Copolymerization of tricyclopentadiene and ethylene catalyzed by

thiophene-fused-heterocyclic cyclopentadienyl scandium complexes

Lingyan Huang,^{#a,b} Shunan Zhang,^{#b,c} Chunji Wu,^b Pan He,^{*a,d} and Baoli Wang^{*b,c}

^aSchool of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.

^bState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

^cSchool of Applied Chemistry and Engineering, University of Science and Technology

of China, Hefei 230026, China.

^dSchool of Material Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.

[#]L.H. and S.Z. contributed equally to this work.

Contents

Scheme S1. Synthetic of complex 3
Fig. S1 ¹ H NMR spectrum of 2,5,6-Me ₃ -4-SiMe ₃ -cyclopenta[<i>b</i>]thiophene (500 MHz, C ₆ D ₆ , 25 °C).
Fig. S2 ¹³ C NMR spectrum of 2,5,6-Me ₃ -4-SiMe ₃ -cyclopenta[b]thiophene (500 MHz, C ₆ D ₆ , 25 °C).
Fig. S3 ¹ H NMR spectrum of complex 3 (500 MHz, C ₆ D ₆ , 25 °C) 5
Fig. S4 ¹³ C NMR spectrum of complex 3 (500 MHz, C ₆ D ₆ , 25 °C)5
Fig. S5 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry 1)6
Fig. S6 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry 2)6
Fig. S7 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry 3)7
Fig. S8 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry 4)7
Fig. S9 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry 5)8
Fig. S10 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry 6)8
Fig. S11 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry 7)9
Fig. S12 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry 8)9
Fig. S13 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry 9)10
Fig. S14 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry 10).
Fig. S15 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, C ₂ D ₂ Cl ₄ , 25 °C, Table 1, entry 11).
Fig. S16 ¹ H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry 12).

Fig. S17 ¹³ C NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry	6).12
Fig. S18 ¹³ C NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Table 1, entry	y 12).
	12
Fig. S19 ¹ H- ¹ H COSY NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Ta	ble 1,
entry 6)	13
Fig. S20 ¹ H- ¹³ C HSQC NMR spectrum of TCPD/E copolymer (500 MHz, CDCl ₃ , 25 °C, Ta	ble 1,
entry 6)	13
Table S1. Chemical shift assignment of TCPD/E copolymers	14
Fig. S21 ¹ H NMR spectrum of TCPD/E copolymers before hydrogenation (A, 500 MHz, C	DCl ₃
25 °C, Table 1, entry 1) and after hydrogenation (B, 500 MHz, C ₂ D ₂ Cl ₄ , 25 °C, Table 2, ent	ry 1).
	15
Fig. S22 ¹ H NMR spectrum of TCPD/E copolymers before hydrogenation (A, 500 MHz, C	DCl ₃
25 °C, Table 1, entry 6) and after hydrogenation (B , 500 MHz, C ₂ D ₂ Cl ₄ , 25 °C, Table 2, ent	ry 2).
	16
Fig. S23 ¹ H NMR spectrum of TCPD/E copolymers before hydrogenation (A, 500 MHz, C	DCl ₃
25 °C, Table 1, entry 9) and after hydrogenation (B , 500 MHz, C ₂ D ₂ Cl ₄ , 25 °C, Table 2, ent	ry 3).
	17
Fig. S24 DSC curve of the TCPD/E copolymer (Table 1, entry 1)	17
Fig. S25 DSC curve of the TCPD/E copolymer (Table 1, entry 2).	18
Fig. S26 DSC curve of the TCPD/E copolymer (Table 1, entry 3).	18
Fig. S27 DSC curve of the TCPD/E copolymer (Table 1, entry 4)	19
Fig. S28 DSC curve of the TCPD/E copolymer (Table 1, entry 5)	19
Fig. S29 DSC curve of the TCPD/E copolymer (Table 1, entry 6)	20
Fig. S30 DSC curve of the TCPD/E copolymer (Table 1, entry 7)	20
Fig. S31 DSC curve of the TCPD/E copolymer (Table 1, entry 8)	21
Fig. S32 DSC curve of the TCPD/E copolymer (Table 1, entry 9)	21
Fig. S33 DSC curve of the TCPD/E copolymer (Table 1, entry 10)	22
Fig. S34 DSC curve of the TCPD/E copolymer (Table 1, entry 11)	22
Fig. S35 DSC curve of the TCPD/E copolymer (Table 1, entry 12)	23
Fig. S36 DSC curve of the hydrogenated TCPD/E copolymer (Table 2, entry 1).	23
Fig. S37 DSC curve of the hydrogenated TCPD/E copolymer (Table 2, entry 2).	24
Fig. S38 DSC curve of the hydrogenated TCPD/E copolymer (Table 2, entry 3).	24
Fig. S39 GPC curve of the TCPD/E copolymer (Table 1, entry 1).	25
Fig. S40 GPC curve of the TCPD/E copolymer (Table 1, entry 2).	25
Fig. S41 GPC curve of the TCPD/E copolymer (Table 1, entry 3).	25
Fig. S42 GPC curve of the TCPD/E copolymer (Table 1, entry 4).	26
Fig. S43 GPC curve of the TCPD/E copolymer (Table 1, entry 5)	26
Fig. S44 GPC curve of the TCPD/E copolymer (Table 1, entry 6)	26
Fig. S45 GPC curve of the TCPD/E copolymer (Table 1, entry 7)	27
Fig. S46 GPC curve of the TCPD/E copolymer (Table 1, entry 8)	27
Fig. S47 GPC curve of the TCPD/E copolymer (Table 1. entry 9)	27
Fig. S48 GPC curve of the TCPD/E copolymer (Table 1. entry 10).	28
Fig. S49 GPC curve of the TCPD/E copolymer (Table 1, entry 11)	28
Fig. S50 GPC curve of the TCPD/E copolymer (Table 1, entry 12).	28

