Crosslinked Siloxane-Silsesquioxane Elastomer with Pyrene Functionalization for Rapid Adsorptions of Benzene, Toluene, and Xylene (BTX) from Water and Sensing of Charged Species

Teeraya Bureerug, [†] Chidchanok Wannasiri, [†] Supphachok Chanmungkalakul, [†] Mongkol Sukwattanasinitt,[§] Vuthichai Ervithayasuporn,^{†*} and Thanthapatra Bunchuay,^{†*}

[†]Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), and Center for Inorganic and Materials Chemistry, Faculty of Science, Mahidol University, 272 RAMA VI road, Ratchathewi Bangkok 10400, Thailand.

[§]Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

*Corresponding Author: V. Ervithaysuporn (V.E.)

Email: vuthichai.erv@mahidol.edu; maldiniandg@hotmail.com

T. Bunchuay (T.B.)

Email: Thanthapatra.bun@mahidol.edu

Table of contents

	Pages
Measurements	S4
Synthesis of Mono Pyrene-Functionalized SQ cage	S5
Study of anions and cations sensing	S5
Recyclability of Py-CSSE as an adsorbent for fluoride and cyanide ion	S5
Study of copper adsorption	S 6
Recyclability of Py-CSSE as an adsorbent for copper ion	S 6
Calculation of the kinetic constant	S7
Calculation of the ceramic yield	S7
Compressive test	S7
Quantitative Analysis	S7
Structure of Py-CSSE material	S 8
¹³ C-NMR spectrum	S 8
The contact angle of Py-CSSE without/with HMDSO modification	S9
Table of FTIR peak assignments	S9
XRD diffraction curves of OVS and Py-CSSE	S10
Thermal gravimetric analysis (TGA) of OVS under N_2 and O_2 atmosphere	S11
Thermal gravimetric analysis (TGA) of Py-CSSE under N_2 and O_2 atmosphere	S12
Differential scanning calorimeter (DSC) heating thermograms of Py-CSSE	S13
FESEM images of Py-CSSE	S13
Energy Dispersive X-ray Analysis of a dried sample of Py-CSSE	S14
suspension in DMF medium	
The stress-strain curves for Py-CSSE	S14
Concentration-Independent Excimer Formation of Mono-PySQ in THF solvent	S15
at virous concentration	
Table of ratio of emission intensity of excimer/monomer of Mono-PySQ	S15
Table of adsorption capacity values of Py-CSSE in different solvents	S16
Adsorption capacities of Py-CSSE in different solvents and BTX	S16

The time-dependent adsorption capacity of Py-CSSE for o-xylene adsorption	S17
Table of BTX adsorption comparison of synthesized materials	S17
Fluorescence spectra of Py-CSSE in various solvents before and after anions addition	S18
LOD and LOQ plot from fluorescence titration of Py-CSSE	S18
with fluoride and cyanide ion in various solvents	
Fluorescence spectra of Py-CSSE in various solvents before and after cations addition	S19
LOD and LOQ plot from fluorescence titration of Py-CSSE	S19
with copper ion in various solvents	
Table of LOD and LOQ of Py-CSSE with fluoride, cyanide	S20
and copper ions from fluorescence emission titration	
The kinetics of Py-CSSE upon excessive addition of TBAF, TBACN,	S21
and Cu(ClO ₄) ₂ in various solvents	
Table of kinetic constant of the reaction between Py-CSSE with	S21
anions and metal in different media	
FTIR spectra of Py-CSSE before and after ion addition at solid state	S22
XPS spectra of Py-CSSE before and after Cu adsorption	S22
The Cu ²⁺ adsorption efficiency of Py-CSSE by varying amounts of adsorbent	S23
The time-dependent Cu ²⁺ adsorption efficiency and reusability	S23
FESEM image of a dried sample of Py-CSSE before and after Cu ²⁺ addition	S23
Elemental mapping of a dried sample of Py-CSSE with Cu ²⁺ ions	S24
Energy Dispersive X-ray Analysis of a dried sample of Py-CSSE with Cu ²⁺ ions	S24
Epifluorescence microscopy of Py-CSSE before and after ions addition	S25

Measurements

Fourier-Transform Infrared Spectroscopy (FT-IR) Measurement FT-IR spectra were recorded using the attenuated total reflectance (ATR) technique on a Bruker model Alpha spectrometer.

