Support information for:

Synergistic Chemotherapy/Photothermal Therapy for Cancer Treatment Using a Co-Delivery System of Cisplatin and Novel Conjugated Polymers

Yaodong Di^{†a,b}, Hanning Zhang^{†a}, Zimu Luo^c, Congshu Feng^a, Xi Zhang^a, Shuai

Yang^a, Jie Hou^d and Lesan Yan^{a,b*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China

^b Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China

° CGN Top (Hubei) New Materials Co., Ltd. Hanchuan 431615, China

^d Shenzhen Baoan People's Hospital, Shenzhen 518101, China

[†]These authors contributed equally to this work.

Email: lsyan@whut.edu.cn

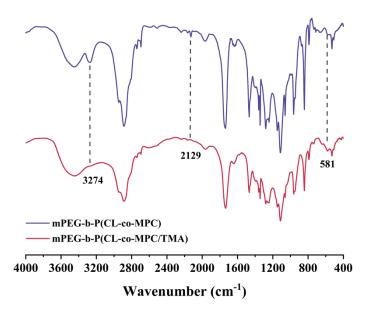


Figure S1. FT-IR spectra of mPEG-b-P(CL-co-MPC) and mPEG-b-

P(CL-co-MPC/TMA).

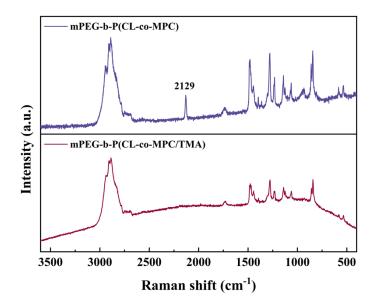


Figure S2. Raman spectra of mPEG-b-P(CL-co-MPC) and mPEG-b-

P(CL-co-MPC/TMA) (Ex = 633 nm).

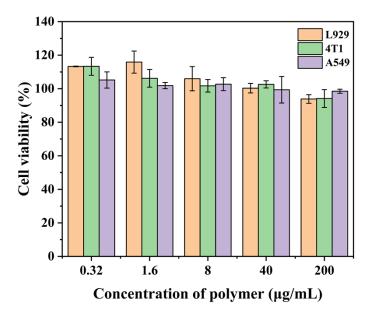
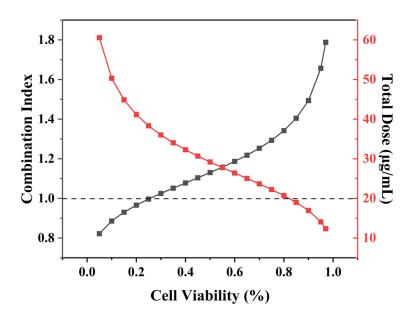
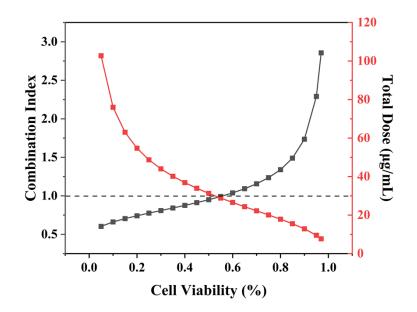




Figure S3. Cell survival rates of various cell types incubated with

different concentrations of polymer micelles.

Figure S4. The relationship between the Combination Index of nanomicelles, 4T1 cell viability, and total drug dose.

Figure S5. The relationship between the Combination Index of nanomicelles, A549 cell viability, and total drug dose.