Fig.	S51 GPC	C curve of the hydrogenated TCPD/E copolymer (Table 2, entry 1)	29
Fig.	S52 GPC	C curve of the hydrogenated TCPD/E copolymer (Table 2, entry 2)	29
Fig.	S53 GPC	C curve of the hydrogenated TCPD/E copolymer (Table 2, entry 3)	29

Synthetic route of complex 3

Scheme S1. Synthetic of complex 3.

Synthesis of similar ligand and complexes was described in literatures.^{1,2}

HL¹: MeLi (15.0 mL, 24.0 mmol, 1.6 M in diethyl ether) was added dropwise to a solution of 4,5-dihydro-2,5-dimethylcyclopenta[*b*]thiophen-6-one (3.01 g, 19.9 mmol) in diethyl ether 40.0 mL at -78° C. Then the temperature increased to room temperature and the mixture was stirred overnight. Water (20.0 mL), ethyl acetate (40.0 mL), and aqueous HCl (2 N, 40.0 mL) were successively added. The mixture was stirred for 10 mins, the organic phase was collected and then aqueous saturated NaHCO₃ solution (100.0 mL) was added. The collected organic phase was dried with anhydrous MgSO₄ and solvent was removed under vacuum to give the residue which was purified by column chromatography on silica gel eluting with hexane and ethyl acetate (v/v, 20:1). The product was obtained as a yellowish oil (2.08 g, 64%). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 6.66 (s, 1H, Cp'-H), 3.42 (s, 2H, Cp'-H), 2.03 (s, 3H, S-C-Me), 1.08 (s, 6H, Me₂).

HL²: "BuLi (4.2 mL, 10.5 mmol, 2.5 M in diethyl ether) was added dropwise to a solution of HL¹ (2,5,6-trimethyl-4*H*-cyclopenta[*b*]thiophene) (1.64 g, 10.0 mmol) in diethyl ether 40.0 mL at -78 °C. The color of the reaction system changed to light yellow, and the reaction was carried out at -40 °C for 30 mins. Then the newly distilled (CH₃)₃SiCl (1.08 g, 10.00 mmol) was added to the lithium salt solution with a syringe and reacted at this temperature for 24 h. At the end of the reaction, the solvent was drained, add hexane extraction, filtered, and hexane was drained to obtain light brown pure HL² (2,5,6-Me₃-4-SiMe₃-cyclopenta[*b*]thiophene) (1.89 g, 81%). ¹H NMR (500 MHz, CDCl₃, 25 °C): δ 6.66 (s, 1H, Cp'-H), 3.23 (s, 1H, Cp'-H), 2.55 (s, 3H, S-C-Me), 2.07 (s, 6H, Me₂), 0.02 (s, 9H, SiMe₃). ¹³C NMR (125 MHz, CDCl₃, 25 °C): δ 151.3 (s, 1C, Cp'-C), 140.4 (s, 1C, Cp'-C), 138.8 (s, 1C, Cp'-C), 138.2 (s, 1C, Cp'-C), 129.1 (s, 1C, Cp'-C), 115.4 (s, 1C, Cp'-C), 48.3 (s, 1C, Cp'-C), 16.6 (s, 1C, S-C-*Me*), 15.4 (s, 1C, Cp'-C), 200 mithod solution is the solution of the sol

Me), 12.1 (s, 1C, Me), -2.4 (s, 3C, CH₂Si*Me*₃).