Solid-state Nuclear Magnetic Resonance Spectroscopy (Solid-state NMR) Solid-state NMR was done with Bruker ASCEND 400 MHz WB NMR/DNP spectrometer for solids.

Spectroscopy (UV-Vis Absorption and Fluorescent Emission Measurement) UVvis spectroscopy was performed on a UV-vis spectrophotometry (Shimadzu UV-2600), whereas all fluorescence spectra were recorded using a spectrofluorometric technique (Horiba FluoroMax4+, integration time 0.1 s, slit width 2 nm) with Fluoromax software.

Morphological and elemental analysis FESEM imaging and energy-dispersive X-ray elemental analysis were carried out using an FEI Quanta 400 SEM with EDS.

Thermogravimetric analysis (TGA) The TA Instruments SDT 2690 device was used for thermogravimetric analysis (TGA). The thermal stability of the Py-CSSE was analysed under N_2 and O_2 at 20 °C min⁻¹ from 40 - 800 °C.

Differential scanning calorimetry (DSC) DSC analyses were conducted by using a DSC 3500 Sirius instrument with heating and cooling rate of 10 °C min⁻¹ at the temperature range of 50 - 400 °C

X-Ray Diffractometer (XRD) The X-ray powder diffractograms were obtained on a Bruker AXS X-ray diffractor Model D8 Advance, Germany with Cu radiation, $\lambda = 1.54184$ °A. Detector is LYNXEYE_XE_T (1D mode).

Inductively coupled plasma mass spectrometry (ICP-MS) A Perkin Elmer NexION 2000 ICP-MS was used as an element detector. Dara processing was done through the SyngistixTM software.

Compressive test the material was measured by Universal testing machine (INSTRON 5569) with loading force 1 kN. The speed of test as 12 mm/minute. Average size of material: thickness 10.93 mm and diameter 39.64 mm

Synthesis of Mono Pyrene-Functionalized SQ cage (Mono-PySQ)

The synthesis of **Mono-PySQ** was modified from our previously reported methodology. **OVS** (632 mg, 1 mmol), 1-bromopyrene (281 mg, 1 mmol) and triphenylphosphine (26.25 mg, 0.2 mmol) were mixed into a thick- wall and sealed cylindrical vessel with a mixture of THF and Et₃N (8:2 v/v, 10 mL). The solution was deoxygenated by flowing N₂ to the mixture for 10 minutes. Subsequently, Pd(OAc)₂ (22.45 mg, 0.1 mmol) was added. The reaction was heated to 80 °C and stirred for 48 hours. After the mixture cooled down to room temperature, the solid residues were filtered off and the filtrate was collected, concentrated, and purified via silica-gel column chromatography to afford the pale-yellow powder of **Mono-PySQ** in 20 %yield.

Study of anions and cations sensing

The changes in fluorescent emission were investigated by adding anion or metal into a suspension of 2 mg **Py-CSSE** in 2 ml different media (THF, DMF and DMSO solvent). Fluorescent emission spectra for Py-CSSE in presence of 0.2 mM of different anions TBAX ($X = F^-$, Cl⁻, Br⁻, I⁻, NO₃⁻, CN⁻, SCN⁻, HSO₄⁻ and ClO₄⁻) and cations as their ClO₄⁻ salts (Cr²⁺, Mn²⁺, Fe²⁺, Co²⁺, Cu²⁺, Zn²⁺, and Cd²⁺) ion in 100 µl.

Recyclability of Py-CSSE as an adsorbent for fluoride and cyanide ion

Reusability of **Py-CSSE** was evaluated by adding a solution of TBAF (0.96 mM, 0.4 mL) into a suspension of **Py-CSSE** (10 mg) in THF and standing at room temperature for 5 minutes. After the first cycle of the adsorption process, **Py-CSSE** was removed and the resulting solution was collected and diluted with THF to adjust volume to 0.20 mL. The concentration of fluoride after adsorption was determined by the aforementioned method. The recycled **Py-CSSE** was washed thoroughly with MeOH and stirring in MeOH for 4 hours then dried prior to use in the subsequent cycles. For cyanide adsorption capacity measurements, the experiments were performed similarly to the case of fluoride but the initial concentration of TBACN was adjusted to 0.37 mM.

