Supporting information

One-pot Strategy to Access Dynamic Dual Network from Lignin-

Initiated Star Polymers by Side Reaction and Transesterification

Quan Yan^a, Bailiang Xue^{a*}, Tonghe Zhang^a, Wenliang Wang^a, Xinping Li^a, Xiaojun

Shen^b, Lulu Ning^a, Xianzhi Meng^c, Wei Zhao^a

^a College of Bioresources Chemical and Materials Engineering, Shaanxi University of

Science and Technology, Xi'an 710021, Shaanxi, China.

^b Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China

^c Department of Chemical & Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA

*Corresponding authors at: College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China. Tel.: +86-29-86168575. E-mail address: xuebailiang@sust.edu.cn (B.L. Xue).

Fig.S1. Comparison of conversion rates with similar work in recent years.

Samples	[I]:[CTA]:[M ₁]:[M ₂]	Conv.(%)*	M _n (g/mol)	PDI
THF-L	-	-	722	2.0
L-Br	-	-	3544	1.9
L-CTA	-	-	5687	1.4
L-PBA ₁₀₀	0.2:1:100:0	70.8	16482	2.0
L-PBA ₃₀₀	0.2:1:300:0	68.9	31787	2.0
L-PBA ₅₀₀	0.2:1:500:0	73.6	50600	2.4
L-P(BA ₄₇₅ - <i>co</i> -GMA ₂₅)	0.2:1:475:25	75.8	49181	2.2
L-P(BA ₄₅₀ - <i>co</i> -GMA ₅₀)	0.2:1:450:50	70.9	44550	1.8
L-P(BA ₄₂₅ - <i>co</i> -GMA ₇₅)	0.2:1:425:75	77.3	50064	2.4

 Table S1. Formulations and properties of Lignin, L-CTA and star-shaped lignin-grafted

*This conversion rate is employed to characterise star-shaped lignin-grafted copolymers in the absence of star-star coupling.

copolymers.

Fig.S2. DTG Images of Lignin, L-Br, and L-CTA.

Fig.S3. Verification experiment of the polymerization of monomers and initiators.

Fig. S4. ¹H NMR of L-PBA₅₀₀, L-P(BA₄₂₅-co-GMA₇₅) and L-CTA.

Fig.S5. ¹H NMR and characteristic peak display for (a) L-PBA₁₀₀; (b) L-PBA₃₀₀; (c) L-PBA₅₀₀.

Fig.S6. ¹H NMR and characteristic peak display for (a)L-P(BA₄₇₅-*co*-GMA₂₅) ;(b)L-P(BA₄₅₀-*co*-GMA₅₀) ;(c)L-P(BA₄₂₅-*co*-GMA₇₅).

Fig.S7. Monomer conversation of $L-P(BA_{350}-co-GMA_{150})_b$ and $L-P(BA_{350}-co-GMA_{150})_b$.

Fig.S8. FT-IR of the solution before polymerization, L-P(BA₃₅₀-*co*-GMA₁₅₀) and L-P(BA₃₅₀-*co*-GMA₁₅₀)_b.

Fig.S9. Bonding performance of L-P(BA₅₀₀-co-GMA₀)_b and L-P(BA₅₀₀-co-GMA₀).

Fig. S10. Lap shear strength of different curing times.

Crosslinking density increases

Fig.S11. Images of star-shaped lignin-grafted copolymers samples with varying degrees of cross-linking.