Complex **3**: Under a nitrogen atmosphere, to a hexane solution (10 mL) of $Sc(CH_2SiMe_3)_3(THF)_2$ (0.90 g, 2.0 mmol) was added slowly 1 equiv of ligand HL² (0.44 g, 2.0 mmol) at room temperature. The mixture was stirred overnight to afford a yellow solution. Removal of solvent under vacuum to give the yellow solid, and the analytically pure compound was obtained through recrystallization in hexane at -30 °C (0.96 g, 91%). ¹H NMR (500 MHz, C₆D₆, 25 °C): δ 6.31 (s, 1H, Cp-H), 3.59 (br, 4H, THF), 2.39 (s, 3H, S-C-Me), 2.21 (s, 3H, Me), 2.16 (s, 3H, Me), 1.20 (br, 4H, THF), 0.44 (s, 9H, Si*Me*₃), 0.26 (s, 18H, CH₂Si*Me*₃), -0.06, -0.11 (AB, 2H, 11.6 Hz, ScC*H*₂SiMe₃), -0.18, -0.24 (AB, 2H, 11.6 Hz, ScC*H*₂SiMe₃). ¹³C NMR (125 MHz, C₆D₆, 25 °C): δ 139.9 (s, 1C, Cp'-C), 137.6 (s, 1C, Cp'-C), 134.5 (s, 1C, Cp'-C), 72.0 (s, 2C, THF), 43.4 (br, 1C, Sc-CH₂SiMe₃), 41.8 (s, 1C, Sc-CH₂SiMe₃), 25.3 (s, 2C, THF), 16.7 (s, 1C, S-C-Me), 16.3 (s, 1C, Me), 13.2 (s, 1C, Me), 4.7 (s, 3C, ScCH₂Si*Me*₃), 1.5 (s, 3C, Si*Me*₃). Anal. Calcd. for C₂₅H₄₉OSScSi₃ (%): C, 59.99; H, 9.37. Found: C, 59.61; H, 9.55.

Determination of TCPD incorporation

According to literature,³ the assignment of NMR spectra of TCPD/E copolymer and the cycloolefin incorporation into the copolymers was calculated from the intensities of relative protons.

Determination of ethylene concentrations

Ethylene concentrations in toluene can be calculated according to the Henry-Gesetz expression:⁴

$$[E] = P_E \cdot H_0 \cdot \exp\left(\frac{\Delta H_L}{RT}\right)$$

Where [E] is the ethylene concentration (mol/L), P_E is the ethylene pressure (bar), H_0 is the Henry coefficient, ΔH_L is the enthalpy of solvation for ethylene, R is the universal gas constant, and T is the solution temperature (K). For toluene, $H_0 = 0.00175$ mol/(L·bar) and $\Delta H_L = 10742$ W·s/mol.

Determination of TCPD conversion

The TCPD conversion of the copolymer was calculated according to the formula:

TCPD Conversion =
$$\frac{m_{\text{polymer}} \times \left(\frac{198 \times f_{\text{TCPD}}}{198 \times f_{\text{TCPD}} + 28 \times f_{\text{E}}}\right)}{m_{\text{TCPD}}} \times 100\%$$

Where $m_{polymer}$ is the mass of copolymer after drying, m_{TCPD} is the feeding mass of TCPD, f_{TCPD} is the TCPD incorporation, f_E is the ethylene incorporation.

References

- E. S. Park, J. H. Park, H. Yun and B. Y. Lee, J. Organomet. Chem., 2011, 696, 2451-2456.
- C. J. Wu, B. Liu, F. Lin, M. Y. Wang and D. M. Cui, *Angew. Chem., Int. Ed.*, 2017, 56, 6975-6979.
- 3. H. Park, A. Kim and B. Lee, *J. Polym. Sci., Part A: Polym. Chem.*, 2011, **49**, 938-944.
- 4. A. McKnight and R. Waymouth, *Macromolecules*, 1999, **32**, 2816-2825.

Fig. S1 ¹H NMR spectrum of 2,5,6-Me₃-4-SiMe₃-cyclopenta[*b*]thiophene (500 MHz, C_6D_6 , 25 °C).

Fig. S2 ¹³C NMR spectrum of 2,5,6-Me₃-4-SiMe₃-cyclopenta[*b*]thiophene (500 MHz, C₆D₆, 25 °C).

Fig. S3 ¹H NMR spectrum of complex 3 (500 MHz, C₆D₆, 25 °C).

Fig. S4 ^{13}C NMR spectrum of complex 3 (500 MHz, C₆D₆, 25 °C).

Fig. S5 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 1).

~ / J

Fig. S6 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 2).

Fig. S7 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 3).

Fig. S8 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 4).

Fig. S9 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 5).

Fig. S10 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 6).

Fig. S11 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 7).

Fig. S12 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 8).

Fig. S13 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 9).

Fig. S14 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 10).

6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 chemical shift (ppm)

Fig. S15 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, C₂D₂Cl₄, 25 °C, Table 1, entry 11).

Fig. S16 ¹H NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 12).

133 131 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 chemical shift (ppm)

Fig. S17 ¹³C NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 6).