Study of copper (II) adsorption

Time-dependent adsorption capacity of **Py-CSSE** was determined by using inductively coupled plasma mass spectrometry (ICP-MS) measurements and CuCl₂ was used as a source of copper. 10 mg of **Py-CSSE** suspension in 10 mL of THF medium were kept in contact with 0.37 mM of copper by varying reaction times (5, 15, 30, 45, 60, and 75 min). After the adsorption process finished, **Py-CSSE** was separated from each batch via centrifugation. Subsequently, 2 mL of supernatant liquids from each batch were collected carefully, filtered, and dried under reduced pressure, respectively. After that, each batch of **Py-CSSE** was re-dissolved into10 mL of type-I distilled water containing 2% HNO₃ and 5% HCl before getting measured by ICP-MS.

Recyclability of Py-CSSE as an adsorbent for copper ion

To study the recyclability of **Py-CSSE**. For the first cycle, 10 mg of **Py-CSSE** was used and 10 mL of 0.37 mM CuCl₂ in THF was added for 10 min. Subsequently, the solution was filtrated and collected carefully in 2 mL. after that the supernatant liquid was dried under reduced pressure before being redissolved in type-I distilled water containing 2% HNO₃/ 5% HCl and measured by ICP-MS. Then, the solid residue of **Py-CSSE** was collected by filtration and dried before adding 0.01 M of EDTA disodium salt solution to remove metal from the polymer. This step was carried out over approximately 3 hours at room temperature. Finally, the polymer was dried under vacuum overnight before studying adsorption for the next cycle. The same procedure was repeated for 2nd to 4th cycles maintaining consistency in protocol and utilizing CuCl₂ as a source of Cu throughout the process.

Calculation of the kinetic constant

At the low concentrations, the kinetic constant could be calculated by the following equation:

$$ln[I] = kt + ln[I]_0$$

When I and I_0 were the emission intensity before and after the addition of anions, t is a time (s). Kinetic constant (k) could be calculated from the slope of graph between ln[I] against t

Calculation of the ceramic yield

Ceramic weight Ceramic yield = $\frac{Ceramic weight}{original polymer weight} x 100$

Compressive test

In uniaxial compression tests, cylindrical **Py-CSSE** with a 40 mm diameter and 10 mm height was used. The experiment performed with loading force 1 kN. The speed of test as 12 mm/min. The %strain of **Py-CSSE** was calculated by the following equation.

%strain = $\frac{\Delta L}{L} \times 100$, where ΔL is the change in length and L is original length.

The stress of **Py-CSSE** was given by the equation as below

Stress =
$$\frac{F}{A}$$
, where F is loading force (N) and A is cross-section area of material (m²).

Quantitative Analysis

The limit of detection (LOD) and limit of quantitative (LOQ) were calculated from fluorescence titration experiments which according to the equations as below

$$LOD = 3\sigma/S$$
$$LOQ = 10\sigma/S$$

Where, σ is the standard deviation of the response and S is the slope of calibration curve.

Figure. S1 Structure of Py-CSSE material

Figure. S2 ¹³C-NMR spectra of Mono-PySQ, OVS and Methyl D_4 in CDCl₃ and the solid-state ¹³C NMR spectrum of Py-CSSE

Figure. S3 The contact angle and wettability measurement of **Py-CSSE** (a) without HMDSO modification and (b) with HMDSO modification

Table. S1 FTIR peak assignments

Frequency (cm ⁻¹)	Vibrational mode
793	Si–O–Si bending
968	Trans C=C bending
1072, 1129	Si–O–Si stretching
1260	Si–CH
1406	C–H vinyl bending
1600	Aromatic C=C stretching
2959	C–H stretching
3023	Aromatic C–H stretching
3064	C–H vinyl stretching
3250-3500	OH stretching

Figure. S4 XRD diffraction curves of OVS (Blue) and Py-CSSE (Orange) samples

Figure. S5 Thermal gravimetric analysis (TGA) of octavinylsilses quiloxane (OVS) under N_2 atmosphere

Figure. S6 Thermal gravimetric analysis (TGA) of octavinylsilsesquiloxane (**OVS**) under O₂ atmosphere

Figure. S7 Thermal gravimetric analysis (TGA) of Py-CSSE under N2 atmosphere

Figure. S8 Thermal gravimetric analysis (TGA) of Py-CSSE under O2 atmosphere

Figure. S9 Differential scanning calorimeter (DSC) heating thermograms of Py-CSSE

Figure. S10 FESEM images of Py-CSSE

Figure. S11 Energy Dispersive X-ray Analysis of a dried sample of **Py-CSSE** suspension in DMF medium.

