Supplementary Information

Patchy Stereocomplex Micelles as Efficient Compatibilizers for Polymer Blends

Roman Schaller,^a Marius Schmidt,^a Kristian Schweimer^{b,c} and Holger Schmalz^{a,d}*

R. Schaller, M. Schmidt, Dr. Kristian Schweimer, Dr. H. Schmalz

- ^a Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth (Germany)
- ^b Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Universitätsstraße 30,
 95447 Bayreuth (Germany)
- ^c Northern Bavarian NMR Center, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth (Germany)
- ^d Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth (Germany)

E-mail: holger.schmalz@uni-bayreuth.de

Scheme S1: Synthesis of A) PS-OH, B) PS-*b*-P*L*LA or PS-*b*-P*D*LA and C) P*D*LA-*b*-P*t*BMA diblock copolymers.

Scheme S2: Synthesis of A) PS and B) PtBMA homopolymers by living anionic polymerization.

Fig. S1: ¹H NMR (CDCl₃, 300 MHz) spectra of A) PS-OH, PS-*b*-P*L*LA, PS-*b*-P*D*LA, B) P*D*LA-Br, P*D*LA-*b*-P*t*BMA and C) PS, P*t*BMA.

Fig. S2: MALDI-ToF MS spectra of A) PS, B) PtBMA (the shoulder at higher molecular weights is an artifact arising from the combination of two polymer chains with one cation), C) PS_{169} -OH and D) PS_{156} -OH (PS samples: DCTB, AgTFA; PtBMA: DCTB, NaTFA).

Sample	Composition (wt% / <i>DP</i>) ^a	$M_{\rm n}({ m NMR})^{ m a}$ [g mol ⁻¹]	M _n (SEC) ^b	D^{b}	Mn(MS) ^c [g mol ⁻¹]	Т
PS	- / S ₃₇₈	-	41 500	1.05	39 400	1.0
PtBMA	- / <i>t</i> BMA ₆₆₀	-	87 000	1.06	93 700	1.06
PS ₁₆₉ -OH	- / S ₁₆₉ EO ₁	-	19 600	1.06	17 600	1.0
PS ₁₅₆ -OH	- / S ₁₅₆ EO ₁	-	16 600	1.06	16 300	1.0
PDLA ₁₀₀ -Br	- / DLA ₁₀₀	7 500	13 500	1.16		
PDLA ₆₂ -Br	- / DLA ₆₂	4 600	6 300 ^d	1.09 ^d		
PDLA ₆₂ -RB	- / DLA ₆₂ RB ₁	5 200	6 700 ^d	1.10 ^d		
PS-b-PLLA	S ₇₀ LLA ₃₀ / S ₁₆₉ LLA ₁₀₆	25 300	27 900	1.08		
PS-b-PDLA	S ₆₈ DLA ₃₂ / S ₁₅₆ DLA ₁₀₆	24 000	30 000	1.07		
PS-b-PLLA-Br	S ₇₂ LLA ₂₈ / S ₁₆₉ LLA ₉₆	24 500	27 900	1.10		
PDLA-b-PtBMA	DLA ₂₈ tBMA ₇₂ / DLA ₁₀₀ tBMA ₁₃₂	26 200	35 100	1.19		
PS- <i>b</i> -P <i>L</i> LA- <i>b</i> - P <i>t</i> BMA	S ₃₃ LLA ₁₃ T ₅₄ / S ₁₆₉ LLA ₉₆ T ₂₀₀	52 600	42 200	1.18		

 Table S1: Molecular characteristics of synthesized polymers.

a) determined from ¹H NMR (CDCl₃, 300 MHz) using the ATRP end group or absolute M_n of the PS and PDLA precursor polymers (determined by MALDI-ToF MS or ¹H NMR spectroscopy) for internal signal calibration, respectively (DP = degree of polymerization)

b) determined from CHCl₃-SEC (PS calibration), D = molar mass dispersity

c) determined from MALDI-ToF MS

d) determined from THF-SEC (PS calibration)

Fig. S3: Autocorrelation functions from DLS for SC micelles prepared from PS-*b*-PLLA/PDLA-*b*-PtBMA mixtures ($c = 5 \text{ g L}^{-1}$, CH) after aging for 1 week, 8 months, and at 45 °C.

Fig. S4: DLS measurements of SC micelles in CH prepared from PS-*b*-P*L*LA/P*D*LA-*b*-P*t*BMA mixtures with a concentration of c = 5 g L⁻¹ and upon further dilution to c = 1 and 0.1 g L⁻¹. A) Hydrodynamic diameter distributions and B) autocorrelation functions.

Fig. S5: Contour plot of a 2D ¹H NOESY experiment on a SC micelle dispersion prepared from PS-*b*-P*L*LA/P*D*LA-*b*-P*t*BMA mixtures ($c = 5 \text{ g L}^{-1}$, CH- d_{12}). The green circles indicate the positions where cross-peaks would be expected in case of a mixed PS/P*t*BMA corona. In a mixed corona, the PS and P*t*BMA segments would be in close proximity, giving rise to magnetization transfer by cross-relaxation. Hence, the absence of those cross-peaks confirms that the microphase separation within the PS/P*t*BMA corona of the SC micelles is present already in the dispersed state.