134 132 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 chemical shift (ppm)

Fig. S18 ¹³C NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 12).

Fig. S19 ¹H-¹H COSY NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 6).

Fig. S20 ¹H-¹³C HSQC NMR spectrum of TCPD/E copolymer (500 MHz, CDCl₃, 25 °C, Table 1, entry 6).

Microstructure of Ethylene and TCPD Copolymers

Assignment	¹ H NMR Chemical shift	¹³ C NMR Chemical shift
(Carbon number)	(ppm)	(ppm)
CH (1)	1.98	46.3, 47.4
CH (2)	1.98	46.8, 45.9
CH (3,4)	1.70	45.4
CH (5,6)	1.85	39.2-40.3
CH (7,8)	2.05	41.1-41.8
CH (9)	3.04	55.4
CH (10)	2.51	43.9
CH (11)	5.48	132.2
CH (12)	5.65	131.3
CH ₂ (a)	2.10-2.30	32.0
CH_2 (b)	1.10-1.20,1.75-1.85	32.0
CH ₂ (c)	0.94, 1.38	36.6
$CH_{2}(d)$	0.70-1.50	30.0

Table S1. Chemical shift assignment of TCPD/E copolymers

Fig. S21 ¹H NMR spectrum of TCPD/E copolymers before hydrogenation (**A**, 500 MHz, CDCl₃, 25 °C, Table 1, entry 1) and after hydrogenation (**B**, 500 MHz, C₂D₂Cl₄, 25 °C, Table 2, entry 1).

CDCl₃, 25 °C, Table 1, entry 6) and after hydrogenation (**B**, 500 MHz, C₂D₂Cl₄, 25 °C, Table 2, entry 2).

Fig. S23 ¹H NMR spectrum of TCPD/E copolymers before hydrogenation (**A**, 500 MHz, CDCl₃, 25 °C, Table 1, entry 9) and after hydrogenation (**B**, 500 MHz, C₂D₂Cl₄, 25 °C, Table 2, entry 3).

Fig. S24 DSC curve of the TCPD/E copolymer (Table 1, entry 1).

Fig. S25 DSC curve of the TCPD/E copolymer (Table 1, entry 2).

Fig. S26 DSC curve of the TCPD/E copolymer (Table 1, entry 3).

Fig. S27 DSC curve of the TCPD/E copolymer (Table 1, entry 4).

Fig. S28 DSC curve of the TCPD/E copolymer (Table 1, entry 5).

Fig. S29 DSC curve of the TCPD/E copolymer (Table 1, entry 6).

Fig. S30 DSC curve of the TCPD/E copolymer (Table 1, entry 7).

Fig. S31 DSC curve of the TCPD/E copolymer (Table 1, entry 8).

Fig. S32 DSC curve of the TCPD/E copolymer (Table 1, entry 9).

Fig. S33 DSC curve of the TCPD/E copolymer (Table 1, entry 10).

Fig. S34 DSC curve of the TCPD/E copolymer (Table 1, entry 11).

Fig. S35 DSC curve of the TCPD/E copolymer (Table 1, entry 12).

Fig. S36 DSC curve of the hydrogenated TCPD/E copolymer (Table 2, entry 1).

Fig. S37 DSC curve of the hydrogenated TCPD/E copolymer (Table 2, entry 2).

Fig. S38 DSC curve of the hydrogenated TCPD/E copolymer (Table 2, entry 3).

Fig. S39 GPC curve of the TCPD/E copolymer (Table 1, entry 1).

Fig. S40 GPC curve of the TCPD/E copolymer (Table 1, entry 2).

Fig. S41 GPC curve of the TCPD/E copolymer (Table 1, entry 3).

Fig. S42 GPC curve of the TCPD/E copolymer (Table 1, entry 4).

Fig. S43 GPC curve of the TCPD/E copolymer (Table 1, entry 5).

Fig. S44 GPC curve of the TCPD/E copolymer (Table 1, entry 6).

Fig. S45 GPC curve of the TCPD/E copolymer (Table 1, entry 7).

Fig. S46 GPC curve of the TCPD/E copolymer (Table 1, entry 8).

Fig. S47 GPC curve of the TCPD/E copolymer (Table 1, entry 9).

Fig. S48 GPC curve of the TCPD/E copolymer (Table 1, entry 10).

Fig. S49 GPC curve of the TCPD/E copolymer (Table 1, entry 11).

Fig. S50 GPC curve of the TCPD/E copolymer (Table 1, entry 12).

Fig. S51 GPC curve of the hydrogenated TCPD/E copolymer (Table 2, entry 1).

Fig. S52 GPC curve of the hydrogenated TCPD/E copolymer (Table 2, entry 2).

Fig. S53 GPC curve of the hydrogenated TCPD/E copolymer (Table 2, entry 3).