Figure. S12 (a.) Schematic representing the compression-relaxation of **Py-CSSE** at 60% and 0% strain. (b.) The stress-strain curves of **Py-CSSE** structure with cylindrical specimen, obtained from uniaxial compression testing. and (c.) The stress-stain curves for **Py-CSSE** after 3 cycles.

Figure. S13 Concentration-Independent Excimer Formation of Mono-PySQ in THF solvent at various concentrations.

Table. S2 Ratio of emission intensity of excimer ($\lambda = 419 \text{ nm}$) / monomer ($\lambda = 397 \text{ nm}$) in various concentrations.

	Concentration of Mono-PySQ in THF				
	0.15 mM	0.30 mM	0.60 mM	1.20 mM	2.40 mM
Ratio of I _{ex} /I _{mo}	0.95	1.27	2.20	4.11	8.64

Solvent	CS	SSE	Py-CSSE (This work)		
	Average	SD	Average	SD	
Hexane	0.0232	0.0003	0.0275	0.0019	
THF	0.0438	0.0040	0.0450	0.0018	
DCM	0.0424	0.0016	0.0519	0.0034	
DMF	0.0173	0.0024	0.0238	0.0033	
EtOH	0.0214	0.0012	0.0283	0.0069	
МеОН	0.0304	0.0029	0.0334	0.0044	
Water	0.0028	0.00009	0.0020	0.0026	

Table. S3 Adsorption capacity (mol g⁻¹) values of CSSE and Py-CSSE in different solvent

Figure. S14 Adsorption capacities of Py-CSSE and CSSE towards (a) various solvents reported in g g^{-1} and (b) BTX reported in g g^{-1} .

Figure. S15 The time-dependent adsorption capacity of Py-CSSE for o-xylene adsorption

Materials	BTX adsorption	Maximum adsorption capacity	Ref.
Organoclays	Benzene Toluene <i>p</i> -xylene	0.012 mmol g ⁻¹ 0.030 mmol g ⁻¹ 0.140 mmol g ⁻¹	1.
Periodic mesoporous organosilica	Benzene Toluene <i>p</i> -xylene <i>o</i> -xylene	$\begin{array}{c} 0.6803 \mbox{ mg g}^{-1} \\ 0.6601 \mbox{ mg g}^{-1} \\ 0.6300 \mbox{ mg g}^{-1} \\ 0.6207 \mbox{ mg g}^{-1} \end{array}$	2.
SBA-15 from rice husk	Toluene xylene	175.44 mg g ⁻¹ 142.86 mg g ⁻¹	3.
Metal ion-exchanged Y zeolite (NaY zeolite)	<i>p</i> -xylene <i>m</i> -xylene <i>o</i> -xylene	9.76 wt% 11.86 wt% 8.28 wt%	4.
Carbon-based honeycomb monoliths	o-xylene	550 μmol g ⁻¹	5.
Fe-Al/Bentonite	Benzene Toluene <i>o</i> -xylene	175.13 µg g ⁻¹ 171.84 µg g ⁻¹ 171.81 µg g ⁻¹	6.
Pyrene-functionalized cross- linked siloxane/silsesquioxane elastomer	Benzene Toluene <i>p</i> -xylene <i>m</i> -xylene <i>o</i> -xylene	$\begin{array}{c} 2.65 \text{ g g}^{-1} \\ 2.98 \text{ g g}^{-1} \\ 3.03 \text{ g g}^{-1} \\ 3.07 \text{ g g}^{-1} \\ 3.23 \text{ g g}^{-1} \end{array}$	This work

Table.	S4	The	BTX	adsorption	comparison	of s	synthesized	materials
--------	-----------	-----	-----	------------	------------	------	-------------	-----------

Figure. S16 Fluorescence spectra of **Py-CSSE** (1 mg/mL) in various solvents before and after the addition of 0.2×10^{-6} M of anions (50 µl).