Fig. S6: A) Hydrodynamic diameter distribution and B) autocorrelation function of a PS-*sc*-PLA-PS micelle dispersion in CH ($c = 5.0 \text{ g L}^{-1}$) determined by DLS. C) TEM micrograph of the respective micelles. The dispersion was prepared by adding a mixture of PS-*b*-P*L*LA and PS-*b*-P*D*LA in DCM (V = 2 mL, $c = 50 \text{ g L}^{-1}$) to CH (V = 18 mL), subsequent evaporation of DCM and refilling with CH. PS was selectively stained with RuO₄ vapor and appears dark.

Fig. S7: Raman spectra of employed diblock copolymers and dried SC micelles. A) Full spectra and B) zoom-ins of the carbonyl stretching vibration regime (dashed line indicates location of SC specific band).

Fig. S8: A) DSC measurements of freeze-dried PS-*sc*-PLA-P*t*BMA micelles. B) 1st heating traces of freeze-dried PS-*sc*-PLA-P*t*BMA micelles and the respective diblock copolymers used for their preparation.

Fig S9: Apparent molecular weight distributions of A) PS and B) PtBMA homopolymers (CHCl₃-SEC, PS calibration).

Fig. S10: Histograms of PS droplet diameter distributions determined by Raman imaging of PS/PtBMA (30/70 (w/w)) blends compatibilized with A) 7 wt% PS-*sc*-PLA-PS micelles or different amounts of patchy PS-*sc*-PLA-PtBMA micelles: B) 1, C) 3, D) 5, E) 7 and F) 10 wt%. For size evaluation at least 100 PS domains from different positions were counted.

Fig. S11: Spatial component distribution at higher magnification extracted from Raman imaging for PS/PtBMA (30/70 (w/w)) blends compatibilized with A) 7 wt% and B) 10 wt% patchy PS-*sc*-PLA-PtBMA micelles. The domains colored in red represent PS droplets being dispersed in a continuous PtBMA matrix (depicted in blue).

Fig. S12: Overview SEM images of the fracture surfaces of PS/PtBMA (30/70 (w/w)) blends compatibilized with A) 3, B) 5, C) 7 and D) 10 wt% patchy PS-*sc*-PLA-PtBMA micelles, taken at lower magnification. The PS domains were selectively stained with RuO₄ vapor to enhance contrast and appear bright.

Scheme S3: Synthesis of fluorescently labelled PDLA homopolymer (PDLA₆₂-RB).

Fig. S13: A) ¹H NMR (CDCl₃, 300 MHz) spectra of PDLA₆₂-Br and PDLA₆₂-RB. B) Apparent molecular weight distributions of PDLA₆₂-RB (THF-SEC, PS calibration, UV-vis detector at λ = 580 nm). The identical RI and UV-vis traces for PDLA₆₂-RB prove the successful end-functionalization of PDLA₆₂ with sulforhodamine B.

Fig. S14: A) Hydrodynamic diameter distribution and B) autocorrelation function of a PS-*sc*-PLA-P*t*BMA_RB micelle dispersion in CH ($c = 1.0 \text{ g L}^{-1}$) determined by DLS. C) TEM micrograph of the respective micelles. The dispersion was prepared by the addition of a mixture of PS-*b*-P*L*LA, PS-*b*-P*D*LA and P*D*LA₆₂-RB (10 wt% of total P*D*LA amount) in DCM ($V = 300 \mu \text{L}, c = 10 \text{ g L}^{-1}$) to CH (V = 2.7 mL), subsequent evaporation of DCM and refilling with CH. PS was selectively stained with RuO₄ vapor and appears dark.

Fig. S15: TEM micrographs of a thin film of a PS/PtBMA (30/70 (w/w)) blend compatibilized with 7 wt% patchy PS-*sc*-PLA-PtBMA micelles. The PS domains were selectively stained with RuO₄ vapor to enhance contrast and appear dark.

Scheme S4: Synthesis of A) the PS-*b*-P*L*LA-Br diblock copolymer end-functionalized with an ATRP initiating site ($S_{169}LLA_{96}$ -Br) and B) the PS-*b*-P*L*LA-*b*-P*t*BMA triblock terpolymer ($S_{169}LLA_{96}T_{200}$).

Fig. S16: A) ¹H NMR (CDCl₃, 300 MHz) spectra and B) apparent molecular weight distributions (CHCl₃-SEC, PS calibration) of PS₁₆₉-*b*-PLLA₉₆-Br and PS₁₆₉-*b*-PLLA₉₆-*b*-PtBMA₂₀₀.

Fig. S17: Autocorrelation functions from DLS for PS-*b*-P*L*LA-*b*-P*t*BMA Janus micelles ($c = 5 \text{ g L}^{-1}$, CH) at 25 and 45 °C.