</sub> | 2.55             | 767                 | 3.57            | 507.05                |
| PTUS <sub>8</sub> | 12.9             | 800                 | 26.7            | 884.6                 |

Table S1. Summary of mechanical properties of PTUSx.

Table S2. Summary of self-healing and mechanical properties of polyurethane elastomers reported in the literatures.

|    | Tensile strength | Healing efficiency | Elongation at break | Dof       |  |
|----|------------------|--------------------|---------------------|-----------|--|
|    | (MPa)            | (%)                | (%)                 | Kel.      |  |
| 1  | 12.9             | 96 (48h)           | 800                 | This work |  |
| 2  | 4.54             | 59.1 (24h)         | 1586                | 1         |  |
| 3  | 0.1              | 93 (2h)            | 14000               | 2         |  |
| 4  | 0.22             | 86 (48h)           | 1880                | 3         |  |
| .5 | 24.81            | 93 (7h)            | 860                 | 4         |  |
| 6  | 16               | 100 (1h)           | 126                 | 5         |  |
| 7  | 40               | 97 (24h)           | 1072                | 6         |  |
| 8  | 0.93             | 87 (12h)           | 300                 | 7         |  |
| 9  | 25               | 86.4 (6h/70 °C)    | 1600                | 8         |  |

Synthesis of PTU:



The synthesis process of PTU: PDIT (384.8 mg, 2.0 mmol) was slowly added to a Jeffamine solution (3.8 g, 2.0 mmol in 5 mL DMF) under  $N_2$  atmosphere. After stirred at 60 °C for 48 h, the mixture was cooled to room temperature and slowly dropped into ice ethyl ether (200 mL). The precipitate was collected and dissolved with dichloromethane (DCM, 50 mL) and then reprecipitated twice in ice ethyl ether. The final product was dried in an oven at 80 °C for 24 h to obtain PTU.

Synthesis of PUS:



The synthesis process of PUS: ADS (745.1 mg, 3.0 mmol) and Jeffamine (1.9 g, 1.0 mmol) were firstly dissolved in acetone (15 mL) in a 100 mL three-necked flask. Next, 1,4-phenylene diisocyanate (640.5 mg, 4.0 mmol) was added to the three-necked flask under  $N_2$  atmosphere. The mixture was stirred at 40 °C for 48 h. Finally, the solution was casted into a teflon mold and volatilized at 60 °C for 24 h. After vacuum drying at 60 °C for 12 h to obtain PUS.

## References

1. L. Lu, J. Xu, J. Li, Y. Xing, Z. Zhou, F. Zhang, *Macromolecules*, 2024, 57, 2100–2109.

- 2. H. Guo, Y. Han, W. Zhao, J. Yang, L. Zhang, Nat. commun., 2020, 11, 2037.
- 3. C. H. Li, C. Wang, C. Keplinger, J. L. Zuo, L. H. Jin, Y. Sun, P. Zheng, Y. Cao, F.
- Lissel, C. Linder, X. Z. You, Z. N. Bao, Nat. Chem., 2016, 8, 618-624.
- X. Xun, X. Zhao, Q. Li, B. Zhao, T. Ouyang, Z. Zhang, Z. Kang, Q. Liao, Y. Zhang, ACS Nano, 2021, 15, 20656–20665.
- 5. J. H. Xu, J. Y. Chen, Y. N. Zhang, T. Liu, J. J. Fu, Angew. Chem., Int. Ed. 2021, 60, 7947–7955.

- 6. M. G. Zhang, Y. N. Wang, M. H. Yang, L. Z. Sun, G. Zhao, P. F. Feng, N. Li, C.
- Liu, J. Xu, X. G. Jian, Y. S. Chen, *Macromolecules*, 2024, 57, 3047–3057.
- 7. H. Ying, Y. Zhang, J. Cheng, Nat. commun., 2014, 5, 3218.
- 8. Y. Lai, X. Kuang, P. Zhu, M. Huang, X. Dong, D. Wang, Adv. Mater., 2018, 30, 1802556