Figure. S17 LOD and LOQ plot from fluorescence titration of **Py-CSSE** (2 mg) with (a.) fluoride ion and (b.) cyanide ion in THF solvents.

Figure. S18 Fluorescence spectra of **Py-CSSE** (1 mg/mL) in various solvents before and after the addition of 0.2×10^{-6} M of cations (50 µl).

Figure. S19 LOD and LOQ plot from fluorescence titration of **Py-CSSE** (2 mg) with copper ion in THF solvents.

	Fluoride	e ion (F ⁻)	Cyanide	ion (CN ⁻)	Copper	ion (Cu ²⁺)
Solvent	LOD (nM)	LOQ (nM)	LOD (nM)	LOQ (nM)	LOD (nM)	LOQ (nM)
THF	0.94	2.86	1.57	4.77	2.72	8.23
DMF	2.46	7.46	1.58	4.80	1.65	4.99
DMSO	4.14	12.54	2.55	7.74	2.04	6.18

Table. S5 LOD and LOQ of **Py-CSSE** with fluoride, cyanide and copper ions from fluorescence emission titration.

Figure. S20 The kinetics of **Py-CSSE** (1 mg mL⁻¹) upon excessive addition of a.) TBAF b.) TBACN and c.) $Cu(ClO_4)_2 0.2 \times 10^{-6} M 50 \,\mu l$ in various solvents

Table. S6 Kinetic constant of the reaction between **Py-CSSE** with anions (F^- and CN^-) and metal (Cu^{2+}) in different media

Kinetic constant (k) x 10 ⁻³ sec ⁻¹					
Solvent	F-	CN-	Cu ²⁺		
THF	2.1	8.8	5.1		
DMF	2.5	1.5	6.5		
DMSO	1.5	3.9	4.2		

Figure. S21 FTIR spectra of Py-CSSE before and after ion addition

Figure. S22 XPS spectra of Py-CSSE a.) O1s b.) Si 2p and Py-CSSE+Cu²⁺ c.) O1s d.) Si 2p

Figure. S23 The Cu^{2+} adsorption efficiency of Py-CSSE by varying amounts of adsorbent

Figure. S24 (a) The time-dependent adsorption efficiency. (b) The reusability of **Py-CSSE** (Adsorption dose, 10 mg; Concentration: F^- (0.96 mM) CN⁻ (0.37 mM) and Cu²⁺ (0.37 mM) ions.) in THF solvent

Figure. S25 FESEM image of a dried sample of Py-CSSE (a) before and (b) after Cu²⁺ addition

Figure. S26 Elemental mapping of a dried sample of Py-CSSE that had adsorbed Cu²⁺ ions

Figure. S27 Energy Dispersive X-ray Analysis of a dried sample of Py-CSSE that had adsorbed Cu^{2+} ions

Figure. S28 Epifluorescence microscopy of a.) Py-CSSE b.) Py-CSSE+F⁻ C.) Py-CSSE+CN⁻ and d.) Py-CSSE+Cu²⁺ in DMF

Supplementary Movies

Video S1. This video shows the synthesis of Py-CSSE.

References

1. L. F. Lima, J. R. de Andrade, M. G. C. da Silva and M. G. A. Vieira, Industrial & Engineering Chemistry Research, 2017, 56, 6326-6336.

2. C. P. Moura, C. B. Vidal, A. L. Barros, L. S. Costa, L. C. G. Vasconcellos, F. S. Dias and R. F. Nascimento, Journal of Colloid and Interface Science, 2011, 363, 626-634.

3. Y. Prestianggi, N. Maylisa, R. D. Subagyono and S. Sitorus, 2019.

4. P. Lahot, M. Rani and S. Maken, Brazilian Journal of Chemical Engineering, 2014, 31, 497-502.

5. J. M. Gatica, J. M. Rodríguez-Izquierdo, D. Sánchez, T. Chafik, S. Harti, H. Zaitan and H. Vidal, Comptes Rendus Chimie, 2006, 9, 1215-1220.

6. Z. Mèçabih, Journal of Encapsulation and Adsorption Sciences, 2017, 7, 40.